
Towards an Aspect-oriented Language
Module: Aspects for Petri Nets

Tim Molderez ∗ Bart Meyers Dirk Janssens Hans Vangheluwe

Dept. of Mathematics and Computer Science
University of Antwerp
Antwerp, Belgium

{tim.molderez,bart.meyers,dirk.janssens,hans.vangheluwe}@ua.ac.be

Abstract
The concept of composing a (domain-specific) language
from different reusable modules has gained much interest
over the years. The addition of aspect-oriented features to a
language is a suitable candidate of such a module. However,
rather than directly attempting to design an aspect-oriented
language module that is applicable to any base language, this
paper focuses on adding aspect-oriented features to a lan-
guage that is quite different from prevalent base languages
(e.g. Java): Petri nets. A running example demonstrates the
use of aspects to enforce an invariant on a base Petri net.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; I.6.5 [Sim-
ulation and Modelling]: Model Development

General Terms Petri nets, language engineering, aspect-
oriented modelling, language composition

1. Introduction
Creating a new (domain-specific) language, including the
tools, documentation and community that accompany a lan-
guage, is an undeniably large endeavour. To reduce this ef-
fort, there is a growing interest in constructing new lan-
guages by extending existing languages, or by composing
different languages in a modular manner [3, 5, 8, 9]. . Next
to this research area, there also is a large body of work
that present aspect-oriented versions of various different lan-
guages. The combination of these two research areas leads

∗ Funded by a doctoral scholarship of the Research Foundation - Flanders
(FWO)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DSAL ’12 March 27, 2012, Potsdam, Germany.
Copyright c© 2012 ACM 978-1-4503-1128-1/12/03. . . $10.00

to the notion of an “aspect-oriented language module”. In
other words, a module that implements (pointcut-and-advice
flavoured) aspect-oriented features, and is applicable to a
wide range of base languages, if not any1 base language.
However, rather than attempting to cover all base languages
at once, this paper focuses on adding aspect-oriented fea-
tures to just one language: Petri nets. We chose the Petri
nets modelling language as our base language, simply be-
cause it is so different from commonly used base languages
(e.g. Java): Petri nets are non-deterministic and their state is
implicit. In this paper, we are mainly interested in how this
choice of base language affects the design of aspect-oriented
features. Consequently, we present an aspect-oriented exten-
sion to Petri nets and demonstrate its use with an invariant
enforcement example. While designing this aspect-oriented
Petri nets extension, we keep the general idea of an aspect-
oriented language module in mind. This is done by dividing
the extension itself into a number of components, such that
the extension is no longer specific to Petri nets at this level
of abstraction.

The remainder of this paper is structured as follows:
Sec. 2 introduces the paper’s running example. Sec. 3 then
elaborates on this example while the various components
of the aspect-oriented extension to Petri nets are discussed.
An alternative view on the example’s semantics, where it
is mapped to a Petri net with guarded transitions, is briefly
examined in Sec. 4. Sec. 5 presents related work and Sec. 6
concludes the paper.

2. Invariant enforcement example
We will use a running example throughout this paper to
demonstrate the use of our aspect-oriented Petri net exten-
sion. The “base Petri net”, i.e. the Petri net without any as-
pects, for this example is shown in Fig. 1. The places within
the dotted rectangle (P5-P8) represent a number of rooms
within a building. All places outside this rectangle (P1-P4)

1 If the notion of a join point is extended to include static points in a model,
base languages can be made aspect-oriented even if they do not describe
behaviour.

represent the outside world. The transitions going in and out
of the rectangle represent the building’s various entrances
(T1,T3) and exits (T2,T4). The goal of this example is to en-
force an invariant: Only a certain number of people (tokens)
may be inside the building at the same time. If more people
were to enter the building, this could, for example, violate
the building’s fire safety regulations. To prevent this from
happening, the following sections will use aspects to mon-
itor the building’s entrances and exits. While the Petri net
shown in the figure is quite small, the same aspects also ap-
ply to more complex cases, where the building consists of
many more rooms, entrances and exits. The only assump-
tion that we make is that the places and transitions inside the
building do not produce any additional tokens, nor remove
any tokens.

