CSé61c: Verilog Tutorial

J. Wawrzynek

October 17, 2007

1 Introduction

There are several key reasons why description languages (HDLs) are in common use today:
e They give us a text-based way to describe and exchange designs,

e They give us a way to simulate the operation of a circuit before we build it in silicon. It is usually
easier to debug a model of the circuit rather than the real circuit in silicon,

e With special tools we can automatically translate our Verilog models to the information needed
for circuit implementation in silicon. This translation takes the form of partitioning and mapping
to primitive circuit elements, element placement, and wire routing. The set of translation tools
could also include logic synthesis—automatic generation of lower-level logic circuit designs from
high-level specifications.

Two standard HDLs are in wide use, VHDL and Verilog. We have chosen Verilog over VHDL
because it is easier to learn and use for most people because it looks like the C language in syntax.
Also, it is widely used in industry. Fortunately, because the semantics of both are very similar, making
a switch to VHDL from Verilog later not a problem.

Verilog is a language that includes special features for circuit modeling and simulation. For purposes
of describing our circuits, we will employ only a simple subset of Verilog. In fact, we will focus just on
those language constructs used for “structural composition”—sometimes also referred to as “gate-level
modeling”. These constructs allow us to instantiate primitive logic elements (logic gates) or our own
circuits elements and connect them together with wires. With these contructs we can compose a model
of any circuit that we wish, as long the primitive elements are ones included with Verilog. Structural
composition is very similar to the process that we would go through, if we were to wire together physical
logic gates in a hardware lab.

Even though we are primarily interested in structural Verilog, we will introduce some higher-level
language constructs to help in testing our circuit models. The higher-level language constructs, called
“behavioral constructs”, are the ones that make Verilog seem like a general purpose programming lan-
guage (similar to C or Java). As we will see, the behavioral constructs are very convenient for automat-
ically generating input to and checking output from our circuit models. In fact, an advantage of Verilog
over other systems for modeling circuits, schematic capture for instance, is that it is powerful enough
to also express complex testing procedures without resorting to a different language.

It is important to keep in mind that, although Verilog has constructs that make it a look like a
general purpose programming language, it is really primarily a hardware description language. Many

2 Wawrzynek 2007 © UCB

sel'ect — se!ect —»—De’—_
in0 0 in0 out
— out
in1 1 in1
a) 2-input mux symbol b) 2-input mux gate-level circuit diagram

Figure 1: 2-input Multiplexor

a student (as well as some professional designers) have gotten into trouble by indescrimate use of
Verilog’s behavioral contructs, operating under the false assumption that a circuit can be described
in a way that looks like a software program and then automatically converted to an efficient circuit
implementation. Describing circuits in not equilavent to programming. Therefore, to help keep you
out of trouble, when describing circuits, in this class we will restrict our use of Verilog to structural
constructs.! All Verilog users can benefit from the understanding that the most effective way to use
Verilog is to first figure out the circuit you want then figure out how to use Verilog to describe it.
We will, however, allow the use of behavioral constructs when writing the test procedures, called zest
benches.

2 Two-input Multiplexor Example

A multiplexor is a circuit used to select between a set of values. The multiplexor output takes on
the value of in0 when select=0; otherwise it takes on the value of inl. We can express the 2-input
multiplexor operation with the following boolean expression:

out = select - inl + select - in0

This operation can be implemented with two 2-input AND gates, a 2-input OR gate, and an inverter,
as shown in figure 1.
This circuit can be modeled in Verilog as follows:

module mux2 (in0O, inl, select, out);
input in0, inl, select;
output out;
wire s0,w0,wl;

not
(s0, select);
and
(w0, s0, 1in0),
(wl, select, inl);
or

"With the notable exception of continous assignment.

CS61c Lecture Notes 3

(out, w0, wl);

endmodule // mux2

The first thing to notice about this example is that the syntax is similar to that of C++ and Java,
and other C-like languages. In fact, most of the same rules about naming variables (in this case inputs,
outputs, and wires) all follow the same rules as in C. Unlike C, however, is that the body of mux2 is
not made up of assignment statements. In this case, the body describes the connection of primitive
logic elements (gates). It is important to understand that there is no real action associated with this
description. In fact, it is more like defining a data-structure (struct in C) than it is like a program. The
function that this circuit model assumes is a result of the function of the primitive elements and their
interconnection.

Modules in Verilog are the basic mechanism for building hierarchies of circuits. Modules are de-
fined and then instantiated in other module definitions. As with C functions, module definitions cannot
be nested. A module definition begins and ends with the module and endmodule keywords, repec-
tively. The pair of slashes (“//”’) signifies the beginning of a comment that extends to the end of the line.
In this case, the “// mux2” comment after the endmodule was added automatically by the text editor
emacs in “Verilog mode”.

