
Science of Computer Programming () –

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

A framework for evolution of modelling languages
Bart Meyers a, Hans Vangheluwe a,b,∗

a Modelling, Simulation and Design Lab (MSDL), University of Antwerp, Middelheimlaan 1, B-2020 Antwerp, Belgium
b Modelling, Simulation and Design Lab (MSDL), McGill University, 3480 University Street, H3A 2A7 Montréal, Québec, Canada

a r t i c l e i n f o

Article history:
Available online xxxx

Keywords:
Evolution
Modelling languages
Language engineering
Model-driven engineering
Model transformation

a b s t r a c t

In model-driven engineering, evolution is inevitable over the course of the complete life
cycle of complex software-intensive systems and more importantly of entire product
families. Not only instance models, but also entire modelling languages are subject to
change. This is in particular true for domain-specific languages, whose language constructs
are tightly coupled to an application domain.
Themost popular approach to evolution in themodelling domain is amanual process, with
tedious and error-prone migration of artefacts such as instance models as a result. This
paper provides a taxonomy for evolution ofmodelling languages anddiscusses the different
evolution scenarios for various kinds ofmodelling artefacts, such as instancemodels, meta-
models, and transformation models. Subsequently, the consequences of evolution and the
required remedial actions are decomposed into primitive scenarios such that all possible
evolutions can be covered exhaustively. These primitives are then used in a high-level
framework for the evolution of modelling languages.
We suggest that our structured approach enables the design of (semi-)automaticmodelling
language evolution solutions.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The systems we analyse and design are characterised by an ever increasing complexity. As demands on quality grow,
development and production cost must still be kept minimal. A recent approach to tackle this complexity is Model-Driven
Engineering (MDE) [44]. A system is described using the most appropriate modelling language(s), at the most appropriate
level(s) of abstraction [32]. The goal is to minimise ‘‘accidental’’ (as opposed to ‘‘essential’’) complexity [3] by capturing only
the essence of a problem. More specifically, in Domain-Specific Modelling (DSM) [19], expertise of a domain expert such
as a mechatronics engineer or a hospital process manager is encoded in the form of models in Domain-Specific Modelling
Languages (DSMLs), which separate problem domain knowledge from implementation target (software and/or hardware)
domain knowledge. When the syntax and semantics of DSMLs are precisely defined (by means of meta-modelling [21]
and model transformation [7]), models can be used for analysis, simulation and even full code synthesis. Often, multiple
aspects/views as well as sub-systems are modelled using distinct DSMLs. Anecdotal evidence shows five to ten times
productivity increases because of domain-specific modelling [19].

In software engineering, the evolution of software artefacts is ubiquitous [28]. Diverse artefacts such as programs, data,
requirements, and documentation may evolve. In MDE, where modelling languages play a central role, evolution occurs not
only at the level ofmodels, but also at the level ofmodelling languages. This is in contrastwith general-purpose programming
languages such as C++ where programs evolve, but not the programming language. Language evolution applies in particular

∗ Corresponding author at: Modelling, Simulation and Design Lab (MSDL), University of Antwerp, Middelheimlaan 1, B-2020 Antwerp, Belgium.
E-mail addresses: Bart.Meyers@ua.ac.be (B. Meyers), Hans.Vangheluwe@ua.ac.be, hv@cs.mcgill.ca (H. Vangheluwe).

0167-6423/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2011.01.002

http://dx.doi.org/10.1016/j.scico.2011.01.002
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:Bart.Meyers@ua.ac.be
mailto:Hans.Vangheluwe@ua.ac.be
mailto:hv@cs.mcgill.ca
http://dx.doi.org/10.1016/j.scico.2011.01.002

2 B. Meyers, H. Vangheluwe / Science of Computer Programming () –

to DSMLs, where relatively frequent changes in the problem domain as well as in the implementation target domain (e.g.,
due to external technical or strategic decisions) must be reflected in the respective languages. This is to maintain the high
coupling between domain and language. The first problem is the need for rapid development techniques for DSMLs, as
they are created and modified frequently during the life cycle of the system they are used for. The second, and far greater
problem is that possibly large numbers of modelling artefacts such as instance models or transformation models developed
become invalid and unusablewhen a related DSML ismodified/evolved. Early adopters ofMDE andDSMdealt with language
evolution issues manually [43]. However, this approach, as well as an ad hoc approach to any language change, is tedious
and error-prone [49]. The reason for this is that syntax of languages such as UML [37] and BPMN [35], which have evolved
considerably over the last few years, easily comprise several hundreds of elements. Also, the semantic differences resulting
from this evolution, either intended or intentional, can be subtle. Hence, dealingwith evolution requires in-depth knowledge
of the language as a whole. Without a proper scientific foundation, as well as methods, techniques and tools to support
evolution, MDE in general and DSM in particular, cannot live up to its promise of ten-fold productivity increase [19]. This
becomes apparent when projects span longer periods of time [43]. Since the problem of modelling language evolution was
first identified by Sprinkle and Karsai [47], the general problem has only grown in importance, yet still remains largely
unsolved. The importance of modelling language evolution is further evidenced by the attention it receives in the research
community. The evolution of modelling languages is one of the 11 topics for paper submission at MODELS 2010 (ACM/IEEE
13th International Conference on Model Driven Engineering Languages and Systems), and workshops such as ME 2010
(International Workshop on Models and Evolution) are devoted largely to the topic. Current state-of-the-art contributions
in this field are focused on (semi-)automatic model differencing [6] and on the co-evolution of instance models [16].

The remainder of the paper is organised as follows: Section 2 is a short introduction to modelling languages. Section 3
discusses related work. Section 4 introduces an example that will be used to illustrate our approach throughout the paper.
Section 5 presents the possible kinds of evolution. Section 6 introduces a way to tackle evolution of modelling languages by
deconstructing the problem into primitives. Section 7 presents a framework and algorithm for the evolution of modelling
artefacts when languages evolve. Section 8 concludes the paper and describes future work.

2. Modelling languages

To allow for a precise discussion of language evolution, we briefly introduce fundamental modelling language concepts.
This introduction which we elaborated in [10] is based on foundations laid by Harel and Rumpe [13] and Kühne [21]. The
two main aspects of a model are its syntax (how it is represented) and its semantics (what it means).

Firstly, the syntax comprises concrete syntax and abstract syntax. The concrete syntax describes how the model is
represented (e.g., in 2D vector graphics or in textual form), which can be used for model input as well as for model
visualisation. The abstract syntax contains the ‘‘essence’’ of the model (e.g., as a typed Abstract Syntax Graph (ASG)—when
models are represented as graphs).

A single abstract syntax may be represented by multiple concrete syntaxes. There exists a mapping between a concrete
syntax and its abstract syntax, called the parsing function. There is also a mapping in the opposite direction, called
the rendering function. These are the concrete mapping functions. Mappings are usually implemented, or can at least be
represented, as model transformations. The abstract syntax and concrete syntax of a model are related by a surjective
homomorphic function that translates a concrete syntax graph into an abstract syntax graph.

Secondly, the semantics of a model are defined by a complete, total and unique semantic mapping function which maps
every abstract syntax model onto a single element in a semantic domain, such as Ordinary Differential Equations, Petri nets
[39], or a set of behaviour traces. These are domains with well-known and precise semantics. For convenience, semantic
mapping is usually performedon abstract syntax, rather than on concrete syntax directly.More explicitly, the abstract syntax
can be used as a basis for semantic anchoring [4].

A meta-model is a finite model that explicitly describes the abstract syntax and static semantics, which are statically
checkable, of a language. Dynamic semantics are not covered by the meta-model. The abstract syntax of a model can be
represented as a graph, where the nodes are elements of the language and the edges are relations between these elements,
and also elements of the language. Instance models of the language are said to conform to the meta-model of the language.
In [21], Kühne refers to this relation as linguistic instance of. The description of the abstract syntax is typically specified in
a modelling language such as UML Class Diagrams [34]. Static semantics can be described in a constraint language such as
the Object Constraint Language (OCL) [36]). Often, but not necessarily, the concrete syntax mapping is directly attached to a
meta-model, where every element of the concrete syntax can be explicitly traced back to its corresponding element of the
abstract syntax.

Fig. 1 shows the different kinds of relations involving a model m. Relations are visualised by arrows, ‘‘conforms to’’-
relationships are dotted arrows. The abstract syntax model m conforms to a meta-model MMLang , the explicit model of
the language Lang . There is a rendering function κi between m and a concrete syntax κi(m) model. The inverse of κi is a
parsing function πi so that πi(κi(m)) = m. The index i highlights the fact that multiple concrete representations may
be used. κi(m) conforms to a meta-model MMCS_κi , the explicit model of the concrete syntax language (such as the set of
all 2D vector graphics drawings). Semantics are described by the semantic mapping function [[.]], and maps m to a model
[[m]] in the semantic domain. This semantic domain is a different modelling language with its own syntax en semantics.
Similar to m conforming to MMLang , [[m]] conforms to MMSemDom. Additionally, transformations Tj may be defined for m.

B. Meyers, H. Vangheluwe / Science of Computer Programming () – 3

Fig. 1. A model and its relations in the context of MDE.

The index j highlights the fact that multiple general transformations (e.g., for synthesis, migration, abstraction/refinement,
normalisation, optimisation, etc. [29]) may exist.

Assuming that a modelled system consists of models in an appropriate language and explicit relations between these
models, we posit that the architecture of any modelled system can be mapped on (multiple instances of) Fig. 1. Multiple
modelsm can exist in a system, typically all conforming to the samemeta-modelMMLang . Eachmodel can bemapped on Fig. 1
separately. Note that Tj(m) or [[m]] can themselves be seen as amodelm in Fig. 1, towhich possibly relations such as T and [[.]]
apply. In domain-specific modelling, when languages are explicitly modelled the meta-model MMLang of a domain-specific
language (DSL) is an artefact that is part of the system in its own right. Thus,MMLang itself can be seen as anm in Fig. 1, having
ameta-model in its own right. Note that programs can also be considered asmodels, with an abstract syntax tree, a concrete
syntax and a semantic mapping to, for instance, machine code or an operational semantics in the form of an interpreter.

In conclusion, Fig. 1 describes any explicitly modelled system. Although the statement that all possible systems can be
mapped to the above diagram cannot be formally proved, we are confident that it holds, based on our experience with
modelling language engineering, in particular with AToM3 (A Tool for Multi-formalism and Meta-Modelling) [7]. From now
on, we assume Fig. 1 describes any explicitly modelled system, and hence a framework for evolution must support the
possible scenarios that emerge from it.

3. Related work

In this section, work related to evolution is presented and some useful concepts are introduced. This mainly covers the
related topics of model differencing and model co-evolution, on which we will build.

3.1. Model differencing

In order to be able to model evolution in-the-large, one should be able to model differences between two versions of a
model. This can of course be done by using lexical differencing, as used for text files, on the data representation of themodel.
However, the result of such analysis is often not useful, as (1) the actual differences occur at the granularity level of nodes,
links, labels and attributes and (2) models are usually not sequential in nature and equivalences betweenmodels will not be
taken into account. Hence, model differencing should be done at an appropriate level of abstraction, and take semantics into
account. Progress has beenmade in this area [1,6,27,38,55]. Existing approaches typically rely on the abstract syntax graphs
(ASGs) of the two models to compare, and traverse both graphs in parallel. Nodes in the graphs are matched by matching
unique identifiers [1,38], or by a number of heuristics [27,55]. However, no comprehensive approach that computes the
differences between graph-like models exists yet. As a direct result, no general model version control system exists today.

In addition to finding differences, one should be able to represent them explicitly as a model, called the delta model.
There are two kinds of representations: operational and structural. In the operational (or change-based) representation, the
difference between two versions of a model is modelled as the series of CRUD (Create/Read/Update/Delete) edit operations
that were performed on one model to arrive at the other [1,16]. When these operations are recorded live from a tool, this
strategy is very accurate and powerful, though dependent on that particular tool and difficult to manipulate explicitly. In
structural (or state-based) representations, either themodel is coloured [27,38,45,55] or a designated deltamodel is created
which can be used by modelling tools as yet another model in an appropriate language [6,47].