The aspects enforcing the invariant are shown in Fig. 2
and Fig. 3. The first aspect, called VisitorCounter, keeps
track of how many people are currently inside the build-
ing. It contains two pointcut-advice pairs: The pair called
increaseOnEnter increases the Counter place whenever
someone passes through an entrance. That is, its pointcut
captures all occurrences of transitions annotated with an
�enter� stereotype. While our pointcuts make use of these
stereotypes, note that stereotypes are not strictly necessary.
We could have also explicitly listed the names of the transi-
tions that should be matched by the pointcut. However, the
use of stereotypes makes the pointcuts easier to understand
and less dependent on concrete transition names, therefore
reducing the impact of the fragile pointcut problem. This
is based on Noguera et al. [7], which uses Java annotations
within AspectJ pointcuts.

As expected, the decreaseOnExit pointcut-advice pair
will decrease the Counter place whenever someone leaves
the building, i.e. an �exit� transition is fired.

The second aspect, WaitingLine, will enforce the in-
variant that only a certain number of people, say 30, may
be in the building at the same time. This aspect is depen-
dent on the VisitorCounter aspect, as it needs access to its
Counter place. The moveToWaitingLine pointcut-advice
pair acts whenever the building is full and someone tries to
enter. That person will then be redirected to a waiting line,
represented by the WaitHere place. There is such a waiting
line for each entrance. If someone in the waiting line tries to
enter the building while it still is full, the preventEntrance
pair will prevent that person from entering. To make sure
that the Counter place is only increased if the building is
not full, the declare precedence statement expresses that
the pointcuts in the WaitingLine aspect have precedence
over those in VisitorCounter. We will elaborate on the
semantics of these aspects over the course of the following
sections.

Figure 1: Base Petri net

Figure 2: VisitorCounter aspect

Figure 3: WaitingLine aspect

3. Overview of the aspect-oriented extension
To establish aspect-oriented Petri nets as an extension to
Petri nets, there are a number of different components to
be determined: the base language (Petri nets), a weaver,
join point model, pointcut language, advice language and
a composition mechanism. Note that, at this level, none of
these components are specific to Petri nets; they may as well
be applied to another base language. The graph in Fig. 4
shows the dependencies between the different components
at a high level.

Figure 4: Dependencies between the language components

3.1 Weaver
The core component of the extension is the weaver, which
manages most communication between the other compo-
nents. It roughly performs the following steps:

1. During execution, whenever a join point (as determined
by the join point model) is reached, normal Petri net
execution is paused and control is passed to the weaver.

2. Given the current state and the current join point, the
weaver tests all pointcuts to find the ones that match.

3. Given the pointcuts that match, the composition mecha-
nism determines the right order in which the correspond-
ing advice should be inserted.

4. Each advice now is inserted into the basic Petri net to
create an extended Petri net. This is done in the order
determined by the composition mechanism.

5. Petri net execution resumes.

These steps are clearly not aimed at performance, as all ad-
vice insertion and pointcut checking is done as late as pos-
sible. Keeping the general-purpose aspect-oriented language
module in mind, this weaver aims to be simple and allow the
other components to be as expressive as needed. Mainly de-
pending on the pointcut language’s available constructs, the
weaver can be optimized for performance, such that weaving
can happen earlier while the semantics of aspects remain the
same. Additionally, the above steps can be easily adjusted to
another base language: We just need to be able to pause exe-
cution at each join point to hand control over to the weaver,
which then modifies the model/program in execution accord-
ing to its aspects and finally resumes execution.

3.2 Joinpoint model
In general, any point in time during a model/program exe-
cution could be considered an element of a language’s join
point model. Because it is possible to generate execution
traces for any language that defines behaviour, we are con-
fident that a meaningful join point model can be defined for
any such language as well. In case of Petri nets, we have
chosen our join point model to consist of all run-time occur-
rences of transitions. That is, advice can be executed when-
ever a transition is about to fire. We have chosen this partic-

ular join point model, because it is not affected by the non-
deterministic nature of Petri nets: Whenever a Petri net exe-
cution arrives at a particular join point, it has not just deter-
mined which transitions can be fired (i.e. which transitions
are enabled); it has also chosen which transition(s) will be
fired. Therefore, it is clear which behaviour will be extended
or replaced whenever an advice is applied.

