
ProMoBox: A Framework for Generating
Domain-Specific Property Languages

Bart Meyers1, Romuald Deshayes2, Levi Lucio3, Eugene Syriani4,
Hans Vangheluwe1,3, and Manuel Wimmer5

1 Modeling, Simulation and Design Lab (MSDL), University of Antwerp, Belgium
bart.meyers@uantwerp.be, hans.vangheluwe@uantwerp.be

2 Institut d’Informatique, Universit de Mons, Mons, Belgium
romuald.deshayes@umons.ac.be

3 Modeling, Simulation and Design Lab (MSDL), McGill University, Canada
levi@cs.mcgill.ca, hv@cs.mcgill.ca

4 Software Engineering Research Group (SERG), University of Alabama, United States
esyriani@cs.ua.edu

5 Business Informatics Group (BIG), Vienna University of Technology, Austria
wimmer@big.tuwien.ac.at

Abstract. Specifying and verifying properties of the modelled system has been
mostly neglected by domain-specific modelling (DSM) approaches. At best, this
is only partially supported by translating models to formal representations on
which properties are specified and evaluated based on logic-based formalisms,
such as linear temporal logic. This contradicts the DSM philosophy as domain
experts are usually not familiar with the logics space. To overcome this short-
coming, we propose to shift property specification and verification tasks up to
the domain-specific level. The ProMoBox framework consists of (i) generic lan-
guages for modelling properties and representing verification results, (ii) a fully
automated method to specialize and integrate these generic languages to a given
DSM language, and (iii) a verification backbone based model checking directly
plug-able to DSM environments. In its current state, ProMoBox offers the de-
signer modelling support for defining temporal properties, and for visualizing
verification results, all based on a given DSM language. We report results of ap-
plying ProMoBox to a case study of an elevator controller.

1 Introduction
Domain-specific modelling (DSM) advocates that, providing languages that are specific
to the problem space rather than to the solution space, systems are designable by domain
experts while model transformations are taking care of achieving the transition to the
solution space [1]. An essential activity in DSM is the specification and verification of
properties to ensure the high quality of the designed systems [2]. Thus, supporting these
tasks by DSM is necessary to provide a holistic DSM experience to domain engineers.
However, specifying and verifying properties of systems has been mostly neglected
by DSM approaches. At best, this is only partially supported by translating models
to formal representations on which properties are specified and evaluated with logic-
based formalisms [3], such as Linear Temporal Logic (LTL). This contradicts the DSM
philosophy as domain experts are usually not familiar with temporal logic. The need

to raise the level of abstraction for specification and verification tasks is also recently
raised in [4]. The authors emphasize that domain engineers should be shielded from the
underlying verification technologies. In this sense, DSM includes not only the design
of the system-under-study, but also the properties themselves, the representation of the
run-time state of a system, the behaviour of the environment, and a visualisation of a
counter-example, all at the domain-specific level. In the spirit of DSM, they should each
be defined in their own domain-specific modelling language (DSML).

To overcome this shortcoming, we propose to shift property specification and ver-
ification tasks up to the DSM level, resulting in the generation and execution of Pro-
MoBox. The contribution of the ProMoBox framework consists of (i) generic languages
for modelling all artefacts that are needed for specifying and verifying temporal proper-
ties with the expressive power of LTL, (ii) a fully automated method to specialise and
integrate these generic languages to a given DSML, and (iii) a verification backbone
based on model checking with LTL that is directly plug-able to DSM environments.

In the following section, we introduce the running example of an elevator controller.
Section 3 introduces our approach ProMoBox from a language engineering point of
view and explains how properties are defined and verified based on a model check-
ing backbone. Section 4 is dedicated to implementation and evaluation of ProMoBox.
Section 5 elaborates on assumptions that are made in the current state of the approach
while discussing the limitations of the approach. In Section 6 we discuss related work
and conclude in Section 7.

2 Running Example

Our running example is an elevator controller modeled by a graphical DSL. This DSL
enables modelling a building with floors, elevators and buttons, and defines the step-
wise behaviour of this model.

Elevator

doors_open : boolean
going_up : boolean

Button

pressed : boolean

ElevatorButton FloorButton

DownButtonUpButton

Floor

nr : int

requests* 1

elevator_button

1

*

currentfloor

*

1

next
0..1

0..1

Fig. 1. The meta-model E of the Elevator DSL (top left), an instance e of the Elevator DSL
representing an elevator that serves three floors (top right), and the transformation model E[[.]]

that schedules all the operational rules (bottom).

