
ECE 369 - Fundamentals of Computer Architecture

1

Verilog language

Describe a system by a set of modules (equivalent to functions in C)

Keywords, e. g., module, are reserved and in all lower case letters
Verilog is case sensitive

Operators (some examples)
Arithmetic: +, - ! ~ * /
Binary operators: &, |, ^, ~, !
Shift: << >> Relational: <, <=, >, >=, ==, !=
Logical: &&, ||

Identifiers
Equivalent to variable names
Identifiers can be up to 1024 characters.

Comments start with a "//" for one line or /* to */ across several lines

ECE 369 - Fundamentals of Computer Architecture

2

Number representation

Numbers are specified in the traditional form of a series of digits with or
without a sign but also in the following form
<size><base format><number>

<size>: number of bits (optional)
<base format>: is the single character ' followed by one of the following
characters b, d, o and h, which stand for binary, decimal, octal and hex,
respectively.
<number>: contains digits which are legal for the <base format>

Examples
549 // decimal number
'h 8FF // hex number
'o765 // octal number
4'b11 // 4-bit binary number 0011
3'b10x // 3-bit binary number with least significant bit unknown
5'd3 // 5-bit decimal number
-4'b11 // 4-bit two's complement of 0011, or equivalently 1101

ECE 369 - Fundamentals of Computer Architecture

3

Data types

Variables of type wires (wire) and registers (reg).

Register variables store the last value that was procedurally assigned

Wire variables represent physical connections between structural
entities such as gates (Does not store anything, only a label on a wire)

The reg and wire data objects may have the following possible values:
0 logical zero or false
1 logical one or true
x unknown logical value
z high impedance of tri-state gate

“reg” variables are initialized to 0 at the start of the simulation.
“wire” variable not connected to something has the x value.

NOTE: A variable of type register does not necessarily represent a physical
register

ECE 369 - Fundamentals of Computer Architecture

4

Program structure

A digital system as a set of modules

Each module has an interface to other module (connectivity)

GOOD PRACTICE: Place one module per file (not a requirement)

Modules run concurrently

Usually there is a top level module which invokes instances of other
modules

ECE 369 - Fundamentals of Computer Architecture

5

Represent bits of hardware ranging from simple gates to complete
systems, e. g., a microprocessor

Specified behaviorally, RTL, or structurally

The structure of a module is the following:
module <module name> (<port list>);
<declarations>
<module items>
endmodule

Module

may be initial constructs, always constructs, continuous assignments or instances
of modules

<module items>

section specifies data objects as registers, memories, and wires as wells as
procedural constructs such as functions and tasks

<declarations>

is a list of input, inout and output ports which are used to connect to other
modules.

<port list>

is an identifier that uniquely names the module.<module name>

ECE 369 - Fundamentals of Computer Architecture

6

Here is an RTL specification of a module NAND

// Behavioral model of a NAND gate

module NAND(in1, in2, out);
input in1, in2;
output out;

// continuous assignment statement
assign out = ~(in1 & in2);

endmodule

Default: All undeclared variables are wires and are one bit wide!

GOOD PRACTICE: Declare all variables

example: NAND gate

ECE 369 - Fundamentals of Computer Architecture

7

Explanation of NAND module

The ports in1, in2 and out are labels on wires.

The continuous assignment “assign” continuously watches for changes
to variables in its right hand side and whenever that happens the right
hand side is re-evaluated and the result immediately propagated to the
left hand side (out).

The continuous assignment statement is used to model combinational
circuits where the outputs change when one wiggles the input.

// Behavioral model of a NAND gate
module NAND(in1, in2, out);
input in1, in2;
output out;

// continuous assign statement
assign out = ~(in1 & in2);

endmodule

ECE 369 - Fundamentals of Computer Architecture

8

Instance of a module

The general form to invoke an instance of a module is:
<module name> <parameter list> <instance name> (<port list>);

<parameter list> are values of parameters passed to the instance
<instance name> identifies the specific instance of the module

An example parameter passed would be the delay for a gate

We will not use parameter list in this course!
For our purposes, to invoke an instance of a module

<module name> <instance name> (<port list>);

ECE 369 - Fundamentals of Computer Architecture

9

Structural example: AND gate

//Structural model of AND gate from two NANDS
module AND(in1, in2, out);
input in1, in2;
output out;

wire w1;

// two instances of the module NAND
NAND NAND1(in1, in2, w1);
NAND NAND2(w1, w1, out);

endmodule

This module has two instances of the NAND module called NAND1
and NAND2 connected together by an internal wire w1.

ECE 369 - Fundamentals of Computer Architecture

10

More structural examples

module SRLatch(S, R, Q, Qbar);
input S, R;
output Q, Qbar;

NAND nand1(S, Qbar, Q);
NAND nand2(R, Q, Qbar);

endmodule

module DLatch(Clk, D, Q, Qbar);
input Clk, D;
output Q, Qbar;
wire S, R;

NAND nand1(D, Clk, S);
NAND nand2(~D, Clk, R);
SRLatch srlatch1(S, R, Q, Qbar);

endmodule

module DFlipFlop(Clk, D, Q, Qbar);
input Clk, D;
output Q, Qbar;
wire Qint, Qbarint;

DLatch dlatch1(~Clk, D, Qint, Qbarint);
DLatch dlatch2(Clk, Qint, Q, Qbar);

endmodule

ECE 369 - Fundamentals of Computer Architecture

11

Continuous vs. procedural assignments

Continuous statement is used to model combinational logic
Continuous assignments drive wire variables
Evaluated and updated whenever an input operand changes value

Procedural assignment changes the state of a register
Used for both combinational and sequential logic
All procedural statements must be within “always” block

