
Towards Domain-Specific Property Languages:
The ProMoBox Approach

Bart Meyers

Modeling, Simulation and
Design Lab (MSDL)

University of Antwerp
Antwerp, Belgium

bart.meyers@uantwerp.be

Manuel Wimmer

Business Informatics Group (BIG)
Vienna University of Technology,

Vienna, Austria

wimmer@big.tuwien.ac.at

Hans Vangheluwe

Modeling, Simulation and
Design Lab (MSDL)

University of Antwerp
Antwerp, Belgium

McGill University, Montréal, Canada

hans.vangheluwe@uantwerp.be
hv@cs.mcgill.ca

Abstract

Domain-specific modeling (DSM) is one major building
block of model-driven engineering. By moving from the so-
lution space to the problem space, systems are designed by
domain experts. The benefits of DSM are not unique to the
design of systems, the specification and verification of de-
sired properties of the designed systems by the help of DSM
seems the next logical step. However, this latter aspect is
often neglected by DSM approaches or only supported by
translating design models to formal representations on which
temporal properties are defined and evaluated. Obviously,
this transition to the solution space is in contradiction with
DSM.

To shift the specification and verification tasks to the
DSM level, we extend traditional Domain-Specific Modeling
Languages (DSMLs) for design with ProMoBox, a language
family comprising three DSMLs covering design, property
specification, and verification results. By using ProMoBox,
temporal properties can be described for finite-state systems
and verified by the SPIN model checker, by compiling them
to Promela and Linear Temporal Logic (LTL). For specifying
properties we present a DSML that is based on Dwyer’s
specification patterns and mash it up with adapted versions
of the design DSML to formulate structural patterns. In
particular, we show that a ProMoBox can be generated from
a single root meta-model and we demonstrate our approach
with a ProMoBox for statecharts.

Categories and Subject Descriptors D.2.1 [Software
Engineering]: Requirements/Specifications—languages, me-
thodologies, tools; D.2.4 [Software Engineering]: Software/-
Program Verification—model checking; D.2.13 [Software
Engineering]: Reusable Software—domain engineering; I.6.5
[Simulation and Modeling]: Model Validation and Analy-

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

DSM ’13, October 27, 2013, Indianapolis, Indiana, USA.
Copyright c© 2013 ACM 978-1-4503-2600-1/13/10. . . $15.00.
http://dx.doi.org/10.1145/2541928.2541936

sis; I.6.5 [Simulation and Modeling]: Model Development—
Modeling methodologies

Keywords ProMoBox; Domain-Specific Modeling; Lan-
guage Engineering; Statecharts; Linear Temporal Logic;
Spin; Model Checking

1. Introduction

Domain-specific modeling (DSM) is one major building
block of model-driven engineering (MDE) [8]. By provid-
ing languages that are specific to the problem space and
no longer to the solution space, systems are designable by
domain experts while model transformations are taking care
of achieving the transition to the solution space. Although,
most DSM approaches focus on generating efficiently and
effectively production code from high-level models, the ben-
efits of DSM are not unique to the design task. In similar
ways, other engineering tasks may benefit from DSM. In par-
ticular, the specification and verification of desired temporal
properties for the designed systems is becoming more and
more important to develop high-quality systems in general
and in particular in MDE [7]. Thus, supporting these tasks
by DSM seems the next important step to provide a holistic
DSM experience to domain engineers. However, specifying
and verifying properties is often neglected by current DSM
approaches or only supported by translating system models
to representations executable by model checkers on which
temporal properties are defined and analyzed. Obviously,
this transition to the solution space is in contradiction with
DSM. The need to raise the level of abstraction for spec-
ification and verification tasks is also stressed by a recent
publication by Visser et al. [24] on how to successfully apply
model checking. The authors stress that the effective ap-
plication of model checking requires that the input/output
models that are consumed/produced by a model checker
should be hidden from domain engineers.