The left of Fig. 1 shows the meta-model which we will denote by E. Buttons can
request an Elevator to go to a particular Floor. Floors are ordered by the next association
and a derived attribute nr representing the Floor number. An Elevator is at exactly one
Floor, modelled by the currentfloor association. An ElevatorButton is a button inside
an Elevator, requesting a certain Floor. At every floor, there can be an UpButton to
request to go up and a DownButton to request to go down. An Elevator can have its
doors open (it cannot move) and has a direction (up or down).

The top right of Fig. 1 shows an instance e with three floors, one elevator and seven
buttons, depicting the concrete syntax. Pressed buttons are annotated with red dots, and
are connected to the floor they request. At the top floor a button is pressed by someone
who requested to go down, and inside the elevator the button to go to floor 2 has been
pressed. The elevator is currently at the bottom level.

The bottom of Fig. 1 shows the transformation model E[[.]] of the operational se-
mantics. The model shows how different rules are scheduled. Rounded rectangles refer
to a set of rules where at most one is randomly chosen to be applied. Execution starts at
the left rectangle. Grey arrows annotated with “no match” are followed when none of
the rules in the source rectangle can be applied, green arrows annotated with “success”
are followed when a rule was applied. Inspired from a realistic elevator controller, the
rules implement how the elevator changes floors (one at a time), and opens and closes
its door to serve the requests of users (modelled as pressed buttons). The elevator passes
all floors that are requested on its path (which is either up or down), and opens its door
when the elevator’s direction corresponds to the requested direction. Pressed buttons are
turned off (released) when the door opens at a requested floor and the elevator goes in
that direction. When a request for a floor is made for a different floor than the elevator’s
current floor, the doors close and the elevator starts moving. The elevator only changes
its direction when there are no more requests on its path. Note that, if the elevator is at
a lower floor, it can pass by a floor where one has requested to go down without stop-
ping, as the elevator is going in the opposite direction. The rules are not shown in Fig. 1
because of space constraint, but later in the paper, one of the rules is shown in Fig. 7.

When designing the elevator software system, we would like to verify the Reaches-
Floor property: whenever a request for any floor is made, the elevator will eventually
open its doors at the latest the second time it passes by that floor.

3 The ProMoBox

Based on preliminary ideas outlined in our previous work [5, 6], the ProMoBox frame-
work consists of the following three parts.

Generic languages for modelling all artefacts that are needed for specifying and
verifying properties. For a given DSML, ProMoBox defines a family of five sub-languag-
es [5] that are required to modularly support property verification, covering (i) design
modelling as supported by traditional DSMLs, (ii) run-time state representation, (iii)
event-based input modelling (to model the behaviour of an environment), (iv) state-
based output representation (to model an execution trace of the system or verification
results), and (v) property specification. Property languages generated by ProMoBox are
specifically tailored to ease the development of temporal patterns as well as structural

patterns needed to describe the desired properties of the system’s design by domain
engineers in the DSML’s concrete syntax. To allow to formulate temporal properties at
a high-level of abstraction, we formalise Dwyer’s specification patterns [7] for defin-
ing temporal patterns as a DSML. With the help of this DSML, domain engineers are
able to express temporal properties for finite state verification such as absence, exis-
tence, or universality. To ease the development of structural patterns to be checked on
snapshots of the system’s execution states, we propose an automated technique based
on [8, 9] that is able to produce a specialised language from a given DSML tailored to
express structural patterns. The language for defining structural patterns is inspired by
PaMoMo [10, 11], a language supporting several pattern kinds such as enabling, posi-
tive, and negative patterns. Finally, we introduce the possibility to define quantifiers for
temporal properties to express complex properties in a more concise manner, e.g., every
element of a certain type has to fulfil a certain property.

A fully automated method to specialise and integrate these generic languages to
a given DSML. We extend meta-modelling and model transformation languages with
annotations, to add necessary information for every language construct and semantic
step. This additional information enables the fully automatic generation of the five sub-
languages and necessary transformations between the sub-languages, thus minimising
the effort of the language engineer. Because of their generative definition, consistency
between the languages and their models is guaranteed by construction. We use tem-
plates that describe the generic part of each language, and that are subsequently woven
with the DSML. By using templates, we allow the ProMoBox framework to be config-
urable for different types of DSMLs.

A verification backbone based model checking directly plug-able to DSM envi-
ronments. Properties in ProMoBox are translated to LTL and a Promela system is gen-
erated that includes a translation of the system, the environment, and the rule-based
operational semantics of the system. The properties are checked by SPIN [12]. The
verification results (in case of a counter-example) are translated back to the DSM level.