3.2. Model co-evolution

When the syntax of a modelling language evolves (i.e., the meta-model evolves), the most prominent side effect is
that its instance models may no longer conform to the new meta-model. Therefore, the co-evolution (with evolution of
their meta-model) of models has become an important research topic. This research is inspired by the way the problem of
language evolution is identified or dealt with in other domains. In grammar evolution [20,23,40], the type/instance relation
is analogous to the meta-model element/instance relation. This type/instance relation is also present in programming
languages. In database schema evolution, database tables have to be migrated after a change in the database schema
[2,26,41]. In format evolution, formally specified documents (e.g., XML documents) must be migrated when their format
(e.g., specified in a DTD) changes [24,48].

4 B. Meyers, H. Vangheluwe / Science of Computer Programming () –

Table 1
Delta operations based on [5], with their migration operations and inverse operations.
Delta operation Type Migration operation Inverse operation

Non-breaking delta operations

Generalise meta-property Additive None Restrict meta-property
Add non-obligatory meta-class Additive None Eliminate meta-class
Add non-obligatory meta-property Additive None Eliminate meta-property
Extract superclass Additive None Flatten hierarchy

Breaking and resolvable delta operations

Eliminate meta-class Subtractive Eliminate instances Add non-obligatory meta-class
Eliminate meta-property Subtractive Eliminate instances Add non-obligatory meta-property
Push meta-property Subtractive Eliminate properties from superclass instances Pull meta-property
Flatten hierarchy Subtractive Eliminate superclass instances Extract superclass
Rename meta-class Updative Change instances Rename meta-element
Rename meta-property Updative Change instances Rename meta-element

Breaking and unresolvable delta operations

Add obligatory meta-class Additive Add default instances Eliminate meta-class
Add obligatory meta-property Additive Add default instances Eliminate meta-property
Pull meta-property Additive Add default properties for superclass instances Push meta-property
Restrict meta-property Subtractive Remove instance if non-compliant Generalise meta-property

It is widely accepted that a model co-evolution (i.e.,migration) is best modelled as a model transformation [5,11,15–17,
47,50,51,56], which we will call the migration transformation. Gruschko et al. write this transformation manually using the
Epsilon Transformation Language (ETL) [11].

Most approaches define some specific operations as building blocks for evolution, similar to the operational
representation of model differences. Such operations typically include ‘‘create meta-class’’, ‘‘restrict multiplicity on meta-
association’’ and ‘‘rename meta-attribute’’ and are related to object-oriented refactoring patterns. These operations, which
we will call delta operations, are reusable. Conveniently, migration operations can be generated from sequences of delta
operations. It is important that any possible evolution can be modelled. There is a general consensus that the proposed
sets of delta operations do not suffice. Herrmannsdörfer et al. try to solve this problem by repeatedly extending their list
of delta operations [16]. In addition, they support customised evolution. This ensures expressiveness, but the migration
transformationmust be implementedmanually. Interestingly, they classifymigration operationswith respect to their reuse:
operations can be reused across different meta-models, only across models of the same meta-model, or not at all. They
observe that such unreusable operations, which they call model-specific coupled changes, are only needed in less than 1%
of the migrations in their industrial use cases, when using an elaborated list of operations.

Gruschko et al. [11] distinguish between non-breaking, resolvable and unresolvable delta operations. Non-breaking
operations do not render models non-conformant to the new meta-model, and hence do not require co-evolution. For
example, the addition of an optional relationship in the meta-model is a non-breaking operation. Because of the optional
nature of the change, none of the instance models have to be co-evolved in order to conform to the new meta-model. The
instance models simply do not make use of the new language feature. Resolvable operations cause inconsistencies that can
be resolved by automated co-evolution. For example, renaming a class in the meta-model requires renaming of the class
usages in the instance models. Model co-evolution for unresolvable operations requires additional information in order to
execute. For example, when an ‘‘add obligatory meta-property’’-operation is performed on a meta-model, a new property
is created for each instance. However, the initial value of this feature is unknown, as it differs frommodel instance to model
instance. There are two ways to solve this problem. On the one hand, a default value or expression can be given. Although
this default value must be manually included in the migration transformation, the instance model can be migrated fully
automatically. However, this does restrict the migration to one default scenario, which might not be accurate for each co-
evolving artefact. On the other hand, one could manually adapt each model. Though the only correct solution in some cases,
it can be a tedious job to perform manual co-evolutions on each model separately.

To illustrate the different kinds of delta operations, the operations proposed by Cicchetti et al. [5] are shown in Table 1.
Referring to CRUD operations, they classify changes as additive, subtractive and updative. After additive changes have been
applied, more models are valid. In other words, the modelling space of the language is enlarged. Subtractive changes reduce
the modelling space, and updative changes ensure the same size. A default migration operation is included for each delta
operation. As expected, the non-breaking operations do not need a migration operation, the resolvable operations have a
useful migration operation, and the unresolvable operations have a default operation that does not always have the desired
migration effect. If necessary, similar operations can be created for the constraint language, as it also has ameta-model [42].
With such operations, evolution of the part of themeta-model that specifies the static semantics can be expressed. Note that
we added an inverse operation for every operation as we will need it later on. By definition, performing a delta operation
on a meta-model, followed by its inverse operation, results in the original meta-model.

B. Meyers, H. Vangheluwe / Science of Computer Programming () – 5

a b c

Fig. 2. (a) A model in the TrainSim DSML; (b) The semantic mapping transformation [[.]] onto Petri nets in the form of rules; (c) The ‘‘meaning’’ of the
TrainSim instance model.

From the above literature study, we create a classification of instance model migration.
• Ad hoc transformation vs. coupled transformation. As previously mentioned, migration transformations are naturally

modelled as model transformations. A migration transformation can be composed in a non-structured, ad hoc manner,
or by coupling it to the meta-model changes. For coupled transformation, different kinds of changes require different
migration operations, which can be classified as follows:

• Non-breaking vs. breaking changes. Non-breaking and breaking changes can be distinguished. Breaking changes are
often divided into the following two types:

• Resolvable vs. unresolvable changes. Resolvable changes can be automated. According to many authors, changes can
be unresolvable, meaning that the according migration operations must be created manually [5,11,16,50,51].

Orthogonal to this classification, there is the matter of execution of the migration transformation.
• Automaticmigration execution vs.manual intervention.According to some authors, not only the creation ofmigration

operations, but also the execution of the migration transformation can require manual intervention [5,11]. Such a
manual intervention can be different for each instance model.

All of these choices are incorporated into our approach.

4. Context: Running example

Fig. 2(a) shows amodel written in the TrainSim DSMLwhich wewill use to illustrate our approach to language evolution.
Using the TrainSim language, the behaviour of trains riding on rail segments can bemodelled: Rail and Split components can
be connected into arbitrary networks. Trains can be located on Rails and Splits, which is visualised by a link between them.
The semantics (behaviour in this case) of a TrainSim model are given by a semantic mapping onto Petri nets [39]. We use
a rule-based (graph) transformation, TrainSim2PetriNet to model and execute the mapping. A simplified version is shown
in Fig. 2(b). TrainSim2PetriNet consists of a number of transformation rules, each containing a Left-Hand Side (LHS) and a
Right-Hand Side (RHS) pattern. The execution of an individual rule starts by checking for the occurrence of the LHS pattern in
the transformation input model (also known as the ‘‘host graph’’ in graph rewriting). If one or more matches are found, one
is selected and thematched pattern in the host graph is replaced by the RHS pattern. If a rule does not match, the next one is
tried, until no more rules are applicable. The particular order in which rules are tried is determined by the ‘‘rule scheduling’’
strategy. For our simple transformation, rules are tried in order of priority (highest priority on top and lowest priority at
the bottom in Fig. 2(b)). The topmost rule states that each Rail that is connected to a bound (i.e., a ‘‘context’’ element that
matched in a previous step) Rail is transformed into two places, free and rail and an out transition, and is attached to the
bound transition. The passing of a context (also known as ‘‘pivot’’) between rules is intuitive and may drastically increase
performance of the transformation execution. If the free place contains a token, the corresponding Rail is free. If the rail place
contains a token, the corresponding Rail is busy. As it turns out, by this construction, a Rail can never be both free and busy at
the same time in its semantic domain (Petri nets) representation. The three other rules are similar, distinguishing between
Rails and Splits, which have two out transitions.When themodel of Fig. 2(a) is transformed using TrainSim2PetriNet , it results

6 B. Meyers, H. Vangheluwe / Science of Computer Programming () –

Fig. 3. A meta-model for the (a) TrainSim, and (b) PetriNet domains.

in the Petri net of Fig. 2(c). The behaviour of the model can now be studied using known analysis and simulation techniques
for the Petri net formalism. This brings up the issue ofmapping back the properties found at the Petri net level to the TrainSim
domain. Users of a DSML should be shielded from semantic domain intricacies. As an example, the analysis results might
report ‘‘no, there is no deadlock’’. The heart of the problem is the need for an explicit representation of properties, at the DSL
level, as well as at the level of the semantic domain. Furthermore, it must be possible to trace back these analysis results
from the semantic domain to the DSML. For example, when deadlock is detected in the Petri net, it is useful to show the
cause of that deadlock in the TrainSimmodel. One way to do this, is to provide a backward transformation from Petri net to
TrainSim to transform the found Petri net deadlock marking to a TrainSimmodel. Another, more realistic approach is to add
traceability information to the forward transformation TrainSim2PetriNet .When the transformation is executed, information
about the relation between elements of the two formalisms is recorded. This way, the location of analysis results or errors
that are found in the semantic domain, can be pinpointed in the DSML. Galvão and Goknil provide a survey of traceability
in the context of MDE [8].

A possible meta-model (in the Class Diagram formalism) describing the syntax of the TrainSim DSML is given in Fig. 3(a).
Rail, and Split are both subclasses of the abstract TrainPlace class, on which at most one Train can be located. A Train can
also be located at no TrainPlace. In this context, the direction of a link is modelled by the navigability of the association.
From a Rail, there must be exactly one outgoing link to another TrainPlace, and from a Split , there must be exactly two. As
a consequence, a TrainSim model always forms a closed circuit. The syntax of Petri nets is shown in Fig. 3(b): Places and
Transitions can be connected by means of directed arcs, and Places can hold a number of tokens.

Throughout this paper, evolutions of the TrainSim DSML will be shown. This will serve as a running example of language
evolution.

5. Evolution of modelling languages

Evolution of modelling languages as described in the related work section implements automation to some extent.
Current approaches deal with the co-evolution of instancemodels. Nevertheless, there are other artefacts thatmight have to
co-evolve. This section presents an exhaustive survey of all possible types of evolution and co-evolution in theMDE context.

5.1. Syntactic evolution

To obtain insight into the consequences of evolution, let us go back to Fig. 1 and exhaustively explore all possible evolution
scenarios. When MMLang evolves, all instance models m have to co-evolve, as discussed in Section 3.2. However, as the
relations of Fig. 1 suggest, the evolution ofMMLang might affect other artefacts. First, similar tom, the domain and/or image
of transformations such as κi,πi, Tj and [[.]]may no longer conform to the new version of themeta-model. As a consequence,
these transformations must co-evolve. This makes all conformance relations valid once again, which means that the system
is syntactically consistent again. Consistency pertains to a collection ofmodels of a systemat a single point in time. Meta-model
evolution requires that model instances and related transformation models co-evolve.

However, there are more scenarios. Firstly, it is possible that the meta-model changes in such a way that the co-evolved
models become structurally different, for example by applying additive or subtractive changes. This ultimately means that
each transformation defined for each co-evolved model has to be re-executed when the related models are needed. The
resulting co-evolved models can also be structurally different, so a chain of evolution transformation executions may be
required.

Secondly, changes made to onemeta-model can have repercussions on another meta-model. For example, when ameta-
element is added to a meta-model, a newmeta-element is often also added to the meta-model of the concrete syntax(es) in
order to be able to visualise this new construct. Thus, there is a need for meta-model co-evolution.