To shift the specification and verification tasks to the
DSM level, we propose ProMoBox for generating and oper-
ationalizing a family of domain-specific modeling languages
(DSMLs) for a given DSML, covering not only design mod-
eling as supported by traditional DSMLs, but also property
specification and verification results representation. Prop-
erty languages generated by ProMoBox are specifically tai-
lored to ease the development of temporal patterns as well as
structural patterns needed to describe the desired properties

of the system’s design by domain engineers in the DSML’s
concrete syntax. Furthermore, to allow to formulate tem-
poral properties at a high-level of abstraction, we formal-
ize Dwyer’s specification patterns [4] for defining temporal
patterns as a DSML. With the help of this DSML, domain
engineers are able to express temporal properties for finite
state verification such as absence, existence, or universality.
To ease the development of structural patterns to be checked
on snapshots of the system’s execution states, we propose an
automated technique based on [16, 23] that is able to pro-
duce a specialized language from a given DSML tailored to
express structural patterns. The language for defining struc-
tural patterns is inspired by PaMoMo [10, 11], a language
for defining structural patterns on models supporting several
pattern kinds such as enabling, positive, and negative pat-
terns. Finally, we introduce the possibility to define quanti-
fiers for temporal properties to express complex properties in
a more concise manner, e.g., every element of a certain type
has to fulfill a certain property. Properties expressed in Pro-
MoBox generated languages are automatically translatable
to Promela and Linear Temporal Logic (LTL) and checked
by SPIN [12]. By this approach, the modeler is shielded from
the complexity of formal representations, because not only
the system’s design is given as a domain-specific model, but
also the properties as well as the verification results. The lat-
ter are produced in a form that allows to replay the counter-
example computed by SPIN on the DSM level if a property
is violated.

We demonstrate ProMoBox for statecharts and show
based on an elevator example how properties are defined
and verification results are represented. Note that the cur-
rent focus of ProMoBox is on partially ordered finite state
transition systems. Integrating the notion of time in Pro-
MoBox to support the specification of real-time properties,
or supporting continuous-value systems, is left as subject to
future work.

The rest of the paper is structured as follows. Section 2
gives an overview on the state-of-the-art of property lan-
guages used in MDE and motivates our approach. In Sec-
tion 3, we introduce the running example for the subsequent
sections. Section 4 introduces our approach ProMoBox. Sec-
tion 5 shows for the running example how properties can be
specified and verified by a generated ProMoBox for state-
charts. Finally, Section 6 concludes this paper with an out-
look on future work.

2. Related Work

With respect to the contribution of this paper, we distin-
guish three threads of related work. First, we consider ap-
proaches that translate models to formal representations to
specify and verify properties that are created specifically
for one modeling language. Second, we discuss approaches
that have a more general view on providing specification
and verification support for modeling languages. Third, we
shortly elaborate on approaches that have inspired our con-
crete transformation from statecharts to Promela.

Specific Solutions. In the last decade, a plethora of
language specific approaches have been presented to de-
fine properties and verification results for different kind of
design-oriented languages. For instance, Cimatti et al. [2]
have proposed to verify component-based systems by us-
ing scenarios specified as Message Sequence Charts. Li et
al. [18] also apply Message Sequence Charts for specifying
scenarios for verifying concurrent systems. The CHARMY
approach [20] offers amongst other features, verification sup-

port for architectural models described in UML. Collabo-
ration and sequence diagrams have been applied to check
the behavior of systems described in terms of state ma-
chines [1, 14, 22]. Rivera et al. [21] map the operational
semantics of DSMLs to Maude, and thus, benefit from an-
alyzing methods provided out-of-the-box of Maude environ-
ments such as checking of temporal properties specified in
LTL.

These mentioned approaches are just a few examples that
aim at specifying temporal properties for models and veri-
fying them by model checkers. However, these approaches
offer language-specific property languages or LTL proper-
ties have to be defined directly on the formal representation.
Thus, these approaches are not aiming to support DSMLs
designers in the task of building domain-specific property
languages.

