
Electronic Communications of the EASST
Volume X (2010)

Proceedings of the
4th International Workshop on

Multi-Paradigm Modeling
(MPM 2010)

A generic in-place transformation-based approach to structured model
co-evolution

Bart Meyers, Manuel Wimmer, Antonio Cicchetti, and Jonathan Sprinkle

13 pages

Guest Editors: Vasco Amaral, Hans Vangheluwe, Cécile Hardebolle, Lazlo Lengyel
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

A generic in-place transformation-based approach to structured
model co-evolution

Bart Meyers1, Manuel Wimmer2, Antonio Cicchetti3, and Jonathan Sprinkle4

1 University of Antwerp, Belgium
bart.meyers@ua.ac.be

2 Vienna University of Technology, Austria
wimmer@big.tuwien.ac.at

3 Mälardalen University, MRTC, Västerås, Sweden
antonio.cicchetti@mdh.se

4 University of Arizona, United States
sprinkle@ece.arizona.edu

Abstract: In MDE not only models but also metamodels are subject to evolution.
More specifically, they need to be adapted to correct errors, support new and/or
update language features. The direct consequence of such evolutionary steps com-
prises the problem of managing the co-evolution of existing model instances, which
may no longer conform to the new metamodel version. This model migration is
intrinsically complex and results in a time-consuming and error-prone process if no
adequate support is provided. For tackling this problem, we introduce a new tech-
nique to guide the user in solving migration issues in a step-wise manner. The aims
are manifold, notably the simplification of the migration specification, the reduction
of the effort for the evolver, the control of user intervention, and the optimization
of the migration execution itself by allowing in-place adaptation of the existing in-
stances.

Keywords: Metamodel evolution, model co-evolution, in-place transformations

1 Introduction

In Model-Driven Engineering (MDE) not only models but also metamodels are subject to evo-
lution. Especially, when domain-specific modeling languages are employed, the necessity of
language adaptations arise to reflect changes in the modeling domain as well as in technologies
without losing existing models.

Figure 1 illustrates the context of this paper at a glance. Full arrows are transformations,
dashed arrows are conformance relations. After evolution ∆ of a metamodel MML, the goal is to
migrate models m, conform to MML, to m′, conform to MML′ , by creating a suitable migration
M. Thus, (i) dedicated co-evolution languages, like COPE [HBJ09] and (ii) the usage of model-
to-model (M2M) transformation languages [CDEP08] have been proposed to migrate models.
However, this requires to learn a new language in the first case and to employ a heavyweight
technique in the second case. Furthermore, currently there exists no approach which allows the
step-wise migration of models in combination with systematically modeling the evolution, i.e.,
ensuring that the migrated models actually conform to the new metamodel version.

1 / 13 Volume X (2010)

mailto:bart.meyers@ua.ac.be
mailto:wimmer@big.tuwien.ac.at
mailto:antonio.cicchetti@mdh.se
mailto:sprinkle@ece.arizona.edu

The ECEASST Document Class

MML MML'

m m'

Δ

Figure 1: Models m
have to be migrated
when MML evolves.

In this paper, we introduce a new approach to guide the user in
solving co-evolution issues in a structured, step-wise manner. First,
instead of describing the migration of models as a transformation be-
tween two metamodels, we employ existing in-place transformation
languages for this task. As opposed to M2M transformations, in-place
transformations are transformations that change the input model in-
stead of creating an output model from scratch [KMS+09]. For being
able to employ in-place transformations, the prerequisite is to repre-
sent both language versions within one metamodel which is automat-
ically computed by merging MML and MML′ . Second, we distinguish
between syntactic and semantic migration. For syntactic migration,
the goal is to make model instance syntactically conform to the new
version of the metamodel. Syntactic migration is fully automatable and might therefore be the
preferred choice. Often however, some metamodel changes are introduced with a specific pur-
pose, which calls for a particular migration scenario for the instance models. In such cases, we
speak of semantic migration. Semantic migration requires manual adaptation from the evolver.
Third, for dividing-and-conquering the co-evolution process, we formalize metamodel evolu-
tion as a difference model consisting of a sequence of simple difference operations. For each
difference operation or meaningful group of difference operations (defined by the evolver), a mi-
gration is either automatically generated or adapted by the user. By this, the model m evolves to
m′ over intermediate models mi, conform to intermediate metamodels MMi. Fourth, by comput-
ing for each step also a specific merged metamodel to allow the systematic modeling of in-place
transformations and by using a so-called checkout transformation, we can ensure that each mi

conforms to MMi, thus after all steps each migrated model m′ is always conform to the MML′ .
The benefits of this technique are manifold, notably the simplification of the migration speci-

fication by reusing the well-known graph transformation formalism of in-place transformations,
the ability to express every possible evolution and migration by allowing graph transformation
techniques, the reduction of the effort for the user by reusing generically applicable migration
rules, the control of user intervention by automated preventive and corrective mechanisms for
conformance checking in each migration step, and the optimization of the migration execution
itself by allowing in-place adaptation of the existing instances.