Following the keyword “module” is the user-defined name for that module, followed by a list of
signals. These signals define the interface of the module to other modules; think of them as “ports”.
When the module is instantiated, these port names are bound to other signals for interconnection with
other modules. Each port can be defined as “input”, “output”, or some other types that we will not
need in 61C. In mux2, after declaring the inputs and outputs, we define three additional signals, s0,
w0, and w1. These additional signals will be used for connecting together the basic logic gates that will
make up the model of mux2. The type of these signals is “wire”—the standard type used to make
simple connections between elements.

Next is the body of the definition of mux2. It comprises a list of elements. This section could name
other modules that we have defined, but in this case only instantiates primitive logic gates. In addition
to the gates used here, NOT, AND, and OR, Verilog predefines NAND, NOR, XOR, XNOR, and BUF.
BUF is a single-input single-output gate, similar to NOT, that copies its input value to its output without
inversion. The convention for built-in gates is that their output signal is the first port and the remaining
ports are inputs. Except for NOT and BUF, these primitive gates can have any number of inputs.

By following the signal names, the interconnection between the logic gates and there connection to
the module ports should be apparent. An interesting exercise that you might try is to draw a schematic
diagram for this circuit based on the Verilog and compare it to figure 1.

3 Testing the Multiplexor

Given this definition of mux2, it is ready to be instantiated in other modules. However, before we do
that, it is probably a good idea to test it. Several things could have gone wrong: we could have made
a mistake typing in our definition, we could have made a mistake in our understanding of the correct
circuit for implementing the multiplexor function, or perhaps we made an invalid assumption about how
Verilog works.

4 Wawrzynek 2007 © UCB

Testing is a critical part of circuit design. Untested circuits are useless—they’re a dime a dozen.
The fun part of circuit design is coming up with the circuit configuration to achieve a desired function.
The hard part is the testing. For most circuits, coming up with a good test program can take as much
or more time than coming up with the orginal circuit to be tested. However, testing doesn’t need to be
difficult, and in Verilog there are several clever ways to make testing easier—and even fun!

In Verilog it is common practice to define a special module used specifically for testing another
module. The special module is usually defined at the top level, having no ports. It is commonly referred
to as a “test-bench”. The name test-bench is an analogy to the laboratory work bench that houses the
test equipment that we use in testing physical circuits.

A simple test bench for mux?2 is shown below:

module testmux;
reg a, b, s;
wire f;
reg expected;

mux2 myMux (.select(s), .inO(a), .inl(b), .out(f));
initial
begin
#0 s=0; a=0; b=1; expected=0;
#10 a=1; b=0; expected=1;
#10 s=1; a=0; b=1; expected=1;
#10 S$stop;
end
initial
Smonitor (

"select=%b in0=%b inl=%b out=%b, expected out=%b time=%d",
s, a, b, f, expected, S$time);
endmodule // testmux

The test-bench uses some of the constructs in Verilog that make it more like a progamming language.
In particular, notice that the body of testmux uses assignment statements. These assignments are a
way to set a signal to a particular logic value at a particular time. In general, these assignments can
model the effect that a circuit can have on a signal, however, the assignment itself has no circuit directly
associated with it. In other words, the assignment statement really only takes on meaning in the context
of simulation. However, testing is all about simulation, so we will use assignments in our test-bench.

Because assignments are special, the left-hand side must be signals defined as type “reg”. (Don’t
confuse these with state elements, registers and flip-flops.) In this test-bench, we define the signals a,
b, and s as type reg because these will be explicitly assigned values. The signal £ will be connected to
the output of our module to be tested, mux2. In fact, if we now skip down to the line that begins, “mux2
myMux ...~ we see that we have instantiated mux2, giving it the local name “myMux”. The local name
is used to distinguish from other instances of mux2 that we might make.

What follows the instantiation of mux2 is a list of connections between our local signals and the
ports of mux2. The syntax used here lists the ports of mux?2 in arbitrary order, each one preceded by a

[T%2]

., and followed by the name of a local signal in parentheses. Verilog also allows making connections

CS61c Lecture Notes 5

between local signals and module ports by simply listing the names of the local signals in the order
that the ports where defined in the module header (as was done with the primitive logic gates in the
definition of mux2). However, we recommend you use the “dot” form because it allows you to list the
ports in any order, making it easier to make changes later, and provides a reminder of exactly which
signal is being connected to what port.

Now that we have established the connection between the local signals a, b, and s, and the ports of
mux2, anything that we do to change the values of these local signals will instantaneously be seen by
myMux.

In addition to the local signals defined for connecting to mux2, we have defined one additional
signal, called “expected”. This signal is used only to help provide useful output on the console, as
will be seen below.

After instantiating mux2 and connecting it to local signals, we move on to defining the actions that
will drive its inputs. Here we use the “initial” keyword to say that everything in the following block
should be done once at the start of simulation. Verilog also includes a keyword “always” for defining
actions that should be done every time a particular event occurs. In our case, what we do is to apply sets
of input values (represented as s, a, and b) to mux2 and at the same time assign to “expected” what
we expect to see at its output.