Thirdly, until now, we only discussed meta-model evolution as the driving force behind co-evolution. Evolution of other
artefacts, such as instance models and transformation models, should also be taken into account. Normally the case of the
evolution of amodelm does not enforce a change of ameta-model: relatedmodels such as Tj(m) can co-evolve by executing
the appropriate transformations Tj. Note, however, that a co-evolved model may itself be a meta-model, thereby possibly
triggering a cascade of further co-evolutions.

The case of the evolution of a transformationmodel can become complex. Often, the evolved transformation simply has to
be re-executed on each model in this domain. This restricts a transformation evolution to remain compliant with its source
and target meta-models, which may not be desired. For example, a new language might be created by mapping rules for

B. Meyers, H. Vangheluwe / Science of Computer Programming () – 7

Fig. 4. Basic co-evolution schema.

each language construct of an existing language. This is particularly convenient for creating a concrete syntax language. The
aforementioned complications stem from two special cases of transformation evolution. Firstly, the evolution of either the
parsing or rendering function requires the other one to co-evolve in order tomaintain ameaningful relation between abstract
and concrete syntax. Such a co-evolution can be generalised to any bidirectional transformation. Secondly, the evolution of
the semantic mapping function requires a means to reason about semantics, which are discussed in the next section.

5.2. Semantic evolution

As mentioned above, semantics of a model are defined by means of a semantic mapping function. Analyses can be
performed on models in this semantic domain (e.g., finding state invariants in a Petri net). The results of these analyses
can be considered properties of the model. A semantic mapping function is constructed in such a way that some properties
hold both for a model and for its image under the semantic mapping. These common properties have to be maintained
throughout evolution. An evolution is a semantic evolution if the set of properties that hold changes. This typically happens
when the requirements of a system change.

In general, a model m (whose semantics are given by a semantic mapping function [[.]]) has properties P(m) that are
identical to the properties evaluated in the semantic domain P([[m]]). If a model m with properties P(m) in a formalism
evolves tom' , then P(m')must still be identical to P([[m]]). Of course, when semantic changes are implemented on purpose
(these are new requirements of the system, formalised by a change in the set of properties) they have to be taken into account
when comparing properties before and after migration. In other words, it must be guaranteed that they are equal modulo
the intended changes. When two versions of a system are (a) equal modulo their intended syntactic and semantic changes
and (b) syntactically consistent, the evolution of the system is said to be continuous. Continuity pertains to a collection of
models of a system as they evolve over time. Only continuous evolutions are deemed useful.

5.3. Research goal

After sketching the phenomenon of modelling language evolution and introducing new terminology, we can reflect on
the research objectives of this paper:

• the cause of this research is the observation that modelling languages evolve;
• the goal is to maintain consistency and continuity;
• as a consequence, there is a need for co-evolution of modelling artefacts;
• the approach to achieve co-evolution is to devisemigration operations.

This paper presents guidelines to achieve these objectives. The aim is to be complete, meaning that all possible scenarios
are covered. In order to achieve this, we break down the phenomenon of modelling language evolution, so that every single
aspect can be explored exhaustively.

6. Deconstructing evolution

As shown by the many examples in the previous section, the concept of language evolution is heterogeneous in terms of
affectedmodelling artefacts. In order to dealwith this problemuniformly,we first look for basic building blocks for evolution.
First, we dissect the consequences of language evolution in a modelled system, and the amalgamation of the basic building
blocks is discussed. Then, we dig deeper into the evolution action itself. This leaves us with the proper tools to build the
framework in Section 7.

6.1. Deconstructing evolution consequences

As discussed in the previous section, there are many possible situations for which co-evolution can occur. These
possibilities can be mapped onto the architectural model of a system using the structure of Fig. 1. When we look more
closely at the possible scenarios, similarities can be distinguished in the steps that are taken in the co-evolution scenarios. As
consistency and continuity are desired during system evolution, co-evolution is in fact the (chained) relationship between
meta-model, model and transformation (instead of only meta-model and model, as suggested in related work). Thereby,
it is important to note that unidirectional transformations have a domain (i.e., the language that is translated) and an
image (i.e., the language this domain is translated to). In other words, for language evolution, both incoming and outgoing
transformationsmust be dealtwith separately. Therefore,we can reduce the problemof co-evolution to the diagram in Fig. 4,
where a domain meta-model MMD and an image meta-model MMI , and their instance models are distinguished, with a

8 B. Meyers, H. Vangheluwe / Science of Computer Programming () –

a b c d
Fig. 5. Co-evolution in (a) model evolution, (b) image evolution, (c) domain evolution and (d) transformation evolution.

transformation T in between. Again, arrows denote transformations and dotted arrows denote ‘‘conforms to’’-relationships.
The diagram reduces the problem of evolution to its bare essence.

The possible evolution scenarios can always be broken down into a few basic ones which are depicted in Fig. 5. Small,
dashed arrows denote a (semi-)automatic generation. Each diagram starts from the relation between domain and image
meta-models, given in Fig. 4.With these four basic scenarios, every possible evolution of Fig. 4 is covered. These are explained
in detail in the following paragraphs.

6.1.1. Model evolution
Fig. 5(a) shows model evolution. Although in the diagram m evolves, model evolution occurs in fact when either m or

T(m) evolves. This kind of evolution is included for completeness, but has quite simple consequences for other artefacts.
Some model m evolves to m' (still conformant to MMD). In step 1 (the only step), a delta model 1m is constructed (either
automatically or manually) that models the evolution of m to m': m' = m + 1m. The evolution itself is typically represented
as a migration transformation E, which is the identity transformation for all models in language D, with the exception of
m. If the model is the input of a transformation, as depicted in Fig. 5(a), it is desirable that this transformation is executed
again. The transformations whose execution results in the model (in Fig. 5(a) this would mean that T(m) evolves rather than
m) do not have to be executed again.

In the context of the TrainSim example,models could evolve via the insertion, removal or redirection of TrainPlaces (which
translates to changing the topology of the modelled network) or Trains (which translates to changing the configuration of
trains within the network). In both cases, κi and [[.]] transformations (as shown in Fig. 1), as well as any other transformation
Ti frommodelm, remain valid since nometa-model evolution has occurred. Hence, no further co-evolution is required. Note
however, that it might be desirable that some of the transformations are re-executed. For example, if one wants to use the
Petri net for analysis, the semantic mapping [[.]] must be applied again.

6.1.2. Image evolution
Image evolution is shown in Fig. 5(b). Suppose that a meta-model MMI evolves to MMI ′ . In the context of the

TrainSim example of Fig. 2, a possible image evolution is the evolution of the target meta-model for the semantic
mapping transformation (in this case, Petri nets). For clarity, we use a very simple example of evolution for the
Petri net meta-model of Fig. 3(b). Suppose that the name of the meta-attribute tokens changes to numberOfTokens,
to stress that this attribute is just a numeric value. In step 1, a delta model 1MMI is constructed to represent
the difference between meta-models MMI and MMI ′ . In the example, 1MMI can be represented as the operation
RenameMetaElement(Place.tokens, ‘‘numberOfTokens’’). If a structural representation is preferred, the
changed attribute can be tagged as updated (highlighted green for example, in concrete visual syntax) .

In step 2, a migration transformation E is generated from 1MMI . The execution of E co-evolves models T(m) to models
T(m)E such that they conform to the new meta-model MMI ′ . In the simple example, this could be done using a simple
search/replace operation on the representation of each Petri net instance model.

Moreover, the execution of transformation T has to result in valid models (i.e., models that conform to MMI ′).
Consequently, T has to co-evolve to a new transformation T' (step 3), which is able to transform every possible model
m conforming to MMD to an appropriate model T(m)E conforming to MMI ′ . The diagram presents an intuitive solution for
the generation of this T': for every model m, T'(m) = E(T(m)) holds, and thus we have T' = E ◦ T . Hence, the co-evolved
transformation T' can be obtained simply by composing transformations T and E. The trivial way of doing this is to execute
E on the output model of T . Optimising this composition is a challenge in its own right. In our renaming example, the
TrainSim2PetriNet transformation can be evolved without digging into the transformation model: each TrainSim model can
be transformed to the new version of Petri nets by first applying TrainSim2PetriNet , resulting in an old version Petri net
model, followed by the execution of the migration transformation E, which transformsmodels of the old version to the new
version. Resulting models will conform to the evolved Petri net meta-model. Of course, this setting is only valid for simple
language evolutions. T' = E ◦ T does not hold for the entire evolved image I' .

B. Meyers, H. Vangheluwe / Science of Computer Programming () – 9

a b

Place

arc

Transition

arc

Place

arc

Transition

arc

Fig. 6. Set representation for evolution with (a) the projection problem after migration and (b) example of the case of L′
\ E(L).

Fig. 7. Legend for the set representation figures depicting the projection problem.

To clarify this, a phenomenon we call the projection problem must be explained. When a language L evolves to L' , E is
created to migrate instance models. Ideally, the image of the migration transformation E is equal to the evolved language
L' . Unfortunately, it is not always the case that the migration transformation projects the original language to the evolved
language. Fig. 6(a) shows the projection problem. Ellipses are languages, or sets of models, conforming to the denotedmeta-
model. Arrows are transformations. Fig. 7 acts as legend for the visual notation used in Figs. 6, 8 and 9. A language L evolves
to L' , and instance models such as m are migrated by E to mE . There are two different cases where E(L) ≠ L′, namely
L′

\ E(L) ≠ ∅ (e.g., for m') and E(L) \ L′
≠ ∅ (e.g., for m''). The case of L′

\ E(L) occurs for additive changes. Models like m'
are valid but cannot be the result of the execution of E. In other words, E does not exactly project L to L' . The other case of
E(L) \ L′ only occurs if E is not well implemented. Models like m'' are models that are the result of the execution of E, but
are not valid in the new language L' . For example, this would happen if no proper E is composed for a subtractive change.
This is a matter of faulty implementation instead of an inevitable structural problem. Therefore, we will only take the case
of L′

\ E(L) into account for the projection problem.
Fig. 6(b) shows an example of the projection problem resulting in models that are in L′

\ E(L). The same layout is used
as in Fig. 6(a). The language of Petri nets evolves to capacity constrained Petri nets, by an additive change ‘‘add obligatory
meta-property’’. The newproperty capacity denotes themaximumnumber of tokens a Place can hold. In concrete syntax, the
maximum capacity is visualised on the upper left side of each Place. The migration of instance models E simply introduces a
default value of 1 for the new obligatory property, as suggested in Table 1. The model in L is thereby migrated to the model
in E(L), and its structure is preserved. However, new models are possible, such as the one with a Place with a capacity of 3,
in L′

\ E(L). The fact that this model is out of the scope of E, will add some restrictions on the use of E.
Because of the projection problem, T' = E ◦ T does not always hold for image evolution. Following Fig. 4, Fig. 8(a) shows a

modelm conforming toMMD that can be transformed by T resulting in the model T(m) conforming toMMI . The imageMMI
evolves to MMI ′ by an additive operation, which results in I' being larger than E(I). Again, the addition of a non-obligatory
class can be taken as an example. If T' is acquired by executing E ◦ T , it turns out that semantic information is not taken into
account, as the model is transformed to the language I first, which does not include the newly added semantic information.
However, it is generally desirable that the evolved transformation T' can explore the full power of the new version of the
image language I' .

In Fig. 8(b) an example is shown. The example is based on the evolution from Petri nets to capacity constrained Petri nets
of Fig. 6(b). Now, the TrainSim2PetriNet transformation is included with TrainSim as domain. If it is stated that T' = E ◦ T ,
then T' transforms the TrainSim model to the model in E(I), by first executing the original T , and migrating the model in
I . However, this way, the changes that were deliberately applied to the Petri net language are ignored. For example, if the
mapping to Petri nets would exist in order to analyse for deadlocks, then it would be desirable that after the evolution to
capacity constrained Petri nets, the TrainSimmodel would be transformed to the more concise model in I ′ \ E(I), containing
only one Place with a capacity of 3. In that case the exact position of Trains is lost, but this information is unimportant for

10 B. Meyers, H. Vangheluwe / Science of Computer Programming () –

a b

Transition

Place

Place

arc arcarc

arcarc

Transition

Fig. 8. The projection problem in image evolution: (a) T' = E ◦ T does not hold and (b) an example.

a b

RailStation

Fig. 9. The projection problem in domain evolution: (a) T' = T ◦ E−1 does not hold and (b) an example.

deadlock analysis. Despite the projection problem, the above principles will prove to be useful in our final approach, as
presented in Section 7.