3.3 Pointcut language
After choosing a join point model, we can create the lan-
guage used to describe pointcuts. In general, a pointcut de-
scribes a set of join points. Alternatively, a pointcut can
also be seen as a boolean function in terms of a join point,
and any other contextual information. If this function is
true for a particular join point, the pointcut matches. The
pointcut language that we have chosen for aspect-oriented
Petri nets is minimal: Our pointcuts are boolean expres-
sions that can make use of two constructs: transition

and tokens. An example of the transition construct is
shown in Fig. 2: transition(�enter�). This construct
is true if the current join point, being an occurrence of
a transition, corresponds to one of the parameters in the
transition construct. In this example, the parameter in-
dicates all transitions with the �enter� stereotype. It is of
course also possible to pass in concrete transition names as
parameters, or to make use of wildcards. Note that the tran-
sition construct does not make use of a join point’s dynamic
nature, as the mapping to join point shadows, i.e. transi-
tions (not occurrences of transitions), is trivial. Pointcuts do
get more interesting when combined with the tokens con-
struct. This construct is used to reason about the amount
of tokens in a certain place. We have used it in the point-
cuts of the WaitingLine aspect in Fig. 3. For example,
tokens(VisitorCounter.Counter)==30 is true if there
are 30 tokens in the Counter place of the VisitorCounter
aspect.

3.4 Advice language
If a pointcut matches in a pointcut-advice pair, the corre-
sponding advice should be inserted into the base Petri net,
resulting in an augmented Petri net. In our extension, an ad-
vice looks like a regular Petri net, but is extended with a
few different constructs. First, there are special stereotypes
for places that are used to specify how the input and output
places of a join point should be bound to an advice. This is
similar to the notion of ports in CPN tools’ [1] hierarchical
Petri nets. These bindings are discussed in Sec. 3.4.1. Sec-
ond, transitions can also carry a �proc� stereotype, indicat-
ing a proceed transition, similar in concept to proceed calls.
Proceed transitions are covered in Sec. 3.4.2. Finally, places
can be shared among advice by means of introductions (also
known as inter-type declarations in AspectJ), introduced in
Sec. 3.4.3.

Figure 5: Weaving an advice into the base Petri net

3.4.1 Input and output place binding
Looking at the advice of increaseOnEnter in Fig. 2, the
�in1� and �out1� stereotypes instruct how this advice must
be bound to the input and output places of a transition. In this
case, the transition(�enter�) pointcut always matches
whenever a transition with an stereotype �enter� is about
to be fired. Note that these �enter� transitions always have
one input and one output place. When applying our advice,
the effect we want to achieve is that we want to intercept the
firing of an �enter� transition and replace it with an ad-
vice execution. To be able to do this, we need to bind the
intercepted �enter� transition’s input place to the advice’s
�in1� place. Similarly, the output place should be bound to
the �out1� place. Note that the number of input and out-
put places of the intercepted transition must match with the
�inN� and �outN� stereotypes in the advice. For example,
if the �enter� transition in the base net would have two
input places, our advice must also have an �in2� place.
Otherwise, the advice cannot be applied, which implies that
the pointcut does not match. In this sense, the �inN� and
�outN� stereotypes also form a part of the pointcut lan-
guage. Additionally, if an advice can be applied and there
are multiple input or output places to be bound, the choice
of which input/output place must bind to which �inN� /
�outN� place is currently left non-deterministic. This could
be resolved quite easily by extending the pointcut language
with constraints on input/output places, such that they can
be distinguished if needed. However, we won’t go into any
further details as our example is not confronted with such sit-
uations; all of its transitions have one input and one output
place.

After introducing the �inN� and �outN� stereotypes ,
inserting an advice into a base Petri net is performed as
follows: Suppose that increaseOnEnter’s pointcut just
matched on transition T1 in the base Petri net and we wish
to insert the corresponding advice. We will also assume that
only one advice matched on this join point, in which case
the proceed transition (with a �proc� stereotype) simply
acts as a normal transition. (Shared join points are discussed
in Sec. 3.4.2.)

To insert increaseOnEnter’s advice, a new instance of
the advice is created and added to the base Petri net. This

is shown in step 1 of Fig. 5. (Only the relevant part of the
base Petri net is shown.) This advice instance is created such
that the �out1� place is bound to the join point’s output
place, P5. Note that this binding is permanent. The input
place’s binding only holds for an instant however: The effect
that we want to achieve is, instead of firing T1, we want
to fire the transition attached to the advice’s �in1� place.
To accomplish this effect, we temporarily remove T1 and
bind the input place, i.e. �in1� is bound to P1. This only
lasts until we have fired. This situation is shown as step 2 in
Fig. 5. Once this is done, T1 is added to the net again and
�in1� is no longer bound and, as of now, is nothing but a
regular (empty) place. At this point, we have a normal Petri
net once more, meaning that advice insertion has completed
and regular Petri net execution can continue. This resulting
Petri net is shown as step 3 in Fig. 5.