The remainder of this paper is structured as follows. Section 2 introduces a co-evolution
scenario in the domain of rail road management which is used as running example throughout the
paper. Section 3 presents our approach by first showing how the deltas between the metamodels
are classified and represented, and second how the migration rules are derived from these deltas.
Related work is discussed in Section 4, and finally, the paper is concluded with an outlook on
future work in Section 5.

2 Example

In order to illustrate our approach, we first introduce an evolution scenario on the RailRoad
domain-specific language. A RailRoad model is shown in Figure 2. The model can be used to
analyze the behavior of trains riding on the modeled railtrack.

Proc. MPM 2010 2 / 13

ECEASST

Figure 2: An example Rail-
Road model.

A RailRoad model consists of track elements, on which trains
can ride. These elements can be either rails, which point to one
other element on the track, or junctions, which point to two dif-
ferent elements on the track. In this example, two trains are riding
on a track with one junction, and one train is not located on the
track. The syntax of the RailRoad language is captured in its
metamodel, shown in Figure 3a. A Train can be located On a
TrainPlace, which can be a Rail or a Split. Rails have one Link to
another TrainPlace, Splits have two. These links are obligatory,
so a RailRoad circuit is always closed.

SplitLink
<<Connection>>

Link
<<Connection>>

TrainPlace
<<Model>>

On
<<Connection>>

Train
<<Atom>>

Split
<<Model>>

Rail
<<Model>>

src
0..1

dst
0..1

dst 0..*

dst
0..*

src 1 src 2

(a) Existing metamodel.

LeftLink
<<Connection>>

Rail
<<Model>>

RailStation
<<Model>>

On
<<Connection>>

Train
<<Atom>>

Junction
<<Model>>

RightLink
<<Connection>>

Link
<<Connection>>

Length
<<Atom>>

Value : field

TrainPlace
<<Model>>src

1

src 1

dst 0..*

dst
0..1

dst 0..*

dst
0..*

src 1

1

src 1

(b) Evolved metamodel.

Figure 3: (a) The existing metamodel, and (b) the evolved metamodel.

Suppose that over time, some changes have been applied to the metamodel. Five requirements
are implemented. For each requirement it is stated how existing models should be migrated:
• Split has been renamed to the more intuitive “Junction.” In the instance models, each exist-

ing Split has to become a Junction;
• Trains must be on a TrainPlace now. In the instance models, Trains that are not located on

a TrainPlace have to be removed;
• a notion of direction is added: instead of two outgoing SplitLinks, a Junction now has a

LeftLink and RightLink direction. In the instance models, the two outgoing links to Train-
Places must be replaced with a LeftLink and RightLink link. The choice of left and right is
made randomly;
• a notion of track length has been added to a Rail. In the instance models, Rails have a length

of 1, the default length;
• a RailStation is introduced as a new kind of Rail. In the instance models, Rails with more

than one incoming Link or SplitLink are interesting places to build a RailStation.

3 / 13 Volume X (2010)

The ECEASST Document Class

The resulting metamodel is shown in Figure 3b1. In the remainder of this paper, this evolution
scenario will be used to illustrate our structured migration approach.

3 Approach

Whenever a change ∆ is operated on a metamodel, a corresponding migration M should be
operated on the existing instances. The creation of migration transformation is closely related to
the changes on the metamodel however. Therefore, this section starts off with an elaboration on
the difference model, which is a structured representation of the changes. Next, the creation of
the migration transformation is presented.

3.1 Difference model

A number of works proposed the classification of metamodel changes with respect to the effects
observable for migration [GKP07, CDEP08]; in particular, the changes could require either no
migrations of the instances (non-breaking operations), or simple migration adaptations (breaking
and resolvable operations), or complex migrations which possibly require user input (breaking
and unresolvable operations). As migration is directly linked to the metamodel changes, the
migration transformation can be created from a difference model representing the evolution of
the metamodel. In turn, the difference model is a sequence of difference operations, each of
which mapping onto a corresponding migration operation, as summarized in Table 1.