What probably looks particularly strange to you are the “#n”’s preceding each assignment. These
are used to move along the simulation clock. Unlike programming languages where each statement is
executed after the previous without any regard for absolute time (only sequence is important) everything
in Verilog happens at a particular time (well, simulated time really). By default, the unit of time is
nanoseconds (ns). In testmux, the first set of assignments are made at 0 ns from the start of simulation,
the second at 10ns from the previous, etc. Without the “#n”’s all these statements would occur at the
same time (the start of simulation), causing undefined results. The important thing to remember about
Verilog is that time does not move along until we do something to advance it. And without advancing
time, no useful simulation can happen. In this example, new inputs are applied to our circuit every 10ns.
The simulation is ended with the “#10 S$stop;” line.

The final thing to specify in testmux is a way for us to observe what’s happening. For this, we
use another initial block that at the beginning of simulation starts a special built-in function for printing
information to the console. “$monitor” watches the signals that are connected to it and whenever any
of them change, it prints out a string with the all the signal values. The syntax of the string specification
is similar to “print£” in C. Here the special format characters “%b” mean that the associated signal
should be printed as a binary number. “%d” is used to print the value of the simulation time as a decimal
number. The simulation time is available by using the special name “$time”.

The result of executing testmux is shown below:

select=0 in0=0 inl=1 out=0, expected out=0 time=0
select=0 in0=1 inl=0 out=1, expected out=1 time=10
select=1 in0=0 inl=1 out=1, expected out=1 time=20

3.1 Adding Delay to the Multiplexor Example

The multiplexor circuit that we described above contains no delay. You will notice from the simulation
output listed above, that the output changes instantaneously with input changes. Primitive logic gates,
and other circuit elements, in Verilog have any implicit logic delay. The delay must be specified as part

6 Wawrzynek 2007 © UCB

of the circuit description. It is important to add delay to circuit elements to get a realistic simulation,
and in some cases to get correct operation.
Delay can be added to logic gates in Verilog by using the “#” operator and specifying a delay

amount, in terms of simulation time units, such as “not #1 (a, b);

Delay can be added to mux2 as follows. Here we simply assume that the delay of each logic gate is
Ins.

module mux2 (in0O, inl, select, out);
input in0,inl, select;
output out;
wire s0,w0,wl;

not

#1 (s0, select);
and

#1 (w0, s0, in0),

(wl, select, inl);
or

#1 (out, w0, wl);

endmodule // mux2

Now if we simulate this version of the multiplexor using the test bench that we previously defined,
we would see the following output:

select=0 in0=0 inl=1 out=x, expected out=0 time= 0
select=0 in0=0 inl=1 out=0, expected out=0 time= 2
select=0 in0=1 inl=0 out=0, expected out=1 time= 10
select=0 in0=1 inl=0 out=1l, expected out=1 time= 12
select=1 in0=0 inl=0 out=1l, expected out=0 time= 20
select=1 in0=0 inl=0 out=0, expected out=0 time= 22

We now see twice the number of output lines printed. The lines with a time that is an even multiple
of 10, correspond to changes in the input. The other lines (with time= 2, 12, and 22) correspond to
changes in the output. You will notice that in the first line, at time=0, the output has value “x”. The
value “x” is used in Verilog to mean undefined. Because the way we assigned delays to the logic gates,
it takes 2ns before the output takes on its new value.

From the above output, you might conclude that the mux delay is always 2ns. But in fact, worst case
delay from the select input to the output is 3ns, because that path has three gates in series. We could
verify the worst case delay by setting select to 1, in0 to 1, inl to 0, and then changing select to 0.
We would expect to the the output change from 0 to 1 after a 3ns delay.

CS61c Lecture Notes 7

4 Bit Vectors and Automatic Looping in Test-benches

Let’s take a look at another test-bench for our 2-input mux:

//Test bench for 2-input multiplexor.
// Tests all input combinations.
module testmux2;

reg [2:0] c;

wire f;

reg expected;

mux2 myMux (.select(c[2]), .inO(c[0]), .inl(c[l1), .out(f));
initial
begin
#0 ¢ = 3'b000; expected=1'b0;
repeat (7)
begin
#10
c =c + 3'b001;
if (c[2]) expected=c[l]; else expected=c[0];
end
#10 S$stop;
end
initial
begin
Sdisplay ("Test of mux2.");
Smonitor ("[select inl in0]=%b out=%b expected=%b time=%d",

c, f, expected, S$time);
end
endmodule // testmux2

This test-bench is designed to be a comprehensive test of the 2-input mux. Whereas the first test-
bench we wrote tested only three input combinations, this new one preforms an exhaustive test, trying
all possible input combinations. The 2-input mux has three inputs; so a complete set of tests needs
to try eight different combinations. We could have simply extended the first test-bench to try all eight
cases; however, that approach would be a bit tedious and even more so for circuits with more inputs.
Remember the number of unique input combinations for a circuit with n inputs is 2".