Generic Solutions. There are some approaches that
aim to shift the specification and verification tasks to the
model level in a more generalized manner. First of all, there
are approaches that use an extended version of OCL, called
Temporal OCL (TOCL) [26], for defining temporal proper-
ties on models. As OCL can be used in combination with
any modeling language, TOCL can be seen as a generic
model-based property language as well. In [3, 25] the au-
thors discuss and apply a pattern to extend modeling lan-
guages with events, traces, and further runtime concepts to
represent the state of a model’s execution and to use TOCL
for defining properties that are verified by mapping the sys-
tem models as well as the properties expressed in TOCL to
formal domains that provide verification support. In addi-
tion, not only the input for model checkers is automatically
produced, but also the output, i.e., the verification results,
is translated back to the model level. The authors explain
the choice of using TOCL to be able to express properties at
the business domain level, because TOCL is close to OCL
and should be therefore familiar to domain engineers. How-
ever, they also state that early feedback of applying their
approach has shown that TOCL is still not well suited to
many domain engineers and they state in future work that
more tailored languages may be of help for the domain engi-
neers. The work of this paper goes directly in this direction.
We are employing specification patterns to ease the develop-
ment of temporal patterns and we allow to model structural
patterns as model fragments using the notation of the mod-
eling language. Thus, the domain engineers are able to use
the notation they are familiar with for defining properties
and exploring the verification results.

Another approach that aims to define temporal proper-
ties on the model level in a generic way is presented in [13].
The authors extend a language for defining structural pat-
terns based on Story Diagrams [6] to allow for modeling
temporal patterns as well. The resulting language allows to
define conditionally timed scenarios stating the partial order
of structural patterns. They authors argue that their lan-
guage is more accessible for domain engineers, because their
language allow to decompose more complex temporal prop-
erties into smaller ones by if-then-else decomposition and
quantification over free variables is possible. Their approach
is tailored to engineers that are familiar to work with UML
class diagrams and UML object diagrams as their notation
is heavily based on the concepts of these two languages.
Furthermore, they explain how the specification patterns of
Dwyer et al. [4] are encoded in their language, but there is
no language-inherent support to explicitly model these pat-
terns. In this work, we tackle these two issues in the context

of DSM, namely to explicitly model the specification pat-
terns instead of encoding them in a more general language
as well as to allow to reuse the notation of the domain en-
gineers even for specifying the temporal properties.

Formalization of statecharts in SPIN. There exists
a huge body of knowledge about giving semantics to state-
charts by mapping to SPIN, e.g., [1, 17, 19, 22] to name just
a few. In this paper, we follow the existing work on how to
map statecharts to SPIN in order to end up with efficiently
analyzable specifications.

3. Motivating Example

This section introduces a running example, namely an eleva-
tor that will subsequently illustrate our approach. The sys-
tem is implemented as a statechart shown in Fig. 1. Transi-
tions are triggered by events and/or guards (in square brack-
ets) that take the currently active state into account. The
system we aim to verify is an elevator with three floors. As
usual, the elevator has three buttons in its cabin, for request-
ing to go to each floor. Additionally, on each floor there are
buttons to request going up or down, but on the bottom/top
floor there is no button to request to go down/up. Button
presses are implemented as events, and are handled by an or-
thogonal component for each button. In these components
the state for requesting a floor becomes active if the but-
ton is pressed and if the lift does not have its doors open
(i.e., idle) at that floor. When the lift opens its door at
a requested floor, associated requests are voided. The in-
ternal controller of the elevator is represented by the El-
evatorState composite state, containing three orthogonal
components denoting the elevator’s position, activity and di-
rection. The elevator can change floors if it is moving and
goes up or down. The behaviour for activity and direction is
modeled as follows:
• guard [i2m]: the elevator starts moving when there is a

floor request that is not for the current floor, modeled
by the guard;

• guard [m2i]: the elevator stops moving when it is at a
floor for which there was a request in the cabin, or when
there was a request outside the cabin to go in the same
direction the elevator was going;

• guards [u2d] and [d2u]: the elevator changes direction
when there is no request following the direction the
elevator is heading, but there is a request in the opposite
direction.