Difference operation Migration operation
Non-breaking operations
Generalize metaproperty None
Add non-obligatory metaclass None
Add non-obligatory metaproperty None
Extract superclass None
Breaking and resolvable operations
Eliminate metaclass Eliminate instances
Eliminate metaproperty Eliminate instances
Push metaproperty Eliminate properties from superclass instances
Flatten hierarchy Eliminate superclass instances
Rename metaclass Change instances
Rename metaproperty Change instances
Breaking and unresolvable operations
Add obligatory metaclass Add default instances
Add obligatory metaproperty Add default instances
Pull metaproperty Add default properties for superclass instances
Restrict metaproperty Remove instance if non-compliant

Table 1: Difference operations based on [CDEP08], with their migration operations.

The evolutions listed in Table 1 represent manipulations that typically occur on a given meta-
model, like the addition of a new metaclass (Add non-obligatory metaclass), the deletion of

1 The field attribute for length is a type-safe integer, though this is not shown in the diagram due to the concrete syntax
choices of the GME (Generic Modeling Environment) metamodeling paradigm

Proc. MPM 2010 4 / 13

ECEASST

an existing metaattribute (Eliminate metaproperty), the rename of an element (Rename meta-
class/metaproperty), and so forth. Beside such primitive operations, the table also lists complex
evolutions like Flatten hierarchy (eliminating a superclass and adding all its properties to the
subclasses) or Generalize metaproperty (relaxing the cardinality of a property); in those cases,
the evolution could also be seen as the composition of simple changes, but it reaches its full
meaning when considered as a single adaptation step. For instance, Flatten hierarchy flattens the
metaclasses involved in a generalization relationship by moving all the existing metaattributes
in a selected surviving metaclass and by eliminating all the remaining metaclasses and gener-
alization relationships. Analogously, Pull metaproperty moves a metaproperty from a set of
subclasses to their corresponding superclass. It is important to note that all possible changes to a
metamodel can be represented by the difference operations of Table 1.

If the metamodel contains static semantics, in the form of e.g., OCL constraints [Obj10],
similar operations can be contrived. OCL constraints for instance are conform to a fine-grained
metamodel [RG99]. Therefore, one can reason (thus create operations) about adding, updating
and deleting elements of instances, i.e., constraints, up to the detail of variables, expressions and
values.

The classification proposed above highlights the criticality of the metamodel evolution de-
tection and representation in order to achieve a profitable migration of the existing instances.
Currently, (meta-)model comparison is an active field of research; it is an intrinsically complex
task since it has to deal with graph isomorphisms, i.e., with the problem of finding correspon-
dences between two given graphs. In this paper we assume that the metamodel evolution, i.e., ∆

in Figure 1, is given, as reflecting the developer intentions, in terms of the operations classified
in Table 1: it could be obtained as directly traced from a tool, or encoded by hand. For our
approach, both techniques are applicable.

When the difference operations of Table 1 are used for the change ∆ of the RailRoad example,
this results in the difference model in Table 2, which is a sequence of method calls. The dif-
ference operations are instantiated as method calls, based on the operations of [HBJ09], which
are predefined migration operations that take some parameters as input. When such a method is
executed on the metamodel, the change is applied. Note that operations δ3, δ4 and δ5 represent
the replacement of SplitLink to SplitLeft and SplitRight. Other representations, such as proper
difference languages [CDP07], can be used as well in our approach.

nr. Operation
δ1 RenameMetaElement(Split, “Junction”)
δ2 RestrictMetaProperty(Train.On, 1, 1)
δ3 EliminateMetaProperty(Junction.SplitLink)
δ4 AddNonObligatoryMetaProperty(Junction, TrainPlace, “LeftLink”, 1, 1, 0, -1, False)
δ5 AddNonObligatoryMetaProperty(Junction, TrainPlace, “RightLink”, 1, 1, 0, -1, False)
δ6 AddObligatoryMetaProperty(Rail, “length”, Integer, 1, 1, 1)
δ7 AddNonObligatoryMetaClass(”RailStation”, [Rail], False)

Table 2: The difference model ∆ of the RailRoad evolution.