The reason that the input place’s binding is removed
as soon as the advice initially fired, is because our advice
insertion should only intercept one single join point, i.e. one
occurence of a transition. If the binding remained, the advice
would of course interfere with subsequent occurences of that
transition. On the other hand, the output place binding is
permanent because we wish to preserve non-determinism:
We do not enforce the advice to finish its execution (i.e. to
continue firing transitions in the advice as long as possible)
before execution of the base Petri net can resume. As the
resulting Petri net is a normal Petri net, it is allowed that
transitions from the base net are fired even though the advice
has not finished its execution yet. To allow the result of the
advice execution to be passed to the base net, binding of
output places is permanent.

Related to this discussion is the reason why we create a
new advice instance for every matching joinpoint. This de-
sign choice was made as well to preserve Petri nets’ non-
deterministic nature. Because it is possible that the �inN�

and �outN� bindings are different for two join points, even
if the two join points are different occurrences of the same
transition, the same instance may not be reusable across dif-
ferent join points. An example of such a situation can occur
due to the advice composition changing when that transition
is fired again later. While we could allow for instance reuse,
this again requires that we sacrifice non-determinism and en-
force that advice transitions have a higher priority than all
other transitions. We did not choose this path, as the result
of advice insertion would no longer be a simple Petri net,
but a prioritised Petri net, which would mean that the base
language is being modified. The main disadvantage of creat-
ing a new instance for each matching join point is of course
that the augmented Petri net easily grows in size. However,
this can be heavily optimized: For example, if �outN� places
only have incoming edges, then an advice instance can be
safely removed as soon as no more enabled transitions are
found within the instance. Such an instance can only pro-
duce output to the base net, and if no transitions are en-

abled, nothing can be produced and therefore the instance
can be removed without altering the augmented Petri net’s
behaviour.

3.4.2 Proceed transitions
As mentioned earlier, a transition with a �proc� stereo-
type indicates a proceed transition. Similar to AspectJ, an
advice usually contains one proceed transition, but it may
contain none or multiple of them as well. If there are mul-
tiple advice at the same join point, the proceed transitions
indicate where the next advice in the aspect composition
must be woven. In order to make this possible a proceed
transition must also be compatible with the number of input
and output places of the join point that was intercepted. For
example, if a pointcut captures transitions with one input
and one output place, a proceed transition must (at least)
have one input and one output place as well. (In case am-
biguities arise, this can be resolved by adding stereotypes
to map the input and output places of the proceed transi-
tion.) Our invariant enforcement example also includes an
instance where join points can be shared by multiple point-
cuts: Once the building is at full capacity, i.e. Counter con-
tains 30 tokens, then the pointcuts of moveToWaitingLine,
preventEntrance and increaseOnEnter will match.
As determined by the composition mechanism, the ad-
vice of moveToWaitingLine is inserted first. Immediately
after this insertion, the preventEntrance advice is in-
serted into the proceed transition of moveToWaitingLine.
(The insertion process for proceed transitions is similar,
except that both �inN� and �outN� bindings are perma-
nent.) If the preventEntrance advice would contain a pro-
ceed transition, increaseOnEnter would be inserted. The
preventEntrance advice however consciously does not
contain a proceed transition, as its purpose is to prevent en-
trance to the building and to prevent the number of tokens in
the Counter from increasing.

3.4.3 Introductions
To be able to share information between different advice
instances, introductions can be used. This is used in the
VisitorCounter aspect in Fig. 2 to make the Counter

place global. The introduce singleton: Counter state-
ment in the aspect declares that there only is one instance of
Counter, shared among all advice instances in VisitorCounter.
That is, if there is a place named Counter in the advice, that
place will be bound to the actual Counter instance when-
ever an advice instance needs to be inserted. If there are mul-
tiple instances of increaseOnEnter or decreaseOnExit,
the Counter place will also get several incoming and out-
going edges.