Note that this model is verbose and not easily scalable, e.g.,
if an additional floor is added. We argue that such a model
can be automatically generated from a DSML for elevators,
which is exactly what we intend to do in further research,
where we want to pull up the ProMoBox further to higher
abstraction levels.

For this system, we want to be able to verify the following
requirements:
• ReachesFloor : when a request for any floor is made, the

elevator eventually opens its doors at that floor;
• SkipFloorOnce: when a request for any floor is made, the

elevator opens its doors at the latest the second time it
passes that floor.

It is clear that it cannot be immediately concluded whether
the system satisfies these requirements by just looking at
Fig. 1. The requirements and a possible counter-example
should be modeled and visualized as properties at the correct
level of abstraction (i.e., statecharts).

floor1 floor2

ElevatorState

idle moving up down

[moving && up] [moving && up]

[moving && down] [moving && down]

i2m = (go0 or up0) and not floor0
 or (go1 or up1 or down1) and not floor1
 or (go2 or down2) and not floor2

u2d = floor2 and (go1 or up1 or down1 or go0 or up0)
 or floor1 and not (go2 or down2) and (go0 or up0)

d2u = floor0 and (go1 or up1 or down1 or go2 or down2)
 or floor1 and not (go0 or up0) and (go2 or down2)

m2i = floor0 and go0
 or floor0 and up0 and up
 or floor1 and go1
 or floor1 and up1 and up
 or floor1 and down1 and down
 or floor2 and go2
 or floor2 and down2 and down

[i2m]

[m2i]

[u2d]

[d2u]

up0 [idle && floor0]

pressup0 [!(idle && floor0)]

relup0

up1 [idle && floor1]

pressup1 [!(idle && floor1)]

relup1

down2 [idle && floor2]

pressdown2 [!(idle && floor2)]

reldown2

down1 [idle && floor1]

pressdown1 [!(idle && floor1)]

reldown1 go2

[idle &
&

 floor2]

press2 [!(idle &
&

 floor2)]

relgo2

go1

[idle &
&

 floor1]

press1 [!(idle &
&

 floo1)]

relgo1

go0

[idle &
&

 floor0]

press0 [!(idle &
&

 floor0)]

relgo0

floor0

Elevator

B0 B1 B2

Bup0

Bup1

Bdown1

Bdown2

Position

Direction Activity

Figure 1. The Elevator Statechart Model.

ReachesFloorScenario : StatechartsProMoBox

SPIN

Elevator :
Statecharts_Design

ReachesFloor :
Statecharts_Properties

elevator_states :
Statecharts_Snapshot

Elevator.pml ReachesFloor.ltl

Elevator.trail

Trace

m
2

t

1

m
2

t

t2
m

1

2

2

Figure 2. The ProMoBox Approach at a Glance.

4. The ProMoBox Approach

In this section, we present and motivate the ProMoBox ap-
proach. A ProMoBox is a language box that allows a modeler
to design the system, specify properties, and visualize traces
of possible counter-examples for failing properties. The con-
tribution of this paper can be split up into two parts: the
introduction of the ProMoBox and the automatic support
for generating such a ProMoBox from a given meta-model.
After giving an architectural overview in the following, we
introduce the Property Language and Snapshot Language
that will form, together with the Design Language, the Pro-
MoBox. Finally we present how to generate a such a Pro-
MoBox.