5 / 13 Volume X (2010)

The ECEASST Document Class

3.2 Migration of Instance Models

In this section it is explained how the instance models are migrated. With our approach, we aim
at a high degree of automation, a high degree of control, and high execution performance. Au-
tomation will reduce the effort for the modeller, thus increase productivity. Control will increase
correctness of the migration process as well as facilitate the migration process for the evolver.
Performance will affect scalability, or the number of instance models that can be migrated in a
given time. The migration process consists of three phases: automated synthesis, manual adap-
tation and execution.

3.2.1 Synthesis

In the first phase, we synthesize migration transformations from difference operations. This is
done automatically, by generating an instance of the default migration transformation for each
difference operation corresponding to Table 1. Note that the default migration transformation can
be None, i.e., the identity transformation. Moreover, despite a metamodel manipulation could
entail multiple migration policies, in general the default one is fixed once for all due to coher-
ence purposes. The left part of Figure 4 shows the evolution ∆ of the RailRoad example, split up
into the seven δi, as shown in Table 2. In this step-wise approach, the metamodel MML evolves
to MML′ , over intermediate metamodels MMi. For each δi, a µi is synthesized by applying the
transformation G. Technically, G is a higher order transformation, because it takes transforma-
tion models instead of instance models as input or output [TJF+09]. The instance model m is
migrated accordingly to m′. In this case, MM7 = MML′ and m7 = m′. The right side shows one
generic migration step, where a metamodel MMi−1 evolves to MMi by applying one difference
operation. mi−1 is migrated accordingly.

MML MML'

δ1 δ2 δ3 δ4 δ5 δ6

m m'
μ1 μ2 μ3 μ4 μ5 μ6

Δ

Μ

G G G G G G

MM1

m1

MM2

m2

MM3

m3

MM4

m4

MM5

m5

δ7

μ7

G

MM6

m6

MMi-1 MMi

δi

m m
μi

g
i

i-1 i

Figure 4: Synthesis of migration transformation µi (left) and one generic migration step (right).

Figure 5 shows an example of the synthesis of the migration operation µ2. The migration
operation is created from difference operation δ2 (shown on top) and the template (shown on
the left). The template for the migration operation for the “restrict metaproperty” difference
operation is shown. The template specifies the default migration behavior: instances that do not
conform to the evolved, more restricted, metamodel are removed. Removal is denoted by the
“X” symbol on the element. The generic template of the migration transformation rule on the
left side is completed with the information provided by the parameters of the difference operation
on the top side. The resulting migration transformation rule on the right side deletes Trains that
do not have exactly one On link. Note that the resulting rule is an in-place transformation rule,

Proc. MPM 2010 6 / 13

ECEASST

MM_1-2::Train
o

G

δ : RestrictMetaProperty(Train.On, 1, 1)

amount = Size(obj.<feature>)
return amount > <upperBound>
 or amount < <lowerBound>

amount = Size(obj.On)
return amount > 1
 or amount < 1

2

MM_<v -v >::<class>i-1 i

obj obj

Template RestrictMetaProperty μ2

Figure 5: Creating a migration transformation µ2 from difference operation δ2 and a transforma-
tion template using merged metamodel MM1,2.

and no model-to-model transformation. The in-place transformation captures only the essence
of the migration problem, lowering the degree of accidental complexity.

In order to allow in-place transformation, the metamodels of the source- and target models
must be the same. In our case, the metamodels MMi−1 and MMi are very similar but not the
same. Therefore, we merge both metamodels into one metamodel MMi−1,i, to which models
mi−1 as well as models mi conform. MMi−1,i can be automatically generated from MMi−1 and
δi, so that MMi−1,i = merge(MMi−1,δi): initially, MMi−1,i = MMi−1. If δi is additive, the change
is applied to MMi−1,i. If δi is subtractive, the to be deleted element is kept in MMi−1,i. If δi is
updative, the updated version is added to MMi−1,i without removing the old version. No matter
what kind of change, the metamodel is “relaxed” so that all possible mi−1 and mi are conform to
MMi−1,i. This is in particular important for obligatory changes, which are made non-obligatory
in the merged metamodel by relaxing the cardinality of the involved associations. Figure 6 shows
the merged metamodel MM5,6 that is used for the migration transformation µ6 that implements
the introduction of the Length attribute. Notice that all changes δ1 to δ5 are already carried
through, as migration step 6 is reached. δ7 is disregarded for now, as this step is not reached
yet. δ6 is an additive change, so the new element, i.e., the Length feature, is added to the merged
metamodel. Additionally, the cardinality is relaxed so that the Length feature is not obligatory.