Example

reg A;

always @ (B or C) begin
A = B & C;

end

This is combinational logic

ECE 369 - Fundamentals of Computer Architecture

12

Events

The execution of a procedural statement is triggered by:
A value change on a wire
The occurrence of a named event

always @ (B or C) begin // controlled by any value change in B or C

X = B & C;
end

always @(posedge Clk) Y <= B&C; // controlled by positive edge of Clk

always @(negedge Clk) Z <= B&C; // controlled by negative edge of Clk

ECE 369 - Fundamentals of Computer Architecture

13

Model of a D-Flip flop

What is the behavior of a D-flipflop ?
During every positive clock edge, the input is transferred to the output

RTL model

module Dflipflop(D, Clk, Q, Qbar);
input D, Clk;
output Q, Qbar;

reg Qint;

// always is a procedural construct
// any assignment may be made only to registers
always @(posedge Clk) Qint <= D;

assign Q = Qint;
assign Qbar = ~Qint;

endmodule

ECE 369 - Fundamentals of Computer Architecture

14

Register sizes and assignments

Size of a register or wire in the declaration
reg [0:7] A, B; // A and B are 8-bit wide with most significant bit as 0th bit
wire [0:3] Dataout; // Dataout is a 4-bit wide register
reg [7:0] C; // C is a 8-bit register with most significant bit as the 8th bit

// This will be the convention adopted in this course!

Assignments and concatenations

A = 8'b01011010;
B = {A[0:3] | A[4:7], 4'b0000};

B is set to the first four bits of A bitwise or-ed with the last four bits of A
and then concatenated with 0000. B now holds a value of 11110000.

{} brackets means the bits of the two or more arguments separated by
commas are concatenated together.

ECE 369 - Fundamentals of Computer Architecture

15

Control constructs

Two control constructs are available:

if (A == 4)
begin

B = 2;
end

else if (A == 2)
begin

B = 1;
end

else
begin

B = 4;
end

case (<expression>)
<value1>:

begin
<statement>;
end

<value2>:
begin

<statement>;
end

default:
<statement>;
endcase

ECE 369 - Fundamentals of Computer Architecture

16

Control statement examples

1-bit 2-to-1 multiplexer

module mux1bit2to1(a, b, s, out);
input a, b, s;
output out;

assign out = (~s & a) | (s & b);

endmodule

Another way to describe

module mux1bit2to1(a, b, s, out);
input a, b, s;
output out;
reg out; // used in procedural statement

always @ (s or a or b)
if (s == 0) out = a;
else out = b;

endmodule

8-bit 4-to-1 multiplexer

module mux8bit4to1(a, b, c, d, s, out);
input [7:0] a, b, c, d;
input [1:0] s;
output [7:0] out;
reg [7:0] out;
// used in procedural statement

always @ (s or a or b or c or d)
case (s)

2’b 00: out = a;
2’b 01: out = b;
2’b 10: out = c;
2’b 11: out = d;

endcase

endmodule

ECE 369 - Fundamentals of Computer Architecture

17

Blocking/Non-blocking procedural assignments

Blocking assignment statement
(= operator) acts much like in
traditional programming
languages

The whole statement is done before
control passes on to the next
statement.

Non-blocking (<= operator)
Evaluates all the right-hand sides
for the current time unit and
assigns the left-hand sides at the
end of the time unit.

Example: During every clock cycle

A is ahead of C by 1
B is same as D

// testing blocking and non-blocking
// assignment
module blocking(Clk, A, B);
input Clk;
output [7:0] A, B;

reg [7:0] A, B;
// as these will be used in
// procedural blocks

reg [7:0] C, D; // two internal registers

always @(posedge Clk) begin
// blocking procedural
// assignment
C = C + 1;
A = C + 1;

// non-blocking procedural
// assignment
D <= D + 1;
B <= D + 1;

end
endmodule

ECE 369 - Fundamentals of Computer Architecture

18

Some tips

Declare ALL variables
An undeclared variable is treated as a wire!

Declare one variable (especially input/output) per line
Provide comments for each of those variables
It will be helpful when you design complex modules

All modules must have the port list defined in the homework/projects
Even if your solution doesn’t work, you can use the modules we provide

ECE 369

Fundamentals of Computer Architecture

Verilog Programming

ECE 369 - Fundamentals of Computer Architecture

20

Introduction

Verilog HDL is a Hardware Description Language (HDL)

HDL is a language used to describe a digital system, for example, a
computer or a component of a computer.

Most popular HDLs are VHDL and Verilog

Verilog programming is similar to C programming

VHDL programming is similar to PASCAL (some say like Ada)
Is an IEEE standard

ECE 369 - Fundamentals of Computer Architecture

21

Levels of description

Switch Level
Layout of the wires, resistors and transistors on an Integrated Circuit (IC)
chip

Gate (structural) Level
Logical gates, flip flops and their interconnection

RTL (dataflow) Level
The registers and the transfers of vectors of information between
registers

Behavioral (algorithmic) Level
Highest level of abstraction
Description of algorithm without hardware implementation details (like C
programming)

ECE 369 - Fundamentals of Computer Architecture

22

Levels of description

Behavioral level
Easiest to write and debug, not synthesizable

Register Transfer Level
synthesizable
Uses the concept of registers (a set of flipflops) with combinational logic
between them

Structural level
Very easy to synthesize
A text based schematic entry system

ECE 369 - Fundamentals of Computer Architecture

23

Why Use HDL?

NO OTHER CHOICE:

For large digital systems, gate-level design is unmanageable

Millions of transistors on a digital chip

HDL offers the mechanism to describe, test and synthesize
large designs