4.1 Overview

The Statecharts ProMoBox, and its translation to Promela
models as well as the translation of traces back from SPIN to

StatechartsMMpackage Data[]

State

+name : String
+is_default : Boolean = false
<<runtime>>+is_active : Boolean = false

Transition

+trigger : String
+guard : String

Composite Orthogonal

Container

HistoryBasic

*

*

*

*

Figure 3. The Statechart Meta-model.

statecharts, is presented in Fig. 2. An architectural overview
is given of the scenario where the ReachesFloor property is
verified on the elevator model. A ProMoBox (the grey box
on top) consists of three languages, the Design Language,
the Properties Language and the Snapshot Language. The
Design Language allows the modeler to design the system
in the traditional way. The Properties Language allows the
modeler to define properties over the designed system by
using a combination of quantifiers, temporal patterns and
structural patterns on the model’s state. The Snapshot Lan-
guage allows to visualize a run-time state of the system, thus
allowing an execution trace to be visualized as a sequence of
snapshots. A key aspect of the ProMoBox is that the con-
crete syntax of these languages is as close as possible to the
modeling language, so that the modeler can optimally use
them.

The design model is transformed by a model-to-text
transformation to Promela code. To this end, we used an
extension of the algorithm introduced by Latella et al. [17].
We extended this translation in two ways. Firstly, we gen-
erate print statements that print out system states, system
events and input events. We will use these later to gener-
ate traces. Secondly, we added the notion of an environment
that automatically generates input events. These event gen-
erators are implemented the same way as orthogonal regions,
and it is made sure that every event has an equal occurrence
probability, which can be influenced by a compiler flag for
“slowing down” the generation of events. Two modes exist
for the transformation: one generates a process type for each
orthogonal region, and one introduces determinism by in-
cluding all orthogonal regions in a single process type, thus
achieving verification speed-ups.

A property is transformed to an LTL formula. This pro-
cess is presented more in detail below. The SPIN tool is
used to verify the low-level Promela model using the LTL
formula. If the Promela code satisfies the property, the mod-
eler is “just” notified with a message. In case of finding a
counter-example, a SPIN trail file is used that contains the
steps that were followed to obtain the counter-example. Con-
sequently, the Promela code is executed following the steps
of trail file, and as a side-effect, all states, system events and
input events are printed out. The resulting trace can be fil-
tered per type of state/event. The trace that was produced
when executing the counter-example is filtered for system
states, which are converted to a sequence of models in the
Snapshot Language. These can be displayed by automati-
cally transforming the design model to a snapshot model
(thus maintaining the model layout the modeler is famil-
iar with, while adding run-time information) and showing
system states step-by-step.

4.2 The Languages of the ProMoBox

As mentioned before, all three languages of the ProMoBox
should be familiar to the modeler. Consequently, the ab-

Figure 4. The Meta-model of the Statechart Property Lan-
guage.

stract and concrete syntax is re-used when possible. We
therefore start with one root meta-model of the statecharts
language, shown in Fig. 3. This meta-model comprises more
than just the Design Language, as it also contains language
constructs for expressing the dynamic state of the model as
also proposed by dynamic metamodeling approaches [5]. The
parts of a meta-model that are dynamic are annotated with
the «runtime» stereotype. In the case of the statecharts
language, the is_active attribute would not be present in
the static Design Language. On the contrary, the Snapshot
Language includes all «runtime» constructs, as its purpose
is visualizing the dynamic state of the model. The concrete
syntaxes of the Design Language and the Snapshot Lan-
guage are very similar. An instance of the Statechart Design
Language is shown in Fig. 1, whereas a Snapshot instance
looks the same, but can have certain states flagged as active,
which is showed by coloring the state grey.

Property Languages are built out of four components as
shown in Fig. 4. These are discussed below.

[A] the quantification of the formula by (i) forAll
or exists clause(s), and (ii) corresponding structural pat-
tern(s). The modeler can choose to model a property for all
elements that match the associated structural pattern. This
structural pattern is evaluated on the static model (i.e., in
the case of statecharts, without the is_active attribute).
Consequently, the property must be satisfied for all, or for
one (depending on the quantifier) match(es) of the structural
pattern. The resulting matches can be re-used as bound vari-
ables in the property. The quantification is statically com-
piled to Promela and-/or-conjuctions of temporal patterns,

taking the design model into account. Quantification pat-
terns can be nested, or can contain a temporal pattern.