6.1.3. Domain evolution
Fig. 5(c) shows domain evolution, where MMD evolves. The artefacts that co-evolve are similar to those in the image

evolution scenario. However, co-evolved transformations T' can now be obtained by T' = T ◦ E−1 which implies the need to
construct an inverse transformation E−1. More specifically, in order to transform models conformant to the new version of
the language to the image language, they are first co-evolved back to the old version, and then the original transformation
can be applied. Again, the transformation did not have to be adapted. In the context of the TrainSim example of Fig. 2, domain
evolution occurs when the TrainSim meta-model of Fig. 3(a) changes.

In domain evolution, the projection problem can also occur, as shown in Fig. 9(a). Again, during transformation where
E(D) ≠ D' , critical information about the model can be lost when migrating it back to its old version using E−1. Again, this
occurs for additive changes. Also, it is desirable that the transformation T' can be applied to its entire domain, including
D' \ E(D). This part of the transformation cannot be obtained by T' = T ◦ E−1 when E(D) ≠ D' . One could intuitively think

B. Meyers, H. Vangheluwe / Science of Computer Programming () – 11

that subtractive changes also result in a projection problem, as for these changes new information should be ‘‘invented’’
when executing E−1. E−1 does not have to extend the models again to their original form because the language was reduced
deliberately. An example of the projection problem for domain evolution is shown in Fig. 9(b). In the TrainSimmeta-model as
shown in Fig. 3 (visualised partially) a new class RailStation is added as a non-breaking, additive change ‘‘add non-obligatory
meta-class’’. Since the change is non-breaking, E (and consequently E−1) is the identity transformation id that applies no
changes at all to the model. Similar to image evolution, T' = T ◦ E−1 applies for models in E(D). However, models in D′

\ E(D)
that use the new language construct (which is visualised by an icon of a station with a waiting person next to a rail) cannot
be transformed by T' . This is problematic, as it should be possible that every possible TrainSim model is transformed to a
Petri net.

6.1.4. Transformation evolution
Fig. 5(d) shows transformation evolution. For example, in the context of TrainSim, the semantic mapping

TrainSim2PetriNet could be adapted in such a way that the number of TrainPlace visits is recorded in a place. If
transformations evolve according to a delta model 1T , it is possible that they only have to be executed once again. In this
case, the changes on the transformation are limited: the image of the evolved transformation T' must conform toMMi (i.e., the
existing Petri net language). As previously discussed, other artefacts such as the image meta-model might also co-evolve.
In such cases, a migration transformation E must be constructed from which a delta model 1MMi can be derived. In the
example, a timed, capacity constrained or coloured Petri net could be needed as a result of a change in TrainSim2PetriNet .
Note that such a decision on the co-evolution of the meta-model highly depends on the intention of the evolution and is
therefore donemanually. The construction of themigration transformation E helps in this process, but can be left implicit at
this stage. However, if left implicit, E will be obtained in a later stage when the scenario of meta-model evolution is carried
out. Consequently, the issue of the combination of evolution scenarios arises, which is discussed in general in the following
section.

6.2. Evolution scenario amalgamation

Using a combination of these basic four scenarios, all possible evolutions can be carried out. For unresolvable changes, a
general E cannot be found. Note also that the projection problem exists, so automated co-evolution is not always possible.
Due to the projection problem, transformations have to support the models in L' \ E(L).

In the context of the TrainSim example, it is conceivable that a meta-modeller desires domain and image evolutions.
For example, that he/she would need to rename Split in the TrainSim meta-model, and tokens in the Petri net meta-model.
The co-evolution of the instances of both formalisms is independent of each other. The TrainSim2PetriNet transformation,
however, co-evolves for both evolutions. After both are applied, the co-evolved transformation will simply be obtained as
follows T'(m) = Eimg(T (E−1

dom(m))). In general, evolutions can be chained in transformation co-evolution.
Simply combining basic evolution scenario solutions to solve complex scenarios may yield sub-optimal results. Firstly,

domain and image evolutions might happen at the same time because they are closely related. In the TrainSim example, the
meta-modeller might want to add the notion of capacity to a Rail. At the same time, maximum capacities are introduced
in the Petri net formalism. In that case, it can be desirable that the TrainSim2PetriNet transformation is only migrated
once, taking both evolutions into account at the same time. If not, some artificial mappings might be necessary when
the TrainSim2PetriNet transformation is migrated for only one of the evolutions. Secondly, the performance of combining
scenarios might be sub-optimal. In a system under development, an additional transformation must be executed for each
additional evolution. Hence, the total number of migration transformations to be executed after an evolution isO(n·v), with
n the number of artefacts that are co-evolved and v the number of existing versions. It may be possible to obtain the same
output models while executing less and/or simpler transformation rules. An open research problem is the (semi-)automatic
merging of sequences of transformations into more efficient (but equivalent) transformations. Hereby, issues such as order
dependence of transformation rules must be overcome. Because they are more modular, at a suitable level of abstraction
(hiding matching and rewriting issues), and explicitly meta-modelled (allowing for higher order transformations) it is
likely that rule-based transformation specifications will be more amenable to such optimisations than pure code-based
ones. Nevertheless, complex rule pattern independence analysis [14] has to be conducted in order to reason about the
composability of transformation rules.

6.3. Deconstructing evolution actions

In this section, evolution as an operation is deconstructed into manageable, reusable parts. As described in Section 3,
the literature classifies model changes as non-breaking, resolvable breaking and unresolvable. Table 1 shows how delta
operations can also be classified as updative, additive or subtractive, referring to CRUD (create/read/update/delete)
operations.

For each of the delta operations of Table 1, there is a migration operation that can be used to co-evolve instance models.
Somemigration operations can be implemented as simple scripts, butmanymoremigration operations can be implemented
intuitively as rule-based graph transformations. In most transformation tools, such transformations require a well-defined

12 B. Meyers, H. Vangheluwe / Science of Computer Programming () –

Fig. 10. The transformation pipeline.

domain and image meta-model. As we want to keep the migration transformation as separate migration operations for
modularity, we will need intermediate meta-models for each migration transformation. Indeed, the result of the first of
many migration operations will not yet be a model conforming to the meta-model of the new version of the language, but
a meta-model ‘‘in between’’ the two versions.

To solve this problem, we suggest to use a relaxed ‘‘intermediate meta-model’’, which is the result of merging the meta-
models of both versions [54]. This intermediatemeta-model is generated from the oldmeta-model, and the delta operations.
In case of additive operations, the new elements are added to the intermediate meta-model as non-obligatory language
concepts. In case of subtractive operations, the removed elements are made non-obligatory. In case of updative operations,
both versions of the element are non-obligatory in the intermediate meta-model. As a result, every model that conforms to
the old meta-model, as well as every model that conforms to the new meta-model, can be conceptually expressed in the
intermediate meta-model. A step-wise co-evolution from an old version to a new version is now possible. Before and after
the execution of each migration step, the model under migration conforms to the intermediate meta-model.

In Fig. 10, the step-wise migration of a version 0 artefact to a version 1 artefact is shown. First, the version 0 artefact is
migrated to conform to the intermediate meta-model. This consists of replacing concepts of version 0 with their respective
concepts of the intermediate meta-model. The resulting artefact conforms to the intermediate meta-model, but is a ‘‘virtual
version 0 artefact’’, as the artefact is semantically identical to its version 0 counterpart. In a sense, the virtual version 0
artefact lies at the edge of the modelling space described by the intermediate meta-model at the side of the version 0 meta-
model. Next, the actual migration is performed, by applying additive, subtractive and updative operations. After all these
have been applied, the resulting artefact will be a ‘‘virtual version 1 artefact’’. Then, a straightforward conversion to a version
1 artefact is possible. As the bidirectional arrows suggest, it is possible to apply the migration in both directions. This way,
the inverse migration transformation that can be used for domain evolution is also captured by Fig. 10.

7. A framework for modelling language evolution

In this section, a top-down approach for a framework for evolution of modelling languages is presented. The main
requirement for this framework is that it must be complete, which means that it must be able to handle every possible
case of language evolution. Furthermore, it must present a solution that is as automated as possible. This means that user
interventionmust be limited, and directed by the framework. We can distinguish three levels of automation, ordered by the
level of user intervention required:

• full automation. This highest form of automation can be implemented in the framework itself. When used, it does not
require any manual intervention;

• evolution-specific automation. This form of automation is achieved when it is implemented at the level of evolution
itself. As a result, the corresponding co-evolutions can be performed automatically;

• no automation. When manual intervention is needed at the level of the co-evolving instances, there is no automation.
Although full automation is desirable, the other classes of automation are sometimes necessary.

7.1. Re-constructing evolution

In Section 6, evolution was deconstructed into manageable basic scenarios. The modelled system of Fig. 1 was broken
down into the basic schema of Fig. 4. In this section, we use this breakdown to re-construct all possible evolution scenarios.
Then, similarities and differences between scenarios can be investigated and a suitable solution can be customised to
maximise automation.

In the basic co-evolution schema of Fig. 4, each of the involved artefacts can evolve, causing some other artefacts to
co-evolve. Hence, we assume that each system can be mapped onto (multiple instances of) this schema, which originated
from the modelling artefacts shown in Fig. 1. An instance of the basic schema can be identified in a system by identifying a
transformation as an instance of T . Then, incoming models are instances of m and their meta-model is an instance of MMD.
The resultingmodels are instances of T(m) and theirmeta-model is an instance ofMMI . However, in theory, a transformation
has one input model and one output model, this input or output model can be a modular composition of two models
(possibly conforming to two differentmeta-models). An example of a transformationwith a composed inputmodel ismodel
merging, and an example of a transformation with a composed output model is generating a trace model together with the
output model. In many existing transformation tools, the transformations have combinations of more than onemeta-model

B. Meyers, H. Vangheluwe / Science of Computer Programming () – 13

Table 2
Evolution scenarios for the basic co-evolution schema.

Changing artefact

Type of T MMD MMI T mD mI

Unidirectional ex-
ogenous transforma-
tion

Co-evolve mD and T ,
execute T Co-evolve mI and T Change MMD and/or

MMI
Change MMD ChangeMMI

Bidirectional exoge-
nous transformation

Co-evolve mD and T
and T−1 , execute T

Co-evolve mI and T
and T−1 , execute T−1

Change MMD and/or
MMI

Change MMD ChangeMMI

Unidirectional en-
dogenous transfor-
mation

Co-evolve mD/mI and
T , execute T

Co-evolve mD/mI and
T Change MMD/MMI Change MMD/MMI ChangeMMD/MMI

Bidirectional endoge-
nous transformation

Co-evolve mD/mI and
T and T−1 , execute T

Co-evolve mD/mI and
T and T−1 , execute
T−1

Change MMD/MMI Change MMD/MMI ChangeMMD/MMI

Semantic mapping
function [[·]]

Co-evolve mD and
[[·]], execute [[·]]

Co-evolve mI and
[[·]]

Change MMD and/or
MMI

Change MMD ChangeMMI

Concrete mapping
function κ and π

(rendering and pars-
ing)

Co-evolve MMI , mD
and κ and π , execute
κ or π depending on
changing artefact

Co-evolve MMD , mI
and κ and π , execute
κ or π depending on
changing artefact

Change MMD (and
consequentlyMMI)

Change MMD (and
consequentlyMMI)

Change MMD and
(and consequently
MMI)

describing input or output. In those cases, it is desirable to maintain the modularity of the different formalisms that are
used. Therefore, each input or output meta-model is mapped onto a different instance of the basic schema. For example,
a transformation that transforms an input model to an output model and a trace model (in order to maintain an explicit
relation between the input and output model) has two mappings to the basic schema: one with the meta-model of the
output model asMMI , and one with the meta-model of the trace model asMMI .