Length
<<Atom>>

Value : field

RightLink
<<Connection>>

LeftLink
<<Connection>>

Link
<<Connection>>

On
<<Connection>>

Junction
<<Model>>

Rail
<<Model>>

TrainPlace
<<Model>>

Train
<<Atom>>

0..1

src 1

dst
0..*

dst
0..1

src
1

dst 0..*

src 1

dst 0..*

src 1

Figure 6: The merged metamodel
MM5,6 used for µ6.

Once the default migration operation is synthesized
for each δi, the instance models m can be migrated
by executing the sequence of in-place transformations
M = µi ◦µi−1 ◦ ...◦µ2 ◦µ1 of Figure 4. By construction,
the resulting m′ = M(m) will syntactically conform to
MML′ .

3.2.2 Manual adaptation

Technically, the first phase fulfills the requirement for
co-evolution, namely restoring consistency in the con-
formance relation. Syntactic migration is thereby ac-
complished. In the RailRoad evolution, however, there
are also cases of semantic migration. Examples are the
introduction of the notion of direction and the introduc-

7 / 13 Volume X (2010)

The ECEASST Document Class

MML MML'

δ1 δ2 δ3 δ4 δ5 δ7

m m'
μ1 μ2 μ'3,4,5 μ'7

Δ

Μ

MM1 MM2 MM5

m1 m2 m5

G

δ6

μ6

MM6

m6

GG

Figure 7: The step-wise migration after the manual adaptation phase.

tion of the RailStation. Semantic migration is done dur-
ing the manual adaptation phase.

In this phase, each δi and corresponding default µi are one by one presented by the evolver.
For each µi, the evolver can choose from four possible actions:
• keep the default µi. If the evolver is satisfied with the default µi, nothing has to be done

for this step. This action is typically applied for non-breaking or breaking and resolvable
changes;
• edit the default µi. The evolver might be satisfied with the structure of the default µi,

but might wish to alter µi slightly to µ
′
i . This action is typically applied for breaking and

resolvable changes or breaking and unresolvable changes;
• group the current µi with following µi+1. In some cases, a number of difference opera-

tions can be grouped as one conceptual change, requiring one µ
′
S (with S a sequence of

consecutive indices) for two or more difference operations;
• create a tailored migration for the corresponding difference operation. If the evolver has a

migration transformation in mind that is completely different than the default one, he/she
can create his/her own. The action is typically applied for non-breaking (if the evolver
actually wants to migrate instead of doing nothing) or breaking and unresolvable changes.
Note that by first grouping and next creating, the original µi and µi+1 are replaced by one
µ
′
i,i+1 that covers both the migration of δi and δi+1. Also note that so-called model specific

migration can be introduced here, requiring user input at migration time [HBJ09].
Figure 7 shows the result of the RailRoad migration after the manual adaptation phase. µ1, µ2

and µ6 are kept, µ
′
7 is created manually and δ3, δ4 and δ5 have been grouped (introducing the

notion of direction) and µ
′
3,4,5 is created manually.

Figure 8 shows the custom migration transformation µ
′
3,4,5. Two SplitLinks are replaced by a

LeftLink and a RightLink, which covers the migration of the three changes δ3, δ4 and δ5.
A new problem arises when allowing the evolver to manually create migration operations.

After this phase, it cannot be guaranteed anymore that m′ is conform to MM′, as the evolver is
allowed to implement anything he/she wants in the customized migration transformations. In
our framework, we offer a solution to uphold this guarantee by providing maximal control over
the creation of the migration operation, while still offering full expressiveness. This control is
provided by two mechanisms, a preventive mechanism and a corrective mechanism:

• restricted metamodel: as a preventive mechanism, it is only allowed to use language con-
structs of the corresponding difference operation(s) when editing or creating a µ

′
S (with S

Proc. MPM 2010 8 / 13

ECEASST

sl1
RailRoad-original::SplitLink

left
RailRoad-evolved::LeftLink

split
RailRoad-original::Split

tp2
RailRoad-original::TrainPlace

sl2
RailRoad-original::SplitLink

right
RailRoad-evolved::RightLink

tp1
RailRoad-original::TrainPlace

srcLeftLink
0..*

dstSplitLink
0..*

dstLeftLink 0..* dstRightLink 0..*

dstSplitLink
0..*

srcRightLink
0..*

srcSplitLink
0..*

srcSplitLink
0..*

Figure 8: The customized migration transformation µ
′
3,4,5 introducing the notion of direction.