The WaitingLine aspect in Fig. 3 makes use of introduc-
tions as well. Rather than introducing a global place, it intro-
duces WaitHere places with the introduce perTransition

statement. This statement declares that a WaitHere place
will be created for each transition corresponding to the

Figure 6: All aspects woven into the base Petri net

join points that matched. In other words, all advice that
matched on the same join point shadow will share the same
WaitHere place. In the context of our example, a WaitHere
place is thus created for all entrances to the building, as
moveToWaitingLine’s pointcut looks for �enter� transi-
tions.

3.5 Composition mechanism
The final component of the aspect-oriented Petri net exten-
sion is the composition mechanism. The mechanism that we
use works quite similar to AspectJ’s, by means of a declare
precedence statement, as shown in the WaitingLine as-
pect of Fig. 3. It is however slightly more fine-grained, as
the composition order is defined at the level of pointcuts in-
stead of aspects. This level of granularity is needed for our
example, as people should be redirected to a WaitHere place
before preventing access to the building, in case it is at full
capacity. In other words, moveToWaitingLine should al-
ways be executed before preventEntrance. Additionally,
these two must be executed before increaseOnEnter as
well; otherwise the Counter place could increase even if
this is not allowed.

4. Mapping to Petri nets with guarded
transitions

An alternate view on the aspect-oriented Petri net semantics
is shown Fig. 6. This view is more suited to understand what
our entire example may look like if all advice already are
woven into the base Petri net before execution, as a prepro-
cessing step. This results in one large Petri net that is, for
the most part, a normal Petri net, but is extended with resid-
ual logic. This is similar to an AspectJ program being com-
piled to a Java program where all advice are inlined together
with some residual logic to be able to determine at run-time
whether an aspect should be applied at a particular join point
shadow or not. In Fig. 6, the residual logic is reflected in

certain transitions having guard expressions. For example,
consider the VisitorCounter.decreaseOnExit advice,
which has been applied to the T2 �exit� transition. Because
this advice always applies to all exits, T2 has a [false]

guard expression, such that it can never fire. Instead, the
advice’s transition (has the Counter place as input) gets a
[true] expression, such that the advice is always executed
instead of T2.

Applying advice to the entrances is a little more in-
volved, because there are multiple advice on these join
point shadows. Because there always is at least one ad-
vice applied to entrances, the T1 transition is disabled with
a [false] guard. In case the building is not full, mean-
ing that the Counter place does not contain 30 tokens,
then only the VisitorCounter.increaseOnEnter ad-
vice should be executed. In case there are 30 tokens in
Counter, the [tokens(Counter)==30] guarded expres-
sion is true and the WaitingLine.moveToWaitingLine

advice is executed. Within this advice, the proceed transi-
tion is refined into three options. If no other advice share
join points with the moveToWaitingLine advice, the pro-
ceed transition is just a normal transition. In our exam-
ple, this never occurs because increaseOnEnter always
applies, hence the [false] guard. If the building is full,
preventEntrance blocks the entrance. This is indicated by
the lack of a transition for this case. In case there is room,
the [tokens(Counter)!=30] guard is true and executes
increaseOnEnter.

5. Related work
In terms of related work, the closest to our aspect-oriented
Petri nets extension is the work presented in Xu et al. [10],
where aspects are used in Petri nets to implement threat mit-
igations in security design. The join point model of their
aspect-oriented extension however is a static one, consisting
of places and transitions rather than transition occurences.
Such a join point model is arguably not entirely aspect-
oriented, as join points are commonly considered as dynamic
points in aspect-oriented languages. As a result, the weaving
process is implemented as a preprocessing step without any
residual logic. While easier to understand, our interests lie
more in exploring how characteristic aspect-oriented con-
structs carry over to different base languages. The feature-
oriented Petri nets extension in Muschevechi et al. [6] is
used to model software product lines. Its extension to Petri
nets adds transitions that are guarded (also called applica-
tion conditions) by which features are selected in a software
product line. The approach is only tested for small examples,
so it is currently unclear how the approach scales to larger
systems, especially when crosscutting features are involved.
It may be worthwhile to use aspect-oriented techniques to
support featured-oriented concepts, as this has been done be-
fore at the level of programming languages in Apel et al. [2].
Finally, there also is a close connection between our work

and hierarchical Petri nets [4], as the use of aspects auto-
matically introduces a notion of modularity and reuse. Our
aspect-oriented Petri nets compare to hierarchical Petri nets
in a similar manner as AspectJ’s advice executions compare
to Java method calls. Whereas in hierarchical Petri nets it is
indicated explicitly which transitions will be substituted for
a subnet, this becomes implicit for aspect-oriented Petri nets,
as it implements the inversion of control principle.