The approach we use here is to generate all input combinations through looping and counting. We
consider the three inputs to mux2, a, b, and s as three distinct bits of a 3-bit number, called c. The
procedure starts by initializing c to all zeroes (3’ 000) then sucessively increments c through all its
possible values.

Now lets take a look at testmux2 in more detail. Again we declare signals of type reg to be used
on the left-hand side of assignment statements. The signal expected will again be used to store the
expected output from the mux. The signal c is declared as a 3-bit wide signal. The special syntax
“[2:0]1” is used in a way similar to array declarations in high-level programming languages. A signal
with width can be thought of as an array of bits. In Verilog, however, unlike C++ the declaration can

8 Wawrzynek 2007 © UCB

also specify a naming convention for the bits. In this case the range specifier, “2:0” says that the
rightmost bit will be accessed with “c [0]”, the middle bit with “c[1]”, and the leftmost with “c[2]".

After the signal declarations, mux2 is instantiated. Once again we establish the connections between
the local signals of the test-bench and the module ports of mux2. Here we connect the bits of ¢ to the
three inputs of mux2, and the output of the mux to £.

The first initial block is the one that increments c. It begins by setting c to all zeroes, and expected
to logic O (the expected output of a 2-input mux with zeroes at the inputs). The repeat contruct is used
to loop for 7 interations and on each, advancing time by 10ns and incrementing c by 1 bit value.

Also included in the repeat block is the generation of the expected output value. Because the input
values to mux2 are automatically generated in a loop, we need to automatically generate the value for
expected. By definition, we know that we can express the action of our multiplexor as “if select=0
then output=in0 else output=inl1”. The Verilog “I£” contruct is used to express this relationship and
assign the proper value to expected. After the initialization of ¢ and seven iterations of the loop, the
simulation is ended 10ns after the final loop iteration with the “#10 $stop;” line.

The second initial block is used to monitor the test results. Remember, all initial blocks start to-
gether at the beginning of simulation. In this case, we start off with the system command “$display”.
This command is similar to the $monitor, except that it prints out a string on the console when the
command is executed, rather than every time the value of one of its input signals changes. In general
$display can accept a output specifier string as can $monitor, but in this case we have passed it a
fixed string.

The result of executing testmux2 is shown below:

Test of mux2.
select inl inO
select inl inO
select inl inO

[]1=000 out=x expected=0 time= 0
[1=000 out=0 expected=0 time= 2
[1=001 out=0 expected=1l time= 10
[select inl in0]=001 out=1 expected=1 time= 12
[select inl in0]=010 out=1 expected=0 time= 20
[select inl in0]=010 out=0 expected=0 time= 22
[select inl in0]=011 out=0 expected=1l time= 20
[select inl in0]=011 out=1 expected=1l time= 32
[select inl in0]=100 out=1 expected=0 time= 40
[]1=100 out=0 expected=0 time= 42
[]=101 out=0 expected=0 time= 50
[]=110 out=0 expected=1 time= 60
[1=110 out=1 expected=1l time= 62
[1=111 out=1 expected=1 time= 70

select inl inO
select inl inO
select inl inO
select inl inO
select inl inO

4.1 Using the “$strobe” System Command

The system command “Smonitor” prints signal values whenever any of the signals it is connected
to changes value. That can often result in a confusing looking display making it difficult to verify
correct operation. As an alternative, system command “$strobe” can be used to print signal values at
a particular time in the simulation. $strobe is defined to be the last action taken on any simulation
step, so it is gauranteed to see the latest values of any signal it displays. In a typical simulation, inputs

CS61c Lecture Notes 9

would be applied at one point in time, then after some delay sufficient to allow all the outputs to settle,
$strobe would be to called to print out the input values and the associated outputs.

In the example below we have modified the mux test-bench to use $strobe instead of $Smonitor.
Starting 5ns from the beginning of the simulation, $strobe is invoked every 10ns. The s$strobe
system command lives in its own initial block, which runs in parallel with the initial block used
for setting input values. We could have put it all together in one block, but they were kept separate for
clarity. The second initial block starts at time O—the “#5” before the $strobe command is used
to delay $strobe Sns—then the “#5 ;” delays the start of the new repeat iteration for another Sns,
resulting in an iteration period of 10ns. The net effect is that each time the inputs are changed, Sns
later $strobe prints out the values of the inputs and the new output value. We chose the 5ns staggerng
between new inputs and printing the output, because we expect that the new outputs will have settled in
less than 5ns (we know this to be true, because the worst case delay through the mux is 3ns).