a sequence of one or more consecutive indices, though in many cases this is just one index
x, as suggested in Figure 7). This means that we consider only a part of the total evolution
for this migration, particularly MMmin(S)−1 to MMmax(S) (in the case of |S|= 1 this would
be MMx−1 to MMx), as intended by the step-wise migration. Again, changes of a previous
evolution step δi with i < min(S) are considered carried through, and changes any future
evolution step δ j with j > max(S) are not yet considered at all. For example when creating
µ
′
3,4,5 in Figure 7, the changes δ1 and δ2 are carried through, and changes δ6 and δ7 are

disregarded for now. Only for changes δ3, δ4 and δ5, a migration transformation can be
created. This ensures the modularity of the migration transformations.

Technically, this degree of control is achieved by merging the metamodels MMmin(S)−1
and MMmax(S) into a merged metamodel MMmin(S)−1,max(S). This way, an in-place trans-
formation can be created. Since in this context it is possible that a µ

′
is created for

more than one δ , the merged metamodel can include more than one δ . The merging
algorithm described above can be used recursively. For example if S = (3,4,5) then
MM2,3,4,5 = merge(merge(merge(MM1,δ2),δ3),δ4) is the metamodel used in the µ

′
3,4,5

in-place transformation. MM2,3,4,5 is shown in Figure 9. Notice the cardinality relaxation
of SplitLink, LeftLink and RightLink;

• checkout transformation: as a corrective mechanism, the full conformance is ensured of
the partly migrated instance model to the partly evolved metamodel in the checkout trans-
formation γ . This step is automatically achieved in our approach by applying the default
migration transformations of the difference operations immediately after the customized
migration step, i.e., γi ◦ µ

′
i . After all, the default migration transformation is constructed

so that its output models are syntactically correct. This way, e.g., instances of deleted
metaclasses that are by accident not deleted by the customized migration transformation,
are deleted by the checkout transformation, thereby ensuring conformance to the partly
evolved metamodel. Typically however, the evolver has well-designed his/her customized
migration transformation so that conformance is already ensured. The checkout transfor-
mation is merely a guarantee for conformance in the general case.

9 / 13 Volume X (2010)

The ECEASST Document Class

Junction
<<Model>>

SplitLink
<<Connection>>

RightLink
<<Connection>>

LeftLink
<<Connection>>

Rail
<<Model>>

On
<<Connection>>

Link
<<Connection>>

Train
<<Atom>>

TrainPlace
<<Model>>

src
1

src
0..2

src 0..1

dst
0..1

src 0..1

dst
0..*

dst 0..* dst 0..*

src 1

dst
0..*

Figure 9: The merged metamodel MM2,3,4,5
used for µ

′
3,4,5.

As M is composed of usual transformation mod-
els, it can be simply stored as any other transforma-
tion model. This way, future instance models con-
form to the old version can be migrated at a later
instant.

3.2.3 Execution

At first glance, the execution of the migration suite
M is straightforward. On all instance models m,
M is applied. More specifically a sequence of in-
place transformations, like µi, µ

′
j and γ j, are ap-

plied in the given order. The ad hoc execution is
not optimal however: in order for each of the in-
place transformations to be executed, the instance
model must be converted to that particular merged metamodel of the step. After execution, the
result must be converted to the partly evolved metamodel. For example, a model m5 conform
to MM5, must be converted first to MM5,6. Then, the in-place transformation µ6 can be applied,
and the resulting model must be converted to metamodel MM6. These conversions are trivial: a
simple search/replace script on the data file of the instance model or a trivial transformation that
implements a one-to-one mapping of elements can be automatically generated. However, this can
cripple the execution performance of the migration. In Figure 10, a conversion is needed every
time a different metamodel is used (i.e., a grey vertical line is crossed) throughout the execution
of M. The top of Figure 10 represents the naive execution, requiring many conversions.

As a solution, after creation of migration transformation M, the different metamodels used in
the in-place transformations are relaxed to the merged metamodel that spans all δi in ∆. All pos-
sible instance models throughout all migration steps can be expressed in the resulting metamodel
MM∆. Every in-place transformation’s used metamodel is changed to MM∆. Of course, this has
to be done only once for M instead of for all instance models. With this optimized approach, an
m that needs to be migrated only has to be converted twice: before applying the in-place trans-
formations of M, and after applying the in-place transformations of M. In between, all artefacts
use the same metamodel MM∆, and only in-place transformations are applied. The bottom of
Figure 10 represents the optimized execution. The absence of model-to-model transformations
adds to the execution performance of the migration because after evolution, it is probable that
models only change slightly, if at all. If the evolver is confident in his/her customized migration
transformation, he/she has the option to disable the execution of the checkout transformations,
further improving the execution time of M.
4 Related Work

Co-evolution has been subject for research since the introduction of object-oriented database
systems [BKKK87], consequently a huge amount of approaches dealing with this issue have
been proposed (cf. [Rod92] for a survey). In this section we focus on most closely related
approaches dedicated to reflecting changes of metamodels on models.