Additionally,wemust take into account the type of transformation T . Different kinds of transformations havedifferent co-
evolution consequences. Transformations can be (orthogonally) endogenous/exogenous, unidirectionally/bidirectionally,
in-place/out-place (we assume preservation of the model after transformation execution, thus out-place transformations)
[29]. Endogenous transformations use the samemeta-model for its input and output models, while exogenous use different
meta-models. Unidirectional transformations are transformations from one model to another, in that specified direction.
Bidirectional transformations are represented as a relation between models, which is applicable in both directions. Out-
place transformations create a new output model from scratch, while in-place transformations perform changes on the
input model itself. Transformations can be used as parsing or rendering functions, semantic mapping or model to model
transformation [22]. They can also keep generic links between concepts in different models, which results in traceability
between concepts of the model. Although this can greatly facilitate the automation of co-evolution at the implementation
side, this is irrelevant from the architectural point of view presented in this section. Also note that transformation models
can range from simple search–replace scripts, to XSLT transformations, to rule-based graph transformations. Although the
above distinction suffices to express the different kinds of transformations, the concrete mapping functions κ and π can
be considered a special case because of the tight coupling between the meta-models of abstract and concrete syntax. This
relation is homomorphic in nature. In order to maintain that homomorphic relation, and a meta-model evolution (e.g., of
the abstract syntax) that changes the meta-model structurally requires migration of the other meta-model of the relation
(e.g., of the concrete syntax). In Table 2, the possible co-evolution scenarios are explored, where rows represent the kind of
transformation, columns represent the artefact that changes. As artefacts of Fig. 4 are used, we assume that every language
evolution in a system can be mapped onto one or more cells in this table.

Some conclusions can be drawn from observing the table. The default scenario is the evolution of MMD or MMI , i.e., the
first two columns. Evolutions of T ,mD ormI usually do not cause a change on the meta-level (i.e., the level of the language).
Indeed, evolution causes at most execution of T , in order to keep the models in the system consistent. This is in particular
true, and usually must happen instantly, for multi-view systems [12]. As this does not change anything at the meta-level, it
is not taken into account. In some cases, however, a change at themeta-level is desirable. Suppose that a modeller can adapt
a language by changing the model. This is useful because the modeller can perform simple modifications to a language
without extensive knowledge of language engineering, such as meta-modelling or transformation modelling (in case of
adaptation of T itself, the user must understand it of course). Instance-based modification of a language is possible if the
modelling environment allows free-hand editing (as opposed to syntax-directed editing) [31]. For such a scenario, the last
three columns in Table 2 are filled in, as we are interested in language changes.

A second conclusion is that, apart from the concrete mapping, all types of T are very similar. Evolution of a language
always leads to co-evolution of instances and transformation models, with a possible execution of T as a consequence. Note
thatwe limit each scenario to the schemaof Fig. 4, so, some real-life scenariosmight triggermore than one evolution scenario

14 B. Meyers, H. Vangheluwe / Science of Computer Programming () –

Fig. 11. A full TrainSim example, including concrete syntaxes, semantic mapping, code generation, simulation and analysis.

right

Fig. 12. An evolved meta-model for the TrainSim domain.

of Table 2. For example, when evolving a meta-model, each of the related transformation models is co-evolved, which
can each be mapped onto a table cell. Furthermore, because of the co-evolution consequences, a chain of transformation
executions can be triggered.

The concrete mapping is, however, notably different. The abstract syntax must be kept consistent with the concrete
syntax(es). The concrete mapping functions κ and π (for rendering and parsing) can for this purpose be considered a special
kind of transformation. Some tools such as Fujaba [9] force the user to explicitly implement a concrete mapping. Abstract
syntax concepts can be instantiated using Object Diagrams. Tools such as AToM3 [7] include concrete syntax in the language
definition (i.e., attached tometa-model elements). This illustrates the tight coupling as well as the simple one-to-one nature
of the concrete syntax mapping.

7.2. Running example

Fig. 11 shows the relationship between various language artefacts. The core of the diagram is the TrainSim language,
modelled by MMTrainSim, its concrete syntaxes MMvis and MMxml, and its related transformation models [[.]] (the semantic
mapping, which we already used in the previous example), codegen (an operational mapping to Java code), and simstep (to
simulate trains riding over the track). Note that concrete syntaxes of a formalism, because of their tight coupling with the
abstract syntax, are visualised ‘‘behind’’ their abstract syntax. Concrete mapping transformations are visualised as dashed
arrows. From TrainSim models, which can be represented as XML (for storage), textually (human-readable) and visually,
simulation can be done, code can be generated for deployment and execution, and Petri nets can be generated for deadlock
analysis. The results of this analysis are represented in the Properties language (Truewhen there is a deadlock or Falsewhen
there is none).

Reconsider the meta-model for the TrainSim domain of Fig. 3. During the development cycle, some changes are made at
the meta-level. In the new version of the meta-model, which is shown in Fig. 12, a Split is again renamed to Junction, and
a Train must be on a TrainPlace. Also, instead of having a to connection with multiplicity 2 from the Junction, there are two
different associations called left and right , in order to add a notion of direction. Finally, a RailStation is also added.

7.3. Framework features

Fig. 13 shows a feature diagram [18] of the framework that is explained in this section. Feature diagrams are a model for
product families, and they model how different products can be composed. In our context, we use it to describe a family of
migrations, i.e., the diagram models all possibilities for the evolution of modelling languages. This section offers guidelines
to systematically tackle the problems that emerge when modelling languages evolve. The feature diagram shows what

B. Meyers, H. Vangheluwe / Science of Computer Programming () – 15

AlternativeMandatory

Optional Or

Fig. 13. Feature diagram of the framework for evolution of a modelling language.

possibilities have to be taken into account for the creation of a framework. Afterwards, an algorithm is provided. Throughout
the remainder of this section, the feature diagram is carefully explained, and features from the feature diagram are referred
to in italic font. In order to support evolution (Evolve in the feature diagram), the framework must support:

• model differencing (diff);
• co-evolution (co-evolve) of instance models or related transformation models. Depending on the context, this can

originate from meta-model changes (src is MM) or changes of another artefact (src is T and src is m). More than one
possibility emerges here: a changing artefact can be an instance model in one mapping to the basic schema, a meta-
model causing domain evolution in another mapping to the basic schema, a meta-model causing image evolution in yet
another mapping to the basic schema;

• consistency of the system;
• continuity of the system;

These features are explained further in this section.

7.3.1. Difference between models
The evolution of an artefact must bemodelled explicitly, in order to derive co-evolution (semi-)automatically. Therefore,

the difference between two versions of a model needs to be represented (representation). As discussed in Section 3.1, there
are two kinds of representations: operational, where difference is modelled as a series of edit operations, and structural,
where difference is modelled as a language element (represented explicitly in a meta-model).

Apart from representation, the calculation of the difference model is an essential part of the framework. The difference
models can be modelled manually (manual modelling), resulting in evolution-specific automation. Full automation can be
achieved when the difference is calculated from the two versions of the meta-model (diff analysis), or when the changes
are recorded at the moment they are applied (change recording). Change recording is very accurate, and does not require a
complex algorithm to be implemented. However, it is dependent on that particular framework and difficult to visualise. The
differences in change recording are conveniently represented as an operational model.

16 B. Meyers, H. Vangheluwe / Science of Computer Programming () –

Table 3
The operational difference model of the evolution.

nr. Operation Type

1 RenameMetaElement(Split, ‘‘Junction’’) Updative
2 RestrictMetaProperty(TrainOnTrainPlace, 1, 1, 0, 1) Subtractive
3 EliminateMetaProperty(Junction.to) Subtractive
4 AddNonObligatoryMetaProperty(Junction, TrainPlace, ‘‘left’’, 1, 1, 0, -1, False) Additive
5 AddNonObligatoryMetaProperty(Junction, TrainPlace, ‘‘right’’, 1, 1, 0, -1, False) Additive
6 AddObligatoryMetaProperty(Rail, ‘‘length’’, Integer, 1, 1, 1) Additive
7 AddNonObligatoryMetaClass(‘‘RailStation’’, [Rail], False) Additive

Fig. 14. The migration pipeline for the TrainSim evolution.

In our evolution from themeta-model of Fig. 3 to the one of Fig. 12, we use an operational representation of the difference
model in Table 3. The difference model uses the operations from Table 1. Note that the replacement of the to-association is
modelled as action 3-5. In this example, the difference model is created manually, but existing automated approaches can
be used instead (see Section 3.1).

7.3.2. Evolution of meta-models and co-evolution of instance models
When following Fig. 10, a migration model (m migr) involves creating an intermediate meta-model, an updative part

and an additive/subtractive part. As stated in Section 6.3, the intermediate meta-model (intermediate MM) describes all
concepts of bothmeta-model versions, and can be generated fully automatically. The updative part , consisting of all updative
changes, can be automatically derived from the difference model. As updative changes are not subject to the projection
problem, migration operations and their inverse can be generated automatically. The additive/subtractive part (add/sub
part), consisting of all additive and subtractive changes, might need manual adaptation, so possibly no automation can
be applied to some part of the co-evolution. As a result, co-evolution is performed using automatic pass(es) and manual
pass(es). The manual pass can require undirected ad hoc adaptation, or can be directed by the framework, which points out
where manual intervention must be done in the co-evolving artefact.

A migration pipeline is composed for every evolution. When following the example evolution, a pipe as in Fig. 14 can be
created. Each big arrow contains the migration operation in each direction for one or more delta operations that are shown
in a dotted rectangle above the arrow. The migration operation to migrate from the old version to the new version is shown
in the upper half, the one to migrate back from the new version to the old version is shown in the bottom half (and can be
ignored for the co-evolution of instance models). A first draft can be generated automatically from Table 3, creating a slot
with the defaultmigration operation fromTable 1 for each change. For example, the third slot contains a generatedmigration
operation indicating that trains that are not connectedwith some TrainPlace, are removed. In two cases, a slot contains a large
equality sign. Thismeans that nomigrationmust be performed, as the respective delta operation is a non-breaking operation
(see Table 1). Generatedmigration operations aremarkedwith a ‘‘G’’ (for ‘‘generated’’). In a next step,which is donemanually
(but offers evolution-specific automation), slots can be replaced and combined. When the migration operation of a slot is
overridden, it is marked with ‘‘E’’ (for ‘‘edited’’). In this example changes 3 through 5 from Table 3, as shown in the large
dashed rectangle, are combined into the fourth slot of Fig. 14. Occurrences of the old to connection are replacedwith the left-
and right connections. This migration operation requires a manual pass (indicated by the hand icon that denotes the need
for manual editing), where a distinction is made between the ‘‘left’’ and ‘‘right’’ TrainPlace. Alternatively, this could have
been done randomised and automatically, but critical information might be wrong. Also, the default migration operation

B. Meyers, H. Vangheluwe / Science of Computer Programming () – 17

0..2
0..1
0..1

Fig. 15. The intermediate meta-model for the TrainSim domain.

for change 6, where a length attribute is added, is replaced with a fold/unfold operation (see the fifth slot in Fig. 14). The
fold operation will detect a chain of n Rails by greedy matching and will transform it into one Railwith length n. In order to
co-evolve instance models, the model is passed through the pipeline from left to right, co-evolving it in a step-wise manner,
using the upper migration operations. This sequence of all migration operations can be called as a whole, the migration
transformation E of the evolution. At slot 4, user interaction is required. The co-evolution of all available instance models
can be scheduled conveniently bymigrating them all to slot 4, then performing themanual pass on each of them, and finally
migrating them from slots 5 to 7. The inverse migration operations (the bottom half of the slots) are never used when co-
evolving instance models. As discussed previously, the pipeline requires the use of an intermediate meta-model for the
TrainSim domain, shown in Fig. 15.