//Test bench for 2-input multiplexor.
// Tests all input combinations.
module testmux2;

reg [2:0] c;

wire f;

reg expected;

mux2 myMux (.select(c[2]), .inO(c[0]), .inl(c[l1), .out(f));
initial
begin
#0 ¢ = 3'"b000; expected=1'b0;
repeat (7)
begin
#10
c =c + 3'b001;
if (c[2]) expected=c[l]; else expected=c[0];
end
#10 $stop;
end
initial
begin
Sdisplay ("Test of mux2.");
repeat (7)
begin
#5
Sstrobe ("[select inl in0]=%b out=%b expected=%b time=%d",
c, f, expected, $time);
#5 ;
end
end

endmodule // testmux2

The result of executing testmux2 using $strobe instead of $Smonitor is shown below. Here it
is clear to see that the circuit is functioning correctly, because on every line the output matches the

10

select _/"2

in0 —0
inT —1
in2 —2
in3 —3

— out

a) 4-input mux symbol

expected output.

Test of
[select
[select
[select
[select
[select
[select
[select

mux2
inl
inl
inl
inl
inl
inl
inl

in0]=000 out=0
in0]=001 out=1
in0]=010 out=0
in0]=011 out=1
in0]=100 out=0
in0]=101 out=0
in0]=110 out=1

Wawrzynek 2007 © UCB

select[1]
select[0] —
in0 0
in1 1
-]
in2 —0
in3 —1

L out

b) 4-input mux implemented with 2-input muxes

Figure 2: 4-input Multiplexor

expected=0
expected=1
expected=0
expected=1
expected=0
expected=0
expected=1

S Building a Circuit Hierarchy

time=
time=
time=
time=
time=
time=
time=

5
15
25
35
45
55
65

An important tool in circuit design and specification is hierarchy. As you may have noticed, Verilog
supports hierarchy in circuit specifications though the use of “module” definitions and instantiations.
We have already seen the use of hierarchy in our discussion of test-benches. Each test bench can be
considered a circuit that makes an instance of a sub-circuit—in this case, the circuit under test. To
further investigate the use of hierarchy, let’s take a look at the specification of a 4-to-1 multiplexor.

Any size multiplexor could be built up out of primitive AND and OR gates, as we have done for the
2-input multiplexor. However, a more convenient way to implement a bigger mux is from smaller ones.
In the case of the 4-input mux, we will build it up out of 2-input muxes as shown in figure 2.

Given that we have already defined mux2, the Verilog description of mux4 is very simple:

//4-input multiplexor built from 3 2-input multiplexors

module mux4

(in0, inl,

in2, in3,

input in0,inl, in2,in3;

input

[1:0]

select;

select,

out) ;

CS61c Lecture Notes 11

output out;

wire w0, wl;
mux?2
m0 (.select(select([0]), .in0(in0O), .inl(inl), .out (w0)),

(
ml (.select (select[0]), .in0(in2), .inl(in3), .out(wl)),
m3 (.select (select([1l]), .in0O(w0), .inl(wl), .out (out));

endmodule // mux4

The port list for mux4 includes the four data inputs, the control input, select, and the output, out.
In this case, select is declared as a 2-bit wide input port—“input [1:0] select;”. Two local
signals, w0 and w1, are declared for use in wiring together the subcircuits. Three instances of mux?2 are
created, interconnected, and wired to mux4 input and output ports. Because that are no primitive gates
in mux4 we have no need to add explicit delay. The delay from the input of mux4 to its output will be
a consequence of the delay through the instances of mux2. (In real circuits, the wire that interconnects
subcircuits also introduces delay, however that level of detail is beyond our concern in cs61c.) At this
point, mux4 is nearly ready to use in other modules—but not until we test it!

Once again we will test our new module exhaustively. In principle we could simplify the testing
procedure by taking advantage of the fact the the subcircuit mux2 has already been tested, and only
write tests to check the connections between the subcircuits. However, an exhaustive testing procedure
is simple to write and verify and there are a reasonably small number of input combinations, even for a
4-input mux. A test-bench for mux4 is shown below:

//Test bench for 4-input multiplexor.
// Tests all possible input combinations.
module testmux4;

reg [5:0] count = 6’b000000;

reg a, b, c, d;

reg [1:0] s;

reg expected;

wire f;
mux4 myMux (.select(s), .inO(a), .inl(b), .in2(c), .in3(d), .out(f));
initial
begin
repeat (64)
begin
a = count[0];
b = count[1];
c = count[2];
d = count[3];
s = count[5:4];
case (s)
2'00:
expected = a;
2'b01:

expected = b;

12 Wawrzynek 2007 © UCB

2'b10:
expected = c;
2'bll:
expected = d;
endcase // case(s)
#8
Sstrobe (

"select=%b in0=%b inl=%b in2=%b in3=%b out=%b, expected=%b time=%d",

s, a, b, ¢, d, f, expected, S$time);
#2 count = count + 1’bl;
end
Sstop;
end
endmodule

The testing procedure followed for testmux4 is very similar to that of testmux2. Here the signal
count is used in place of ¢ from testmux2. Four additional signals, a, b, c, and d, are declared and
used simply to help in the coding. One significant difference between testmux?2 and this new one is the
construct used for setting expected. Here the Verilog case construct is used. The case construct is
very similar to switch in C++. Also, as in C++, the function of a case can be achieved with a set of
if-than-else statements, but the case is simpler and clearer.