Whereas a Java method call is explicit, an advice is ex-
ecuted implicitly, i.e. it implements the inversion of control
principle.

The main difference of course is that aspects implement
inversion of control, whereas hierarchical Petri nets are ex-
plicit. Additionally, introductions make it possible to share
information between aspects, and with the base net.

6. Conclusion and future work
This paper has presented an aspect-oriented extension to
Petri nets, as an initial step to an aspect-oriented language
module. The Petri nets language was chosen because it dis-
tinguished itself from a common base language through its
non-determinism and implicit state. The running example
has shown an interesting use for aspect-oriented Petri nets:
Aspects can be used to enforce invariants in a compact and
modular manner. The resulting Petri net may then be used
for further analysis. One interesting direction of future work
however is to study how our addition of aspects affects its
use for analysis. For example, if a base Petri net is shown
to be free of deadlocks, what happens if an aspect is added?
Which characteristics should this aspect have in order to pre-
serve this desired property? Additionally, because Petri nets
are such a small language compared to the average program-
ming language, Aspect-oriented Petri nets may also be an
interesting use case to study the interactions among aspects,
and between aspects and the base system. Another direction
of future work is more towards the general-purpose aspect-
oriented language module: A variety of other types of base
languages can be extended with aspect-oriented features in
order to form a more precise idea of what it means for a lan-
guage to be aspect-oriented, and what this language module
may look like. It may as well be interesting to weaken the
notion of a join point to include static locations in models,
such that even languages that do not define behaviour can
have an aspect-oriented extension.

References
[1] CPN tools. http://cpntools.org.

[2] Sven Apel, Thomas Leich, Marko Rosenmüller, and Gunter
Saake. FeatureC++: on the symbiosis of Feature-Oriented and
Aspect-Oriented programming. In Generative Programming
and Component Engineering, volume 3676, pages 125–140.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[3] S. Dmitriev. Language oriented programming: The next pro-
gramming paradigm. JetBrains onBoard, 1(2), 2004.

[4] P. Huber, K. Jensen, and R. Shapiro. Hierarchies in coloured
petri nets. Advances in Petri Nets 1990, page 313–341, 1991.

[5] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Mon-
tiCore: modular development of textual domain specific lan-
guages. In Richard F. Paige and Bertrand Meyer, editors, Ob-
jects, Components, Models and Patterns, volume 11, pages
297–315. Springer Berlin Heidelberg, Berlin, Heidelberg.

[6] R. Muschevici, D. Clarke, and J. Proenca. Feature petri nets.
In Proceedings of the 14th International Software Product
Line Conference (SPLC 2010), volume 2, 2010.

[7] Carlos Noguera, Andy Kellens, Dirk Deridder, and Theo
D’Hondt. Tackling pointcut fragility with dynamic annota-
tions. In Proceedings of the 7th Workshop on Reflection, AOP
and Meta-Data for Software Evolution, RAM-SE ’10, page
1:1–1:6, New York, NY, USA, 2010. ACM.

[8] Charles Simonyi, Magnus Christerson, and Shane Clifford.
Intentional software. In Proceedings of the 21st annual
ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, OOPSLA ’06, page
451–464, New York, NY, USA, 2006. ACM.

[9] Markus Völter and Eelco Visser. Language extension and
composition with language workbenches. In Proceedings
of the ACM international conference companion on Object
oriented programming systems languages and applications
companion, SPLASH ’10, page 301–304, New York, NY,
USA, 2010. ACM.

[10] D. Xu and K. E Nygard. Threat-driven modeling and verifica-
tion of secure software using aspect-oriented petri nets. IEEE
Transactions on Software Engineering, 32(4):265– 278, April
2006.

	Introduction
	Invariant enforcement example
	Overview of the aspect-oriented extension
	Weaver
	Joinpoint model
	Pointcut language
	Advice language
	Input and output place binding
	Proceed transitions
	Introductions

	Composition mechanism

	Mapping to Petri nets with guarded transitions
	Related work
	Conclusion and future work