Note that this example is deliberately chosen to show the different aspects of our approach. When using migration
operations in practice, however, Herrmannsdörfer et al. [16] have shown that in industrial case studies, generatedmigration
operations can be used for more than 99% of the total number of operations. In contrast to the example of Fig. 14, editing
migration operations is needed for only a limited number of cases.

7.3.3. Evolution of meta-models and co-evolution of related transformation models
In addition to instance models, related transformation models must be co-evolved. A transformation may often be

represented as a graph transformation, consisting of graph rewriting rules. However, its implementation can be simpler
in some cases, such as an XSLT transformation or a simple script. Transformations can be total, i.e., the whole domain can
be mapped onto the image. In many cases, however, some language constructs of the domain do not have an image, so the
transformation is partial. In this case, information is lost.

Although a less popular research topic than model co-evolution, the problem was already described by Zhang et al. in
2004 [56]. Levendovszky et al. state that transformation co-evolution is more complex, thus less automatable, than instance
model co-evolution [25]. Consider for example the ‘‘Add (non-obligatory) meta-class’’ operation of Table 1. Although not a
problem for instance models, it is very well possible that a transformation model must be changed in order to map the new
class onto a construct of the image language. Levendovszky et al. call such additive operations ‘‘fully semantic transformation
operations’’, but do not provide support for them.

In our framework we divide transformation co-evolution (T migr in Fig. 13) into two parts: a pipeline part and a manual
part. The first part (pipeline part) can be automatically executed using a combination of the pipeline used for instancemodel
co-evolution, and the principles of image evolution and domain evolution of Section 6.1. Thismeans that the transformation is
mergedwith E (merge with E) or E−1 (merge with E−1). This process can be optimised (optimise)manually or automatically. As
noted, the simplistic approach of image and domain evolution is not directly applicable to additive or subtractive changes.
Suppose we apply it directly to the evolution example. The co-evolution of codegen in Fig. 11 is a case of domain evolution.
The co-evolved transformation would be able to transform TrainSim models of version 1: T'(m) = T(E−1(m)). However, the
information about direction after a Junction would be lost after applying E−1. This is not desirable, as this information was
deliberately added to the new version of TrainSim.

The use of the intermediatemeta-model plays a key role in the solution to this problem.As concepts of both versions of the
meta-model can bemodelled in the intermediatemodel, no information needs to be lost. Therefore, instead of executing the
transformation on version 0 instance models, wemigrate the transformation so that it is applicable to intermediate models.
Following the pipeline of the evolution example of Fig. 14, this means that wemigrate the transformationmodel to a virtual
version 0 artefact.

In the case of domain evolution for the semantic mapping TrainSim2PetriNet , the mapping is migrated to the
intermediate meta-model. Then, when a version 1 TrainSim model must be transformed, it must be migrated ‘‘towards’’
the migrated TrainSim2PetriNet transformation by transforming it to a virtual version 1 artefact. Theoretically, the migrated
TrainSim2PetriNet can transform the migrated TrainSim model. However, as the transformation is virtually v0, it is possible
that the mapping is not total anymore. For example, RailStations, and left- and right connections will not be transformed.
Therefore, the virtual version 1 instancemodelwill pass through some chosen slots in themigrationpipeline. In this example,
it is desirable that RailStations are converted back to Rails, and left- and right connections are converted back to one to-
connection. In other words, the inverse migration operations of only change 7 and changes 3 to 5 of Table 3 are applied

18 B. Meyers, H. Vangheluwe / Science of Computer Programming () –

on the instance model. As a result, the migrated transformation TrainSim2PetriNet is now total again. Note that folded Rail
sequences are not unfolded, as we use the Petri net models for deadlock analysis, and this has no influence on this analysis.
In case of image evolution (as is the case, alongwith domain evolution, for the simstep transformation), the transformation is
migrated similarly, and (a selection of) the non-inverse migration operations are applied to the resulting model afterwards,
resulting in a version 1 instance model. In the endogenous simstep transformation, both image and domain evolves, and it
turns out that the desired result is achieved when no additive or subtractive migration operations are performed at all. The
virtual version 0 simstep transformation can be applied to virtual version 1 instance models.

The first part of transformation migration being automatic (apart from choosing the migration operations that must be
used), migration of a transformation model possibly requires a manual part (manual part in Fig. 13). Consider the codegen
operational semantic mapping of Fig. 11. In the evolution example, this transformation is subject to domain evolution. The
transformation is migrated to the intermediate meta-model. When executed on a TrainSim version 1 instance model, the
model is migrated to the intermediate meta-model, and again, RailStations are transformed to Rails. Also, Rails with a length
higher than 1 are unfolded to a sequence of Rails with length 1. The left- and right connections are kept, however, as we
want to incorporate this new information in the generated code. Of course, this cannot be done automatically. To do this,
the virtual version 0 transformation model is adapted manually to support this new concept by changing the rewrite rule
that generates code for splits. Because the migrated transformation model uses the intermediate meta-model, it has access
to introduced language concepts such as the left- and right connections. In conclusion, the framework reduces the manual
intervention to a strict minimum, i.e., the addition of new semantics. If an evolution comprises a lot of semantic changes,
the amount of effort that has to be put in this manual part will be greater.

Note that, when a series of evolutions are performed, the intermediate meta-model might describe a larger modelling
space, as concepts of all evolutions are incorporated. On top of this, the number of slots in the pipeline will grow, as each
evolution change is described by these migration operations. Therefore, it is desirable to ‘‘freeze’’ the evolved system at
some point, and optimise the migrated transformations. This can be done either manually or automatically. From then on,
the system can again be considered version 0.

7.3.4. Evolution of other artefacts
If an instancemodel changes (src ism) or a transformationmodel changes (src is T), there are twopossibilities: either there

is no impact on ameta-model (instance edit) or ameta-model changes (free-hand edit). For the former, some transformations
mayhave to be executed again in order tomaintain consistency among themodel instances (instance consistency). The latter
ismore complex and occurswhen a tool supports free-hand editing [31]. In free-hand editing, themodeller can immediately
edit an instance or concrete syntax in order to change a language. The conversion of the m/T difference to a meta-model
difference (convert to MM diff) is supported by the free-hand editor. Whenever the editor applies a change to an instance
model in the language, the change is generalised and applied to a (possibly implicit) meta-model. Note that this is typically
not done automatically, but rather, suggestions are given. Ultimately, the modeller is presented a meta-model editor to
allow manual meta-model changing. This can only be done if the other model is closely related to the original model, by a
homomorphicmapping. Homomorphic relations are in this contextmeta-model/instance or abstract syntax/concrete syntax
relations. When the meta-model changes (evolve MM), a new evolution is triggered. Note that for a transformation model
change, the domain meta-model might be subject to change (domain edit) as well as the image meta-model (image edit).

7.3.5. Consistency and continuity
When a language evolves and instancemodels and transformationmodels are co-evolved, the systemmight have become

inconsistent (consistency). In many cases, it is desirable to solve this by executing respective transformations so that the
model instances are consistent again (instances). Note that this can result in a chain of transformation executions. In that case,
the order in which different transformations are executed might be relevant for optimisation reasons. After the necessary
executions have been done, the system is consistent again. We assume that all evolutions and co-evolutions are done
correctly, i.e., they can result in a consistent system.

In addition to the consistency of instancemodels, we also have to take consistency between abstract syntax and concrete
syntaxes into account (concrete syntaxes). Due to the homomorphic nature of the concrete syntax mapping and the tight
coupling, this problem is usually simpler than other co-evolution problems, as the concrete syntaxmappingmainly consists
of only simple one-to-one transformation rules. When changing abstract syntax, the meta-models of the corresponding
concrete syntaxes must co-evolve. This requires migration of the meta-model of each concrete syntax (MMκ co-evolution).
Also, κ and π themselves have to co-evolve (mapping co-evolution), and the concrete syntax instances can be migrated
as regular instances of a meta-model (instance co-evolution). The other way around, when a concrete syntax structurally
evolves in a free-hand modelling tool, it requires co-evolution of its abstract syntax. This will in turn trigger co-evolution
of the other concrete syntaxes, if available. Apart from the co-evolution on the meta-level, co-evolution also happens for
instance models and the transformation model (i.e., concrete syntax mapping).

In order to perform a meaningful evolution, it must be continuous. This means that the system is consistent and
semantically equal to its previous versions (semantic similarities), with intended changes taken into account (semantic
changes). This can in principle be checked by executing the semanticmapping and comparing the properties on thesemodels
by analysing their results. In the TrainSim example for instance, a property could be the answer to the question ‘‘can two

B. Meyers, H. Vangheluwe / Science of Computer Programming () – 19

trains block each other in this train circuit?’’. In order to get a result for a model, the model is transformed to the Petri
net formalism (if not already done) and deadlock analysis is performed on the Petri net model. The result is propagated to
the TrainSim model. After evolution, the same result for this property should be obtained for each model, modulo intended
semantic changes.

7.4. Algorithm

In this section, we describe an algorithm as the backbone of the proposed framework. In Fig. 16 a class diagram that is
used by the algorithm is shown as an illustration. As our domain is MDE, it is not surprising that the root class is Model. Its
subclasses are:

• TransformationModel that can transform models to other models. A TransformationModel can be a ConcreteSyntaxMap-
ping (which can be a RenderingMapping or a ParsingMapping), a MigrationOperation or a MigrationPipeline which is an
ordered set ofMigrationOperations;

• InstanceModel that conforms to a meta-model;
• MetaModel that must be either an AbstractSyntax or a ConcreteSyntax;
• DifferenceModel that is a model that describes the difference between two models. A DifferenceModel is either an

OperationalDiffModel or a StructuralDiffModel.
Further in this section, an algorithm is shown for the evolve and evolveTo methods. These methods offer a complete

framework for language evolution in MDE, that can be used to tackle all types of evolution. In the algorithms, methods
that are shown in Fig. 16 are used. Some of the used methods are simple getters, more complex methods were discussed
previously in the paper. The methods can be implemented as one wishes, so an incremental implementation of the
framework is possible using the algorithm, where the implemented methods initially require a lot of manual work (e.g.,
the manual modelling of the delta model), but gradually is automated (e.g., by ‘‘plugging in’’ the DSMDiff algorithm [27] for
calculating the delta model). The used methods are:

• Model::execute: executes a transformation with the model as input. The target is known by the transformation;
• Model::difference: calculates the difference of two models and returns a difference model (see Section 3.1);
• TransformationModel::merge: merges two transformation models. This can be done trivially by appending them (see

Section 6.2);
• TransformationModel::domain: returns the meta-model of the domain of the transformation;
• TransformationModel::image: returns the meta-model of the image of the transformation;
• MigrationPipeline::steps: returns the sequence of migration steps that form the migration pipeline. The migration steps

from the old version to the intermediate version, and from the intermediate version to the new version, are included
(see Section 7.3.2);

• DifferenceModel::generateDefaultMigrationPipeline: generates the default migration operations following Table 1;
• DifferenceModel::convertTo: converts the difference model of an original model to another model (see Section 7.3.4);
• DifferenceModel::apply: applies the difference model to a model, so that the evolved model is obtained;
• MetaModel::instances: returns all available models that conform to this meta-model;
• ConcreteSyntax::parsingMapping: returns the parsing transformation;
• ConcreteSyntax::abstractSyntax: returns the corresponding abstract syntax;
• AbstractSyntax::generateIntermediateMetaModel: generates the intermediate meta-model from two meta-models (see

Section 6.3);
• AbstractSyntax::dependentTransformations: returns all transformations that use this meta-model (for its input language

and/or output language). It is assumed that these transformations only have one input language and one output
language. If in reality a transformation has two output languages, than this transformation is returned twice, once for
the first output language, and once for the second one. This assumption is introduced to improve the simplicity of the
algorithms further in this section;

• AbstractSyntax::concreteSyntaxes: returns the corresponding concrete syntaxes;
• AbstractSyntax::renderingMappings: returns the rendering transformation;
• InstanceModel::metamodel: returns the meta-model of this model.
Fig. 16 shows the method in pseudocode for the default case of abstract syntax meta-model evolution. It executes

the consequences of a meta-model, according to the new version of this meta-model and the difference model. First,
the intermediate meta-model and the migration pipeline are created (lines 2–4). The INPUT() method denotes manual
intervention. Then, instance models can be migrated (lines 5–9) by iterating over the migration operations and the instance
models. Next, the relevant transformations are migrated (lines 10–21) by first customising the pipeline and, if necessary,
the transformation itself (lines 11–12). Then, a distinction is made between domain and image evolution (lines 13–20),
and the transformation and pipeline are merged accordingly. Note that the pipeline is traversed in the opposite way for
domain evolution, so that the inverse migration steps are used. In case of domain evolution, the transformation has to be
executed again on all instance models (lines 17–19). Finally, the concrete syntaxes are migrated (lines 22–35). Hereby, the
homomorphic relationship between abstract syntax and concrete syntax is used extensively. The concrete syntax meta-
model has to be migrated (line 23), as well as the rendering mapping (lines 24–29), the parsing mapping (lines 30–31) and
the concrete syntax instances, which can be migrated by executing the migrated rendering mapping (lines 32–34).