Output is generated using the $strobe system command. Here it is put in the repeat loop and is
delayed 8ns from the setting of the inputs, to allow sufficient time for the output to settle.

6 Modeling Clocks and Sequential Circuits

Thus far in this tutorial we have considered only combinational logic circuits. Now we turn our attention
to sequential logic circuits.

Sequential circuits are circuits and include state elements—usually flip-flops or registers. Flip-flops
and thus registers are built from transistors and logic gates, as are combinational logic circuits, and
therefore we could model them as we did combinational logic. However, our focus in CS61c¢ is not on
the internal details of registers; we are really only interested in their function or behavior. To keep our
Verilog specifications easier and to speed up the simulations, we will abstract the details of flip-flops
and registers and model them using high-level behavioral constructs in Verilog.

Below is a behavioral model of a 32-bit wide register. This one is a positive edge triggered design;
it captures the value of the input D on the rising edge of the clock and sends it to the output Q after the
clk-to-q delay, in this case Ins. The input port named RST supplies a reset signal. If RST is asserted on
the positive edge of the clock, the register is reset to all 0’s. The internal operation of this module is
not important for our purposes, but with a few minutes of study you will probably be able to understand
how it works. The most important consideration for our purposes is its list of input/output ports. Along
with RST, the other ports are CLK, Q, and D. D is the data input, Q the data output, and CLK the system
clock.

//Behavioral model of 32-bit Register:

CS61c Lecture Notes 13

// positive edge-triggered,
// synchrounous active-high reset.
module reg4 (CLK,Q,D,RST);

input [3:0] Dj;

input CLK, RST;

output [3:0] Q;

reg [3:0] Q;

always @ (posedge CLK)

if (RST) #1 Q = 0; else #1 Q = D;

endmodule // reg4

The system clock is a globally supplied signal in all synchronous logic systems. In physical hard-
ware the signal is generated from a special clock oscillator based on a crystal—a very stable oscillation
source. Verilog does not supply a clock signal automatically; we must find a way to generate a oscillat-
ing signal within our specification. A standard way to do this is to assign a signal to an inverted version
of itself, after the appropriate delay. For example, after declaring CLK as type reg:

initial
begin
CLK=1'b0;
forever
#5 CLK = "CLK;
end

CLK begins at logic 0 then changes to logic 1 after 5 ns then back to 0 after another Sns, etc. This
continues until the end of the simulation. The result is a signal with an oscillation period of 10ns. Here
we assume that some other part of the Verilog specification is responsible for ending the simulation, so
we can allow the clock to oscillate “forever”.

Now that we have a clock signal and a register to connect it to, we are ready to specify a sequential
logic circuit. Sequential circuits are really nothing other than interconnected instances of combinational
logic blocks and state elements. Everything that we have discussed thus far concerning making instances
of modules and wiring them together applies as well to sequential logic.

Let’s take a look at a circuit useful for adding lists of numbers, called an accumulator. The block
diagam for this circuit is shown in figure 3. The reset signal, RST, is used to force the register to all 0’s,
then on each cycle of the clock the value on IN is added to the value in the register and the result stored
back into the register.

14 Wawrzynek 2007 © UCB

\ adder /

CLK — +— OUT

RST—{ Vv register

Figure 3: Accumulator Circuit

The Verilog description for the accumulator circuit is shown below:

//Accumulator

module acc (CLK,RST, IN,OQUT);
input CLK,RST;
input [3:0] IN;
output [3:0] OUT;

wire [3:0] WO;

add4 myAdd (.S(w0), .A(IN), .B(OUT));
reg4 myReg (.CLK(CLK), .Q(OUT), .D(WO), .RST(RST));
endmodule // acc

This module definition assumes that we will also include a definition of a module called add4 with
the following port list:

module add4 (S,A,B);

This module is a combinational logic block that forms the sum of the two 4-bit binary numbers A
and B, leaving the result in S. As part of its module specification, the input/output delay for the add4
block is defined as 4ns.

A test-bench for the accumulator circuit is shown below:

module accTest;
reg [3:0] IN;
reg CLK, RST;
wire [3:0] OUT;

acc myAcc (.CLK(CLK), .RST(RST), .IN(IN), .OUT (OUT));

initial
begin

CS61c Lecture Notes 15

CLK=1'Db0;
repeat (20)
#5 CLK = "CLK;
end
initial
begin
#0 RST=1"bl; IN=4'b0001;
#10 RST=1'b0;
end
initial
Smonitor ("time=%0d: OUT=%1h", S$time, OUT);
endmodule // accTest

This one works by first asserting the reset signal for one clock cycle, in the second initial block.
At the same time the input is set to the value of decimal 1 (0001 in binary) and held at that value for
the remainder of the simulation. Meanwhile in the first initial block the clock signal is forced to
oscillate for 10 cycles. The output should be a sequence of numbers 0,1,2,... for 10 clock cycles.