The ProMoBox approach is illustrated in Fig. 2 using the elevator example presented
in Section 2. When using the ProMoBox approach, only the grey models in Fig. 2 need
to be modelled by hand, the white models are generated. This is done in two parts:
first, we define how meta-models can be annotated (E′ in Fig. 2) and how the five
sub-languages (i.e., the design, run-time, input, output and properties languages) are
generated (upper part of Fig. 2). Second, we define how mappings are generated that
allow a given property to be verified on a given system, and how the results can be
visualised in a domain specific way (steps 1 to 5 of Fig. 2).

3.1 The Annotated Meta-Model

The abstract syntax of the sub-languages is generated from the annotated meta-model
that provides additional information on which parts are static (never change at run-
time), dynamic (change at run-time) and which parts can be input into the system.

First, we present a formal definition of a meta-model. The complete formalisation
can be found in [5]. We defineΣ as the alphabet of all possible names. For simplicity, all
class, association, and attribute names are globally unique and are from here on referred

Fig. 2. Property verification with ProMoBox and SPIN.

to as the classes, associations or attributes themselves. A meta-model is defined by:
M = (C,D,A, α, ι, P, π), (1)

with
C ⊆ Σ the set of all classes,
D ⊆ C the set of all abstract classes,
A ⊆ Σ the set of all associations,
α : A→ C × C the association mapping, a total function,
ι : C × C the set of inheritance relations,
P ⊆ Σ the set of all attributes,
π : P → C the attribute mapping, a total function.

ι+ is the set of relations of ι under transitive closure. This means that x, y, z ∈
C | (x, y) ∈ ι+ ∧ (y, z) ∈ ι+ =⇒ (x, z) ∈ ι+, and specifically, x ∈ C =⇒ (x, x) ∈
ι+. Note that attributes are considered to be nothing more than names. Their types are
abstracted away from because of space constraints and they are not essential to explain
the approach. Similarly, cardinalities of associations are not modelled in this definition.

All incoming associations defined by inheritance in∗ : C → P(A) are the set of
incoming associations of the class or its parents:

in∗(c) =
{
a ∈ A | ∃x, y ∈ C,α(a) = (x, y) ∧ (c, y) ∈ ι+

}
All outgoing associations defined by inheritance out∗ : C → P(A) are the set of

outgoing associations of the class or its parents:
out∗(c) =

{
a ∈ A | ∃x, y ∈ C,α(a) = (x, y) ∧ (c, x) ∈ ι+

}

Button

<<rt>> <<ev>>pressed : boolean

Elevator

<<rt>>doors_open : boolean
<<rt>>going_up : boolean

ElevatorButton FloorButton

DownButtonUpButton

Floor

nr : int

requests* 1

elevator_button

1

*

currentfloor<<rt>>

*

1

next
0..1

0..1

Fig. 3. The annotated metamodel E′.

All classes defined by inheritance that have an attribute π∗ : P → P(C) are the
property-containing class and its subclasses:

π∗(p) =
{
c ∈ C | ∃x ∈ C, π(p) = x ∧ (c, x) ∈ ι+

}
For example, the meta-model E in Fig. 1 can be described as:

Me = (Ce, De, Ae, αe, ιe, Pe, πe),

where
Ce = {Elevator, F loor,Button,ElevatorButton, F loorButton,

UpButton,DownButton}
De = {Button, F loorButton}
Ae = {currentfloor, requests, elevator button}

αe(a) =

(Elevator, F loor) if a = currentfloor

(Button, F loor) if a = requests

(Elevator, ElevatorButton) if a = elevator button

ιe = {(ElevatorButton,Button), (FloorButton,Button),
(UpButton, F loorButton), (DownButton, F loorButton)}

Pe = {nr, doors open, going up, pressed}

πe(p) =

Floor if p = nr

Elevator if p ∈ {doors open, going up}
Button if p = pressed

An annotated meta-model is an extension of a meta-model as defined in Formula 1:
M′ = (C,D,A, α, ι, P, π, S, σ), (2)

where
S ⊆ {rt, ev} the set of all supported annotations
σ : C ∪A ∪ P → P(S) {rt, ev, tr} the annotation mapping.

All concepts (classes, associations and attributes) can be annotated with:
• rt: run-time, annotates a dynamic concept that serves as output (e.g., a state vari-

able);
• ev: an event, annotates a dynamic concept that serves as input only (e.g., a marking).