[B] the temporal pattern, based on Dwyer’s specifi-
cation patterns [4]. The temporal pattern allows the user to
specify a pattern over a given scope, e.g., “the absence of P,
after the occurrence of Q”, or “P is responded by S, between
occurrences of Q and R” (with proposition variables P, S, Q
and R). Over 90% of the properties that were investigated by
Dwyer et al. can be expressed in this simple framework [4].
Temporal patterns are compiled to Promela LTL formulas
according to [4], with empty spots for proposition values.
Up to four proposition variables of the temporal patterns
are expressed as structural patterns, that represent patterns
on one snapshot of the system.

[C] the structural pattern, based on PaMoMo [11], for
both static (when attached to a quantification) as well as dy-
namic (when attached to a temporal pattern) models. Using
a structural pattern, a query can be defined on a model,
in case of a static pattern returning all bound variables in
found matches, and in case of a dynamic pattern returning
true if at least one match is found or false when no match is
found. In our current approach, we use an ad-hoc matching
algorithm, but we intend to re-use the matching algorithm
presented in [23]. Only a small part of PaMoMo’s expressive-
ness is displayed in Fig. 4, but this suffices for defining most
properties. Of course, the meta-model can be extended with
additional language constructs. A StructuralPattern, and
a ModelElement can hold a condition, which returns true by
default and is in our current approach modeled as a string. A
model element serves as the superclass for pattern elements,
that are specific to the modeling language. Structural pat-
terns are compiled to Promela boolean expressions.

[D] the pattern elements, based on the RAM process.
The elements of a structural pattern are based on the root
meta-model but need to be changed in several ways in
order to allow the modeler to specify patterns that are
match in model fragments. A similar problem exists when
constructing a pattern language for creating a meta-model
for transformation rules, and is formalized by the RAM
process [16, 23]. In this process, all classes are subclasses
of ModelElement and have a label (for binding variables)
and a condition, attribute types are now conditions, no
more classes are abstract classes, and all lower bounds of
association multiplicities are set to 0. Pattern elements are
compiled to their corresponding Promela variable names,
which can be used in the Promela boolean expression of the
structural pattern.

Note that only component D depends on (and can be au-
tomatically generated from) the meta-model of the design
language, while components A, B and C are generic. Conse-
quently, our approach is applicable to other meta-modelled
languages.

4.3 Generating a ProMoBox

The three languages in the ProMoBox are automatically
generated from a root meta-model like the one shown in
Fig. 3. The generation of the Design Language is done by
taking the root meta-model and removing all language con-
structs that are flagged «runtime». The generation of the
Snapshot Language is done by taking the root meta-model
and keeping all constructs, but simply removing the «run-
time» flags. Generating the Properties Language requires
merging the generic properties template (parts A, B and C
in Fig. 4) with a language for structural patterns (part D in
Figure 4) that is based on the root meta-model. Using the

name=='Position'

Existence [Scope]

 after

 or or

ReachesFloor

name=='idle'
floor

name=='go'+
floor.name[5:]

name=='up'+
floor.name[5:]

name=='down'+
floor.name[5:]

floor

Figure 5. The ReachesFloor Property: when a request for
any floor is made, the elevator eventually opens its doors at
that floor.

RAM process [23], the meta-model of Fig. 3 can be auto-
matically transformed to a pattern meta-model (part D in
Fig. 4).

Our approach is realized in the tool AToM3, which al-
lowed us to specify transformations on meta-models and
model-to-text transformations. It is provided on our website
at http://msdl.cs.mcgill.ca/people/bart/promobox. We
consider this work to be a prelude to the more specific case
of generating a ProMoBox for any DSML meta-model, in-
cluding its translation to a semantic domain such as the stat-
echarts ProMoBox presented here. In that way, the modeler
can design and verify systems at an even more appropriate
level of abstraction, while, as in traditional DSML engineer-
ing, only one root meta-model and a semantic mapping has
to be modeled.