7 Specifying Finite State Machines

A common type of sequential circuit used in digital design is the finite state machine (FSM). A simple
FSM specification in Verilog is shown below. This example is a bit-serial parity checker; it computes
the parity of a string of bits sequentially, finding the exclusive-or of all the bits (Parity of “1” means
that the string has an odd number of 1’s.) On every clock cycle, the circuit accepts a new input bit and
outputs the parity of all the bits seen since the previous reset. The reset signal forces the FSM back to
the EVEN state. The state transition diagram and the hardware implementation for the bit-serial parity
checker is shown in figure 4.

Our Verilog specification of parityChecker is preceded by the specification of a D-type flip-flop.
This is essentially a one-bit wide version of the register used in our previous example.

The parityChecker module is the FSM specification. It instantiates one flip-flop used to hold the
present state of the FSM. We have chosen to represent the “EVEN” state with logic 0, and the “ODD”
state with logic 1. The module also instantiates a single exclusive-or gate, used to compute the next state
and output values. (The Verilog name for the exclusive-or gate is “xor”.) We preceed the specification
of the xor gate with “#1” to indicate a 1ns logic delay for the xor. One extra “gate”, buf, is needed to
connect the output of the flip-flop to the output port of the module, oUT. The Verilog buf gate is similar
to a not gate (inverter) in that it has a single input and a single output, except that it does not invert its
input signal, but merely passes it through to its output. (This gate serves no real function, other than to
get around a limitation in Verilog which prohibits feeding outputs back internally within a module). We
assume that it has no delay.

//Behavioral model of D-type flip-flop:
// positive edge-triggered,
// synchronous active—-high reset.
module DFF (CLK,Q,D,RST);

input Dj;

16

Wawrzynek 2007 © UCB
0/0
reset
S
-
: —{ > ouT
11 CLK
v
q de
1/0 >
"ODD" RST —
state L
b) Circuit Diagram
01
a) State Transition Diagram
Figure 4: Bit-serial Parity Checker
input CLK, RST;
output Q;
reg Q;

always @ (posedge CLK)
if (RST) #1 Q = 0; else #1 Q = D;

endmodule // DFF

//Structural model of serial parity checker.
module parityChecker (OUT, IN, CLK, RST);

output OUT;

input IN;

input CLK, RST;

wire currentState, nextState;

DFF state (CLK, currentState, nextState, RST);
#1 xor (nextState, IN, currentState);
buf (OUT, nextState);

endmodule // parity

8

Testing Finite State Machines

A test-bench for the parity checker module is shown below. The best testing strategy for finite state
machines is to test the response of the FSM to every input in every state. In other words, we would like

CS61c Lecture Notes 17

to force the FSM to traverse every arc emanating from every state in the state transistion diagram. The
comment block in the test-bench preceding the specification lists the set of tests needed to completely
test the FSM. After reset, each test forces the circuit to traverse one arc in the state transistion diagram.
The expected output is written in square brackets, “[]”.

In these tests we assume that the reset signal works correctly. This is a good assumption, given that
the reset action is implemented as a built-in input to the flip-flop, and can assume that the behavior of
the flip-flop was independently verified.

//Test-bench for parityChecker.

//
// Reset to EVEN. RST=1 [OUT=x]
// Set IN=0. Self-loop in EVEN. IN=0, RST=0 [OUT=0]
// Set IN=1. Arc to ODD. IN=1 [OUT=1]
// Set IN=0. Self-loop in ODD. IN=0 [OUT=1]
// Set IN=1. Arc back to EVEN. IN=1 [OUT=0]
//
module testParity0;

reg INj;

wire OUT;

reg CLK=0, RST;

reg expect;

parityChecker myParity (OUT, 1IN, CLK, RST);

always #5 CLK = "CLK;
initial
begin
RST=1;

#10 IN=0; RST=0; expect=0;
#10 IN=1; RST=0; expect=1l;
#10 IN=0; RST=0; expect=1l;
#10 IN=1; RST=0; expect=0;
#10 S$stop;

end

always
begin
#4 Sstrobe (Stime," IN=%b, RST=%b, expect=%b OUT=%b",
IN, RST, expect, OUT);
#6 ;
end
endmodule // testParity0

This module demonstrates a variation on clock generation. In this example, the clock signal CLK is
initially set equal to O when it is declared. Therefore, when simulation begins CLK will be equal to O.
The block specified by “always #5 CLK = CLK;” continuously inverts the value of CLK every Sns,
resulting in a clock period of 10ns.

18 Wawrzynek 2007 © UCB

Inputs are forced to change every 10ns, synchronously with the high-to-low transition of the clock.