20 B. Meyers, H. Vangheluwe / Science of Computer Programming () –

Fig. 16. Class Diagram of the different kinds of model artefacts in the framework.

Fig. 17 shows the method for concrete syntax evolution in the more complex free-hand editing. The difference is
converted to the corresponding concrete syntax meta-model, and the algorithm of Fig. 16 is called. As a result, the meta-
model evolves and will migrate related artefacts as described above.

Fig. 18 shows the method for transformation evolution in the more complex free-hand editing. Both image and domain
can change through the changes of a transformation model. The difference model is converted to the domain meta-model,
and the meta-model is evolved if there was a difference (lines 2–6). Analogously, the image is evolved (lines 7–11).

Fig. 19 shows the method for instance model evolution in the more complex free-hand editing. Analogously to Fig. 18,
the difference model is converted to the meta-model and the meta-model is evolved.

Fig. 20 shows the method for evolution without the knowledge of the difference model. The previous algorithms are in
principle only useable for tools that record differences and obtain the differencemodel automatically. Therefore, themethod
of Fig. 21 is included, where the difference is calculated by a difference algorithm, and the model is evolved, calling any of
the other algorithms.

8. Conclusion and future work

The lack of support for automated evolution discourages necessary evolution of languages. In domain-specific modelling
especially, modelling languages are used while under development or under on-going change. When such languages
evolve, support for (semi-)automated evolution of language artefacts is needed. Previous research has been done only to
support model co-evolution for meta-model evolution. Transformations or semantics are not yet taken into account. While
addressing the problem of modelling language evolution, we made the following contributions in this paper:

• taxonomy for migration: we analysed related work, and a classification has been presented for migration of instance
models;

• syntactic/semantic evolution and consistency/continuity: we divided up evolution into syntactic and semantic evolution.
We identified a goal to satisfy consistency and continuity, effectively meaning that the evolution is syntactically correct

B. Meyers, H. Vangheluwe / Science of Computer Programming () – 21

1: function void AbstractSyntax::evolve(AbstractSyntax target, DifferenceModel diff) do // overridden from Model
2: MetaModel im = this.generateIntermediateMetaModel(target) // create intermediate meta-model
3: MigrationPipeline pipe = diff.generateDefaultMigrationPipeline(im) // create migration pipeline
4: pipe = INPUT(pipe) // manually adapt, combine and optimise operations in pipeline
5: for all (MigrationOperation mm in pipe.steps()) do // migrate instance models
6: for all (InstanceModel i in this.instances()) do
7: i.execute(mm) // automatic or manual execution
8: end for
9: end for
10: for all (TransformationModel t in this.dependentTransformations()) do // migrate transformations
11: MigrationPipeline custompipe = INPUT(pipe) // manually adapt, combine and optimise operations in pipeline for each t
12: t = INPUT(t) // the manual pass: semantic changes applied to the transformation model itself
13: if (this == t.image()) then // image evolution
14: t = t.merge(custompipe) // the transformation, followed by migration from intermediate model to new version
15: else if (this == t.domain()) then // domain evolution
16: t = custompipe.merge(t) // migration from new version to intermediate model, followed by the transformation
17: for all (InstanceModel i in this.instances()) do // execute the transformation again
18: i.execute(t)
19: end for
20: end if
21: end for
22: for all (ConcreteSyntax c in this.concreteSyntaxes()) do // migrate concrete syntaxes
23: c = diff.convertTo(c).apply(c) // use homomorphic relation to convert diff and apply
24: for all (RenderingMapping kappa in this.renderingMappings()) do // find rendering mapping for this concrete syntax to migrate
25: if (kappa.image() == c) then
26: kappa = diff.convertTo(kappa).apply(kappa) // use homomorphic relation to convert diff and apply
27: break() // stop looking when it is found
28: end if
29: end for
30: ParsingMapping kappaInv = c.parsingMapping() // get parsing mapping to migrate too
31: kappaInv = diff.convertTo(kappaInv).apply(kappaInv) // use homomorphic relation to convert diff and apply
32: for all (InstanceModel i in this.instances()) do // synchronise concrete syntax models with abstract syntax model
33: i.execute(kappa)
34: end for
35: end for
36: end function

Fig. 17. The evolve method for AbstractSyntax.

1: function void ConcreteSyntax::evolve(ConcreteSyntax target, DifferenceModel diff) do // overridden from Model, assumes free-hand modelling
2: AbstractSyntax as = this.abstractSyntax() // get the corresponding abstract syntax that will evolve
3: DifferenceModel diffAs = diff.convertTo(as) // use homomorphic relation to convert diff
4: AbstractSyntax asEvolved = diffAs.apply(as) // apply diff to obtain new version of meta-model
5: as.evolve(asEvolved, diffAs) // evolve the abstract syntax
6: end function

Fig. 18. The evolve method for ConcreteSyntax.

1: function void TransformationModel::evolve(TransformationModel target, DifferenceModel diff) do // overridden from Model, assumes free-hand
modelling

2: AbstractSyntax domain = this.domain() // get the corresponding domain meta-model that will evolve
3: DifferenceModel diffDom = diff.convertTo(domain) // use homomorphic relation to convert diff
4: if not (diffDom is Null) then // check whether there was a change for the domain meta-model
5: domain.evolve(diffDom.apply(domain), diffDom) // evolve the domain meta-model
6: end if
7: AbstractSyntax image = this.image() // get the corresponding image meta-model that will evolve
8: DifferenceModel diffImg = diff.convertTo(this.image()) // use homomorphic relation to convert diff
9: if not (diffImg is Null) then // check whether there was a change for the image meta-model
10: image.evolve(diffImg.apply(image), diffImg) // evolve the image meta-model
11: end if
12: end function

Fig. 19. The evolve method for TransformationModel.

1: function void InstanceModel::evolve(InstanceModel target, DifferenceModel diff) do // overridden from Model, assumes free-hand modelling
2: MetaModel mm = this.metamodel() // get the corresponding meta-model that will evolve
3: DifferenceModel diffmm = diff.convertTo(mm) // use homomorphic relation to convert diff
4: mm.evolve(diffmm.apply(mm), diffmm) // evolve the meta-model
5: end function

Fig. 20. The evolvemethod for InstanceModel.

(i.e., the conformance relation is preserved throughout the system) and semantically correct (i.e., the systemhas evolved
according to the changes that were intended);

22 B. Meyers, H. Vangheluwe / Science of Computer Programming () –

1: function void Model::evolveTo(Model target) do // main method
2: DifferenceModel diff = this.difference(target) // create difference model using a difference algorithm
3: this.evolve(target, diff) // now that the difference is calculated, evolve the model
4: end function

Fig. 21. The evolveTo method forModel.

• de/re-construction: we deconstructed all possible (co-)evolution scenarios into four basic cases, which can each be
handled (semi-)automatically. When applying such a basic scenario, we showed that the co-evolution of related
artefacts, both instance models and transformation models, can be mapped onto these basic scenarios;

• projection problem: we identified the projection problem that prevents the full automation of transformation model
migration by use of the migration transformation for instance models;

• migration pipeline: we introduced a flexible and modular migration pipeline, that can be reused for instance model
migration as well as transformation model migration;

• exploration of all possibilities: we distinguished three levels of automation and we explored all possible consequences of
modelling language evolution in a feature diagram, and discussed the level of automation possible;

• algorithm: we provided an algorithm that forms the backbone of our framework. The algorithm uses techniques that
are introduced or discussed throughout the paper and constitutes a coherent solution for the problem of modelling
language evolution.

We assume that an averageMDE tool supportsmeta-modelling, transformationmodelling and transformation execution.
Following the discussion in this paper, however, the proposed approach depends on a few techniques. As these techniques
are not yet featured in the average MDE tool, maximally automating all forms of evolution depends on the implementation
of the following:

• higher order transformation: the automatic generation ofmigration transformations out of deltamodels requires support
for higher order transformations, which are transformations that take other transformations as input and/or output. In
order to support higher order transformations, the transformation language must be modelled explicitly (i.e., the meta-
model is not available). Several other uses for higher order transformation, inside and out of the context of evolution,
are discussed in [5,30,33]. It is widely accepted that higher order transformations are a valuable feature in any MDE
tool;

• model differencing: in order to support automated evolution on an industrial level, it must be possible to generate delta
models out of two versions of a model. Moreover, it is desirable that the activity of meta-modelling does not have to
change in order to support automated evolution. Difference tools such as DSMDiff [27] and UMLDiff [55] are useful as
they detect differences retrospectively (see also Section 3.1);

• transformation inverting: in order to automatically co-evolve a transformation model in domain evolution, the inverse
of the migration transformation is needed. This can be implicitly featured by providing the possibility to implement
bidirectional transformations using Triple Graph Grammars (TGGs) [46]. However, in that case, one is restricted to
the use of bidirectional transformation with triple graph grammars. It remains an open question whether TGGs are
expressive enough to obtain the inverse of themigration transformation (whichmay delete elements). The other option
is to automate the inversion of transformation models.

• representation of semantics: as not only the syntax but also the semantics of a modelling language evolves, there must
be a way to represent these semantic changes. Amore precise means to reason about semantics preservation is needed.
Therefore, it is interesting to look more into the properties of a model, as suggested throughout this paper.

• merging of transformations: in order to optimise the sequences of transformations, they are merged. In this sense,
automatic merging of transformations can be of great convenience. This can be simply done by chaining them, but
the result can also be optimised.

The development of each of these techniques is a research topic in its own right. If all of these techniques are supported by
an MDE tool of choice, a framework for evolution can provide maximal automation using the algorithm of Section 7.4. The
framework is still valuable even if the prerequisites do not hold.

Future work on this subject will include elaborating themigration pipeline. Different restrictions on how to combine and
order these operationswill be investigated. Moreover, the special case of co-evolution of concrete syntaxmust be examined,
as this can be optimised. There is a current trend of ‘‘weaving’’ language definitions together to create new DSMLs (e.g., each
individual language may focus on a specific concern, and a large system integration may need some links between these
languages) [52]. We see this mainly in the Aspect-Oriented Modelling (AOM) community where such language weaving is
considered a special kind of transformation [53]. We will look into the possibilities for optimisation.

Also, the role of semantics is very apparentwhen thinking about automation of language evolution. The precisemodelling
and analysis of semantics must be explored.

Acknowledgements

We would like to thank the reviewers of this paper for their valuable comments. We would also like to thank the
organisers and the participants of the Transformation Tool Contest 2010, Model Migration Case Study for the fruitful

B. Meyers, H. Vangheluwe / Science of Computer Programming () – 23

discussions on the subject of this paper. Finally, the participants of the 2008–2010 Bellairs Computer Automated Multi-
Paradigm modelling workshops are acknowledged for the stimulating discussions which have ultimately led to this paper.
Partial support of thiswork by a discovery grant of theNational Science and Engineering Research Council (NSERC) of Canada
is gratefully acknowledged.