5. The Statechart ProMoBox

In this section, the statecharts ProMoBox is applied for
the motivating example. The ReachesFloor property is ex-
pressed in the Property Language in Fig. 5. The concrete
syntax is a combination of a generic syntax for properties,
and re-used syntax of the statecharts DSML. The Reach-
esFloor property contains a forAll quantifier (on the left
side), with an associated structural pattern, visualized by
the leftmost grey box. This static pattern binds all states
to the variable name floor, that are inside an orthogonal
region named Position (modeled as a constraint over the
name attribute). Thus, the property will be evaluated“for all
floors”, and in the case of the Fig. 1 model, floor0, floor1
and floor2 will be bound one after the other, yielding three
LTL formulas, concatenated by an and-clause. On the right
side, the temporal pattern is shown. We will verify the “ex-
istence” of the lift being at that floor (represented by the
bound floor state being active - colored grey), and its doors
being open (represented by the idle state being active), af-
ter one of the buttons for that floor is pressed (represented
by the states goN, upN or downN being active, where N is
the same number as the bound floor state’s name ending
number). Note that in the case where floor0 is bound, no
down0 state exists, and that or-option will be automatically
discarded. Similarly, there is no “up”-option for floor2.

Next to this visual concrete syntax, we built an alter-
native user interface for defining properties in the form of
a wizard menu, where one can select the desired temporal
pattern, and structural patterns are still modeled explicity.

The LTL formula for the ReachesFloor property con-
tains of 31 operators and 20 proposition variables, and nests
brackets up to 7 levels deep. The SkipFloorOnce property
even results in a formula of 107 operators and 82 propo-
sition variables, and brackets depth of 11. Clearly writing
or maintaining such a LTL formula is unpractical. Verifying

whether the model shown in Fig. 1 satisfies the ReachesFloor
or SkipFloorOnce property with a maximum search depth of
10000 (which is sufficient to explore the full state space), is
done within minutes.

6. Conclusions and Future Work

In this paper we have presented ProMoBox to generate a
family of languages for a given DSML to allow domain engi-
neers to specify and verify properties on the DSM level. With
the support of the family of languages and model transfor-
mations, domain engineers specify properties that are veri-
fiable by current model checkers with the help of Property
Languages. Furthermore, the result of the verification, i.e.,
the counter-example in case a property is violated, is re-
viewed/replayed on the DSM level. With a case study of
modeling an elevator system in terms of statecharts we have
demonstrated how properties can be defined on this level of
abstraction and translated them to Promela and LTL for
verification in SPIN. The model checker results, most inter-
estingly the counter-examples in case properties are not ful-
filled, are used to animate the trace by a snapshot sequence
language on the DSM level.

While in this paper we have presented an important
step towards ProMoBoxes, there are several open issues for
future work. First, our plan is to go one step higher in
the abstraction level, e.g., providing an elevator DSML on
top of statecharts, and reuse the current framework as an
intermediate layer to provide model checking possibilities for
several DSML that fit their semantics on state/transition
systems. Second, in our current ProMoBoxes, we have no
means to specify real-time properties. This problem may be
tackled in a similar way as we did it for partial order state
properties, namely to make use of documented patterns for
the real-time property domain [9, 15] and formulate them as
DSML.

7. Acknowledgments

This work has been partially funded by Research Foundation
Flanders under grant FWO-K219913N, Vienna Science and
Technology Fund (WWTF) under grant ICT10-018, and
Austrian Research Promotion Agency (FFG) under grant
832160.

References
[1] P. Brosch, U. Egly, S. Gabmeyer, G. Kappel, M. Seidl,

H. Tompits, M. Widl, and M. Wimmer. Towards Scenario-
Based Testing of UML Diagrams. In TAP, pages 149–155,
2012.

[2] A. Cimatti, S. Mover, and S. Tonetta. Proving and Explain-
ing the Unfeasibility of Message Sequence Charts for Hybrid
Systems. In FMCAD’11, pages 54–52, 2011.

[3] B. Combemale, X. Crégut, and M. Pantel. A Design Pattern
to Build Executable DSMLs and Associated V&V Tools. In
APSEC, pages 282–287, 2012.