Once again, we use the $strobe system command to print the results of our simulation. The first
invocation of $Sstrobe occurs at 4ns, and is repeated every 10ns, just before each rising edge of the
clock. Execution of the testParity0 results in the following:

4 IN=x, RST=1, expect=x OUT=x
14 IN=0, RST=0, expect=0 OUT=0
24 IN=1, RST=0, expect=1 0OUT=1
34 IN=0, RST=0, expect=1 0OUT=1
44 IN=1, RST=0, expect=0 OUT=0

The circuit functions correctly and passes all tests.

9 Continuous Assignment & Bitwise Operators

While we said that our use of verilog for describing circuits would be limited to structural constructs
(module instantiation) we also allow the use of the verilog “continuous assign” construct. We allow this
to relieve some of the tedium of describing circuits at the gate level. The continuous assign, when used
with Boolean operators is the verilog equivalent of boolean algebraic expressions. Here’s an example.
Let’s say we want to describe the 2-input mux gate-level circuit shown in figure 1.b earlier. We could
write its module definition as:

module mux2 (in0O, inl, select, out);
input in0, inl, select;
output out;
wire s0,w0,wl;

assign out = select & inl | “select & inO0 ;

endmodule // mux2

Here, we have replaced the instantiation of the primitive logic gates with the “assign” construction.
In Verilog we use &, |, ~ to represent the Boolean AND, OR, and NOT operators, respectively. Also
note, that as with Boolean algebra, the AND operator (&) has precedence over the OR operator (|) and
therefore no parenthesis are needed in this case.

Notice that the assignment to out in the module definition looks very similar to the Boolean expres-
sion we presented earlier:

out = select - inl + select - in0

It is important to understand what this assign represents and how it differs from the type of assign-
ment statement used in programming languages. Unlike a the assignment statement in programming
languages that performs its action when the program control gets to that point in the program, the Ver-
ilog continuous assignment is really just a declaration. What is says is that whenever any signal named

CS61c Lecture Notes 19

on the right-hand-side changes, then change the left-hand-side accordingly. That’s where the word
“continuous” comes from. The assignment happens continuously. The best way to think about it is the
right-hand-side represents a combinational logic circuit whose output is named on the left-hand-side.

As declared above mux2, would have zero delay from input to output. To add some delay (in this
case 3ns) we could change the assignment to:

assign #3 out = select & inl | “"select & inO ;

Verilog defines the following Boolean operators, usually called “bitwise operators”:

| Syntax | Usage | Description |
& X &Y || AND each bit of X with each bit of Y

\ X |Y | OR each bit of X with each bit of Y

- X "Y || Exclusive-OR each bit of X with each bit of Y
T X 7Y || Exclusive-NOR each bit of X with each bit of Y
- “X Invert each bit of X

These operators are more powerful than simple Boolean operators, because they work with bit
vectors, as well as single bit signals. Therefore, the following:

wire [31:0] A, B, C;

// description of A and B

assign C = A & B ;

declares three 32-bit wide buses and 32 2-input AND gates which are wired to form the bitwise AND

of A and B producing the result on C. This continuous assignment is the equivalent of 32 2-input AND
gates.

10 Bit-vector Concatenation

Manipulation of bit vectors in Verilog is accomplished using the Concatenation operation, “{ }”. For
example, the following forms a new bit vector, Y, from two shorter ones.

wire A[7:0], B[7:0];
wire Y[15:07];

// description of A and B
assign Y = { A, B };

The concatenation operator can also be used on the left-hand-side of a continuous assignment. For
instance, the following demonstrates how to split up a bit vector into multiple pieces.

20 Wawrzynek 2007 © UCB

wire C[3:0], D[11:071;
wire Y[15:07];

// description of Y
assign { C, D } = Y;

Often when building up bit vectors with the concatenation operator there is a need to repeat a
particular bit or set of bits. “n{m} " * will generate a vector of bits with the pattern m repeated n times.
This operator is particularly useful in the case of sign extension. For instance we can sign extend a
16-bit signed number X, to form a signed 32-bit number, Y, as follows.

wire X[15:0], Y[31:07];
// description of X

assign Y = { 16{X[31]}, X };

11 Conditional Operator

As we discussed, multiplexors are used for data selection. This sort of operation is very common in
digital systems, as it is the hardware equivalent of “if-then-else”. Because this operation is so common
it is supported by a primitive operator in Verilog.

In the following:

assign y = s ? a : b;

if y evaluates to false (all zeros) then y gets set to the value of b, else y is set to the value of a.
Using the conditional operator, the mux2 definition from above can be rewritten as:

module mux2 (in0O, inl, select, out);
input in0,inl, select;
output out;
wire sO,w0,wl;

assign out = select ? inl : in0O ;
endmodule // mux2
Of course, all parts of the conditional statement (s, a, and b in the above example) can be ex-

pressions, Furthermore, they can be bit vectors; however, the conditional operator is not a bitwise
operation—all the output bits are assigned from the some input.