Sprinkle et al. [SK04] considered co-evolution of models by using changed semantics to de-

Proc. MPM 2010 10 / 13

ECEASST

m m'
μ1 μ2 μ'3,4,5 μ'7

m1 m2 m5

μ6
m6

γ3 γ4 γ5 γ7
M
M
1

M
M
L

M
M
0,
1

M
M
1,
2

M
M
2

M
M
2,
3,
4,
5

M
M
5

M
M
5,
6

M
M
6

M
M
6,
7

M
M
L
'

m m'
μ1 μ2 μ'3,4,5 μ'7

m1 m2 m5

μ6
m6

γ3 γ4 γ5 γ7

M
M
L

M
M
Δ

M
M
L
'

Figure 10: The naive execution needing a lot of conversions (top) and the optimized execution
needing only two conversions (bottom).

sign co-evolution transformations. This differs from a syntactically driven approach that uses
the metamodel deltas. In that work as well as in [SGM09], the authors proposed that syntactical
co-evolution (where the importance is only to load, but not interpret, the models) is feasible auto-
matically, but it seems to be impractical for semantic evolution. In the general case of semantic
evolution concerns, semantics-preserving transformations must be developed by language en-
gineers manually, based on their understanding of the semantic intent of the original models.
However, for specific cases, semantically-preserving co-evolution transformations are possible.

Garces et al. [GJCB09] proposed a set of heuristics to automatically compute differences be-
tween two metamodel versions in order to adapt models. The computed differences are stored in
a so-called matching model, acting as input for a higher-order transformation (HOT), producing
a migration transformation. Cicchetti et al. [CDEP08] presented a similar approach, i.e., the
approach is again based on a metamodel differences acting as input for a HOT.

In [Wac07], Wachsmuth proposed to combine ideas from object-oriented refactoring and
grammar adaptation to provide the basis for automatic (meta)model evolution. In this respect,
metamodel relations are defined based on M2M transformations, building the basis for the defi-
nition of semantics preservation and instance preservation.

Gruschko et al. [GKP07] tackled co-evolution of models by using M2M transformations by
following a conservative copying algorithm. Conservative copying means that for initial model
elements for which no transformation rule is found a default copy transformation rule is applied.
This algorithm is implemented in model migration framework Flock [RKPP10].

In [NLBK09] the Model Change Language (MCL) is introduced. MCL is declarative and
graphical language supporting a set of co-evolution idioms and conservative copying. Co-
evolution rules going beyond the supported idioms have to be defined in terms of C++ code.

Finally, Herrmannsdoerfer et al. proposed COPE [HBJ09] for specifying the coupled evolu-
tion of metamodels and models. The co-evolution of metamodels and corresponding models is
realized by a set of so-called coupled transactions, composing a whole co-evolution problem of
modular transformations.

Summarizing, the differences between our proposed approach and the above mentioned ap-

11 / 13 Volume X (2010)

The ECEASST Document Class

proaches are twofold. First, we tackle co-evolution of models by employing existing in-place
transformation languages instead of proposing dedicated co-evolution languages or reusing M2M
transformation languages. Second, we refrain from developing the migration transformation for
the whole metamodel evolution process at once. This incremental process is supported by com-
puting intermediate merged metamodels, thus we allow to model the migration of models by
ensuring all metamodel constraints. COPE also provides an incremental process, but in contrast
to our approach, COPE uses a metamodel-independent representation of models. Thus, nothing
can be said about the conformance of models during migration.

5 Conclusion

This paper presented a technique to deal with metamodel evolution and model co-evolution; de-
spite the problem is an active field of research and a number of solutions have been proposed,
several difficulties still demand for being alleviated. In particular, it has been illustrated a mech-
anism based on in-place migrations to reduce the accidental complexity of transformation design
by shifting the focus on single co-evolutionary scenarios, in a step-by-step fashion. The evolver
acts in a controlled environment which is narrowed down by the metamodel merging operation,
which constraints her/his operative power and ensures syntactic consistency. Moreover, thanks
to the in-place co-evolution unaffected instances are left untouched allowing, for example, the
propagation of external links that would be lost after a re-creation of the same model element.