[4] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns
in Property Specifications for Finite-State Verification. In
ICSE, pages 411–420, 1999.

[5] G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer. Dy-
namic Meta Modeling: A Graphical Approach to the Opera-
tional Semantics of Behavioral Diagrams in UML. In UML,
pages 323–337, 2000.

[6] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story
Diagrams: A New Graph Rewrite Language Based on the
Unified Modeling Language and Java. In TAGT’98, pages
296–309, 2000.

[7] R. France and B. Rumpe. Model-driven development of
complex software: A research roadmap. In FOSE’07, pages
37–54, 2007.

[8] J. Gray, J.-P. Tolvanen, S. Kelly, A. Gokhale, S. Neema, and
J. Sprinkle. Domain-specific modeling. Handbook of Dynamic
System Modeling, 2007.

[9] V. Gruhn and R. Laue. Patterns for timed property specifi-
cations. ENTCS, 153(2):117–133, 2006.

[10] E. Guerra, J. de Lara, D. S. Kolovos, and R. F. Paige. A
Visual Specification Language for Model-to-Model Transfor-
mations. In VL/HCC, pages 119–126, 2010.

[11] E. Guerra, J. de Lara, M. Wimmer, G. Kappel, A. Kusel,
W. Retschitzegger, J. Schönböck, and W. Schwinger. Auto-
mated verification of model transformations based on visual
contracts. ASE, 20(1):5–46, 2013.

[12] G. J. Holzmann. The Model Checker SPIN. TSE, 23(5):279–
295, 1997.

[13] F. Klein and H. Giese. Joint structural and temporal prop-
erty specification using timed story scenario diagrams. In
FASE’07, pages 185–199, 2007.

[14] A. Knapp and J. Wuttke. Model checking of UML 2.0
interactions. In MoDELS’06, pages 42–51, 2006.

[15] S. Konrad and B. H. C. Cheng. Real-time specification
patterns. In ICSE’05, pages 372–381, 2005.

[16] T. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, and
M. Wimmer. Explicit transformation modeling. In MoD-
ELS Workshops, pages 240–255, 2009.

[17] D. Latella, I. Majzik, and M. Massink. Automatic Veri-
fication of a Behavioural Subset of UML Statechart Dia-
grams Using the SPIN Model-checker. Formal Asp. Comput.,
11(6):637–664, 1999.

[18] X. Li, J. Hu, L. Bu, J. Zhao, and G. Zheng. Consistency
Checking of Concurrent Models for Scenario-Based Specifi-
cations. In SDL’05, pages 1171–1180. 2005.

[19] J. Lilius and I. P. Paltor. vUML: A Tool for Verifying UML
Models. In ASE’99, 1999.

[20] P. Pelliccione, P. Inverardi, and H. Muccini. CHARMY: A
Framework for Designing and Verifying Architectural Speci-
fications. TSE, 35(3):325–346, 2008.

[21] J. E. Rivera, E. Guerra, J. de Lara, and A. Vallecillo. Ana-
lyzing Rule-Based Behavioral Semantics of Visual Modeling
Languages with Maude. In SLE, pages 54–73, 2008.

[22] T. Schäfer, A. Knapp, and S. Merz. Model Checking UML
State Machines and Collaborations. ENTCS, 55(3):357–369,
2001.

[23] E. Syriani. A Multi-Paradigm Foundation for Model Trans-
formation Language Engineering. PhD thesis, McGill Uni-
versity Montreal, Canada, 2011.

[24] W. Visser, M. Dwyer, and M. Whalen. The hidden models of
model checking. Software and Systems Modeling, 11(4):541–
555, 2012.

[25] F. Zalila, X. Crégut, and M. Pantel. Leveraging Formal
Verification Tools for DSML Users: A Process Modeling Case
Study. In ISoLA, pages 329–343, 2012.

[26] P. Ziemann and M. Gogolla. OCL Extended with Temporal
Logic. In Ershov Memorial Conference, pages 351–357, 2003.