References

[1] M. Alanen, I. Porres, Difference and union of models, in: UML’03: The Unified Modeling Language, 2003, pp. 2–17.
[2] J. Banerjee,W. Kim, H.-J. Kim, H.F. Korth, Semantics and implementation of schema evolution in object-oriented databases, ACMSpecial Interest Group

on Management Of Data 16 (3) (1987) 311–322.
[3] F.P. Brooks, No silver bullet: essence and accidents of software engineering, IEEE Computer 20 (4) (1987) 10–19.
[4] K. Chen, J. Sztipanovits, S. Neema, Toward a semantic anchoring infrastructure for domain-specific modeling languages, in: EMSOFT’05: 5th ACM

International Conference on Embedded Software, ACM, 2005, pp. 35–43.
[5] A. Cicchetti, D. Di Ruscio, R. Eramo, A. Pierantonio, Automating co-evolution in model-driven engineering, in: EDOC’08: 12th International IEEE

Enterprise Distributed Object Computing Conference, 2008, pp. 222–231.
[6] A. Cicchetti, D. Di Ruscio, A. Pierantonio, A metamodel independent approach to difference representation, Journal of Object Technology 6 (9) (2007)

165–185.
[7] J. De Lara, H. Vangheluwe, AToM3: a tool for multi-formalismmodelling and meta-modelling, in: Lecture Notes in Computer Science, vol. 2306, 2002,

pp. 174–188.
[8] I. Galvao Lourenco da Silva, A. Goknil, Survey of traceability approaches in model-driven engineering, in: Eleventh IEEE International EDOC Enterprise

Computing Conference, IEEE Computer Society Press, Los Alamitos, 2007, pp. 313–324.
[9] L. Geiger, A. Zündorf, Tool modeling with Fujaba, Electronic Notes in Theoretical Computer Science 148 (1) (2006) 173–186.

[10] H. Giese, T. Levendovszky, H. Vangheluwe, Summary of the workshop on multi-paradigm modeling: concepts and tools, in: T. Kühne (Ed.), Models
in Software Engineering Workshops and Symposia at MoDELS 2006, in: Lecture Notes in Computer Science, vol. 4364, Springer-Verlag, 2006,
pp. 252–262.

[11] B. Gruschko, D. Kolovos, R. Paige, Towards synchronizing models with evolving metamodels, in: International Workshop on Model-Driven Software
Evolution at IEEE European Conference on SoftwareMaintenance and Reengineering, ECSMR, 2007. http://www.sciences.univ-nantes.fr/MoDSE2007/.

[12] E. Guerra, J. de Lara, Model viewmanagement with triple graph transformation systems, in: International Conference on Graph Transformation, 2006,
pp. 351–366.

[13] D. Harel, B. Rumpe, Meaningful modeling: what’s the semantics of ‘‘semantics’’?, IEEE Computer 37 (10) (2004) 64–72.
[14] R. Heckel, J. M. Küster, G. Taentzer, Confluence of typed attributed graph transformation systems, in: ICGT’02: First International Conference on Graph

Transformation, Springer-Verlag, London, UK, 2002, pp. 161–176.
[15] J. Heering, R. Lämmel, Coupled software transformations, in: SET 2004, First Int. Workshop on Software Evolution Transformations, 2004, pp. 31–35.
[16] M. Herrmannsdoerfer, S. Benz, E. Juergens, Cope—automating coupled evolution of metamodels andmodels, in: 23rd European Conference on Object-

Oriented Programming, ECOOP, 2009, pp. 52–76.
[17] J. Hoessler, J. Soden, Michael, H. Eichler, Coevolution of models, metamodels and transformations, Models and Human Reasoning (2005) 129–154.
[18] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson, Feature-oriented domain analysis (FODA) feasibility study, Tech. Rep. CMU/SEI-90-TR-21, Software

Engineering Institute, CMU, November 1990.
[19] S. Kelly, J.-P. Tolvanen, Domain-Specific Modeling: Enabling Full Code Generation, John Wiley & Sons, 2008.
[20] P. Klint, R. Lämmel, C. Verhoef, Toward an engineering discipline for grammarware, ACM Transactions on Software Engineering Methodology 14 (3)

(2005) 331–380.
[21] T. Kühne, Matters of (meta-)modeling, Software and System Modeling 5 (4) (2006) 369–385.
[22] T. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, M. Wimmer, Explicit transformation modeling, in: Models in Software Engineering, Workshops and

Symposia at International Conference onModel Driven Engineering Languages and Tools 2009, Revised Selected Papers, in: Lecture Notes in Computer
Science, vol. 6002, Springer, 2010, pp. 240–255.

[23] R. Lämmel, Grammar adaptation, in: Formal Methods Europe (FME) 2001, in: Lecture Notes in Computer Science, vol. 2021, Springer-Verlag, 2001,
pp. 550–570.

[24] R. Lämmel, W. Lohmann, Format evolution, in: 7th International Conference on Reverse Engineering for Information Systems, RETIS 2001, in: OCG,
vol. 155, 2001, pp. 113–134.

[25] T. Levendovszky, D. Balasubramanian, A. Narayanan, G. Karsai, A novel approach to semi-automated evolution of DSMLmodel transformation, in: 2nd
International Conference on Software Language Engineering, SLE 2009, in: Lecture Notes in Computer Science, vol. 5969, 2010, pp. 23–41.

[26] X. Li, A survey of schema evolution in object-oriented databases, in: TOOLS’99: 31st International Conference on Technology of Object-Oriented
Language and Systems, IEEE Computer Society, 1999, p. 362.

[27] Y. Lin, J. Gray, F. Jouault, DSMDiff: a differentiation tool for domain-specific models, in: Model-Driven Systems Development, European Journal of
Information Systems 16 (4) (2007) 349–361 (special issue).

[28] T. Mens, S. Demeyer (Eds.), Software Evolution, Springer, 2008.
[29] T. Mens, P. Van Gorp, A taxonomy of model transformation, in: GraMoT’05, in: Electronic Notes in Theoretical Computer Science, vol. 152, 2006,

pp. 125–142.
[30] B. Meyers, P. Van Gorp, Towards a hybrid transformation language: implicit and explicit rule scheduling in story diagrams, in: U. Assmann, J. Johannes,

A. Zündorf (Eds.), Sixth International Fujaba Days, 2008, pp. 15–18.
[31] M. Minas, Generating meta-model-based freehand editors, Electronic Communications of the European Association of Software Science and

Technology 1, 2006. http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/83.
[32] P.J. Mosterman, H. Vangheluwe, Computer automated multi-paradigm modeling: an introduction, Simulation 80 (9) (2004) 433–450.
[33] O. Muliawan, Extending a model transformation language using higher order transformations, in: Working Conference on Reverse Engineering, 2008,

pp. 315–318.
[34] Object Management Group, February 2009, Unified Modeling Language Superstructure.
[35] Object Management Group, Business Process Modeling Notation (BPMN) Version 2.0, Tech. rep., OMG, 2010.
[36] Object Management Group, Object constraint language version 2.2. Tech. Rep., OMG, 2010.
[37] Object Management Group, OMG Unified Modeling Language Infrastructure version 2.3, May 2010.
[38] D. Ohst, M. Welle, U. Kelter, Differences between versions of UML diagrams, ACM Special Interest Group on Software Engineering 28 (5) (2003)

227–236.
[39] J. Peterson, Petri Net Theory and the Modeling of Systems, Prentice Hall, 1981.
[40] M. Pizka, E. Jurgens, Automating language evolution, in: TASE’07: First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering,

IEEE Computer Society, 2007, pp. 305–315.
[41] E. Rahm, P.A. Bernstein, An online bibliography on schema evolution, SIGMOD Record 35 (4) (2006) 30–31.
[42] M. Richters, M. Gogolla, A metamodel for ocl, in: UML’99: 2nd international Conference on The Unified Modeling Language, Springer-Verlag, 1999,

pp. 156–171.

http://www.sciences.univ-nantes.fr/MoDSE2007/
http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/83

24 B. Meyers, H. Vangheluwe / Science of Computer Programming () –

[43] L. Safa, The practice of deploying DSM Report from a Japanese appliance maker trenches, in: J. Gray, J.-P. Tolvanen, J. Sprinkle (Eds.), Sixth Object-
Oriented Programming, Systems, Languages and Applications Workshop on Domain-Specific Modeling, University of Jyväskylä, 2006, pp. 185–196.

[44] D.C. Schmidt, Guest editor’s introduction: Model–Driven Engineering, IEEE Computer 39 (2006) 25–31.
[45] M. Schmidt, T. Gloetzner, Constructing difference tools for models using the SiDiff framework, in: International Conference on Software Engineering

Companion’08: Companion of the 30th International Conference on Software Engineering, ACM, 2008, pp. 947–948.
[46] A. Schürr, Specification of graph translators with triple graph grammars, in: WG’94: 20th International Workshop on Graph-Theoretic Concepts in

Computer Science, Springer-Verlag, London, UK, 1995, pp. 151–163.
[47] J. Sprinkle, G. Karsai, A domain-specific visual language for domain model evolution, Journal of Visual Languages and Computing 15 (3–4) (2004)

291–307.
[48] H. Su, D. Kramer, L. Chen, K. Claypool, E.A. Rundensteiner, Xem: managing the evolution of xml documents, in: RIDE’01: 11th International Workshop

on Research Issues in Data Engineering, IEEE Computer Society, 2001, p. 103.
[49] A. A. Terekhov, C. Verhoef, The realities of language conversions, IEEE Software 17 (2000) 111–124.
[50] S. Vermolen, E. Visser, Heterogeneous coupled evolution of software languages, in: MoDELS’08: 11th international conference on Model Driven

Engineering Languages and Systems, Springer-Verlag, 2008, pp. 630–644.
[51] G. Wachsmuth, Metamodel adaptation and model co-adaptation, in: 21st European Conference on Object-Oriented Programming, ECOOP’07,

in: Lecture Notes in Computer Science, vol. 4609, Springer-Verlag, 2007, pp. 600–624.
[52] J. White, J.H. Hill, J. Gray, S. Tambe, A.S. Gokhale, D.C. Schmidt, Improving domain-specific language reuse with software product line techniques, IEEE

Software 26 (2009) 47–53.
[53] J. Whittle, P. Jayaraman, MATA: a tool for aspect-orientedmodeling based on graph transformation, in: H. Giese (Ed.), Models in Software Engineering,

in: Lecture Notes in Computer Science, vol. 5002, Springer, Berlin/Heidelberg, 2008, pp. 16–27.
[54] M. Wimmer, A. Kusel, J. Schönböck, W. Retschitzegger, W. Schwinger, G. Kappel, On using inplace transformations for model co-evolution,

in: Proceedings of the 2nd International Workshop on Model Transformation with ATL (MtATL 2010), INRIA & Ecole des Mines de Nantes, 2010,
14 pages. URL: http://publik.tuwien.ac.at/files/PubDat_187033.pdf.

[55] Z. Xing, E. Stroulia, UMLDiff: an algorithm for object-oriented design differencing, in: ASE’05: 20th IEEE/ACM International Conference on Automated
Software Engineering, ACM, 2005, pp. 54–65.

[56] J. Zhang, J. Gray, A generative approach to model interpreter evolution, in: Object-Oriented Programming, Systems, Languages and Applications
Workshop on Domain-Specific Modeling, 2004, pp. 121–129.

http://publik.tuwien.ac.at/files/PubDat_187033.pdf

	A framework for evolution of modelling languages
	Introduction
	Modelling languages
	Related work
	Model differencing
	Model co-evolution

	Context: Running example
	Evolution of modelling languages
	Syntactic evolution
	Semantic evolution
	Research goal

	Deconstructing evolution
	Deconstructing evolution consequences
	Model evolution
	Image evolution
	Domain evolution
	Transformation evolution

	Evolution scenario amalgamation
	Deconstructing evolution actions

	A framework for modelling language evolution
	Re-constructing evolution
	Running example
	Framework features
	Difference between models
	Evolution of meta-models and co-evolution of instance models
	Evolution of meta-models and co-evolution of related transformation models
	Evolution of other artefacts
	Consistency and continuity

	Algorithm

	Conclusion and future work
	Acknowledgements
	References