The approach enjoys a high degree of modularity, as relying on small co-evolution steps, which
also results in an enhancement of re-use chances of the developed migration transformations. In
fact, the technique permits to store both the manipulation a metamodel has been subject to and
the corresponding countermeasures to re-establish the well-formedness of existing models.

Future investigations will be devoted to the analysis of the metamodel evolution representation
and default migration transformations in order to further improve the degree of automation and
re-use. In fact, on one hand the evolution representation should abstract from the context it has
been observed; on the other hand, more that one co-evolutionary step could be adopted for the
same metamodel evolution problem. Moreover, the approach will be extended to support the
co-evolution of not only instance models, but also transformation models.

Bibliography

[BKKK87] J. Banerjee, W. Kim, H.-J. Kim, H. F. Korth. Semantics and implementation of
schema evolution in object-oriented databases. SIGMOD Record 16(3):311–322,
1987.

[CDEP08] A. Cicchetti, D. Di Ruscio, R. Eramo, A. Pierantonio. Automating co-evolution in
model-driven engineering. In 12th Int. EDOC Conf. Pp. 222–231. 2008.

[CDP07] A. Cicchetti, D. Di Ruscio, A. Pierantonio. A Metamodel Independent Approach to
Difference Representation. Journal of Object Technology 6(9):165–185, 2007.

Proc. MPM 2010 12 / 13

ECEASST

[GJCB09] K. Garcés, F. Jouault, P. Cointe, J. Bézivin. Managing Model Adaptation by Precise
Detection of Metamodel Changes. In 5th European Conf. on Model Driven Architec-
ture - Foundations and Applications. Pp. 34–49. Springer, 2009.

[GKP07] B. Gruschko, D. Kolovos, R. Paige. Towards synchronizing models with evolving
metamodels. In Int. Workshop on Model-Driven Software Evolution. 2007.

[HBJ09] M. Herrmannsdoerfer, S. Benz, E. Juergens. COPE - Automating Coupled Evolution
of Metamodels and Models. In 23rd ECOOP Conf. Pp. 52–76. Springer, 2009.

[KMS+09] T. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, M. Wimmer. Explicit Transforma-
tion Modeling. In Models in Software Engineering. Pp. 240–255. Springer, 2009.

[NLBK09] A. Narayanan, T. Levendovszky, D. Balasubramanian, G. Karsai. Automatic Do-
main Model Migration to Manage Metamodel Evolution. In Model Driven Engi-
neering Languages and Systems. Pp. 706–711. Springer, 2009.

[Obj10] Object Management Group. Object Constraint Language Version 2.2. 2010.

[RG99] M. Richters, M. Gogolla. A metamodel for OCL. In 2nd Int. Conf. on the Unified
Modeling Language. Pp. 156–171. Springer, 1999.

[RKPP10] L. M. Rose, D. S. Kolovos, R. F. Paige, F. A. C. Polack. Model Migration with
Epsilon Flock. In 3rd Int. Conf. on Theory and Practice of Model Transformations.
Pp. 184–198. Springer, 2010.

[Rod92] J. F. Roddick. Schema Evolution in Database Systems - An Annotated Bibliography.
SIGMOD Record 21(4):35–40, 1992.

[SGM09] J. Sprinkle, J. Gray, M. Mernik. Fundamental Limitations in Domain-Specific Lan-
guage Evolution. Technical report TR-090831, University of Arizona, 2009.

[SK04] J. Sprinkle, G. Karsai. A Domain-Specific Visual Language for Domain Model Evo-
lution. Journal of Visual Languages and Computing 15(3-4):291–307, 2004.

[TJF+09] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, J. Bézivin. On the Use of Higher-Order
Model Transformations. In 5th European Conf. on Model Driven Architecture - Foun-
dations and Applications. Pp. 18–33. Springer, 2009.

[Wac07] G. Wachsmuth. Metamodel adaptation and model co-adaptation. In 21rd European
Conf. on Object-Oriented Programming. Pp. 600–624. Springer, 2007.

13 / 13 Volume X (2010)

	Introduction
	Example
	Approach
	Difference model
	Migration of Instance Models
	Synthesis
	Manual adaptation
	Execution

	Related Work
	Conclusion