More annotations are possible, but the generation of the sub-languages currently only
supports those two. For example, the annotated meta-model of an elevator control

DSML, shown in Fig. 3 can be described as:
E′ = (Ce, De, Ae, αe, ιe, Pe, πe, Se, σe), (3)

where
Se = {rt, ev}

σe(x) =

{
{rt} if x ∈ {doors open, going up, current floor}
{ev, rt} if x = pressed

In this meta-model, the language engineer specifies that Floor, Elevator and Button,
the associations requests and elevator button and the attribute nr are static as they are
not annotated. A button press is an input event, and going up, doors open, currentfloor
and pressed are dynamic.

3.2 Generation of Sub-Languages

The annotated meta-modelE′ includes enough detail to generate the five sub-languages
as shown in Fig. 2. The generated sub-languages are each expressive enough to serve
their intent. At the same time they maximally constrain the modeller so that they are
maximally domain-specific. The result of this generation process with E′ as input (see
Fig. 3) is shown in Fig. 4. Templates are used in the generation process, shown with grey
classes. These templates consist of generic language constructs, that can be instantiated
to create a sub-language. The meta-models of sub-languages are generated by a function
that operates on E′ so that only relevant elements are used and no more annotations are
present so that the result is a regular meta-model.

We formalise the approach so that the definition of the sub-languages is precise
and unambiguous. For every language, there is a language mapping function f :M′ ×
Mt →M that returns the sub-language meta-modelMx = (Cx, Dx, Ax, αx, ιx, Px, πx)
of an annotated meta-model M′ = (C,D,A, α, ι, P, π, S, σ) and a template Mt =
(Ct, Dt, At, αt, ιt, Pt, πt). This template Mt is different for every sub-language. By
default, a sub-language will simply consist of M′ without annotations, but preserv-
ing all elements. We define this default mapping function as the function weave :
M′ ×M×Σ →M. The result of weave is defined as follows:

Mx = (Cx, Dx, Ax, αx, ιx, Px, πx),

where the components of Mx are defined by weave(M′,Mt, Element) under the
condition that Element ∈ Ct: Xx = X ∪ Xt for X ∈ {C,D,A, α, P, π} and ιx =
ι ∪ ιt ∪ {(c, Element) | c ∈ C ∧ @s ∈ C, (c, s) ∈ ι}.

In case of the elevator DSML, meta-model Mx is the union of E′ and a given
templateMt, and a all elements of E′ that do not have a superclass (in this case Floor,
Button and Elevator), become a subclass of a given Element class in the templateMt.

The meta-models of all five sub-languages are defined below, and their intent is
explained. We explain the approach using the elevator control DSML of which the
abstract syntax is defined by E′.

The design language Ed The design language allows modellers to design systems in
a general way. The static system (i.e., its structure) is defined, and state or configura-
tion information is not taken into account in this language. Its generated meta-model is

Properties

Design

DesignElement

id : int

Runtime

RunTimeElement

id : int

Output

OutputElement

id : int

Input

Button

pressed : boolean

Event

current : boolean

ElevatorButton

InputElement

id : int

Environment

DownButton

FloorButton

UpButton

Elevator

doors_open : Condition = return True
going_up : Condition = return True

Transition

rule_execution : RuleExecution [0..1]
input_event : Event [0..1]

StructuralPattern

name : String
condition : Condition = return True
dynamic : boolean

PropertyElement

id : int
label : String
condition : Condition = return True

Button

pressed : Condition = return True

OrderedTemporalPattern

Floor

nr : Condition = return True

Elevator

doors_open : boolean
going_up : boolean

Elevator

doors_open : boolean
going_up : boolean

BoundedExistence

n : Integer

QuantifiedPattern

quantifier : Quantifier

TemporalPattern

LowerBounded

Button

pressed : boolean

UpperBounded

Button

pressed : boolean

<<enumeration>>

Quantifier

exists
forAll

BinaryPattern

ImpliesPattern

ElevatorButton

ElevatorButton

ElevatorButton

ElevatorButton

AtomicPatternUnaryPattern

FloorButton

FloorButton
FloorButton

Specification

name : String

DownButton

DownButton

DownButton

DownButton

Precedence

Universality

FloorButton

AndPatternNotPattern

Response

Existence

OrPattern

AfterUntil

UpButton

UpButton

UpButton

UpButton

Absence

Between

Pattern

Elevator

Globally

Button

Before

Scope

Floor

nr : int

Floor

nr : int

Floor

nr : int

Trace

After

State

event

{ordered}

*

1

currentEvent

1

0..1

element *1nextEvent

0..1

0..1

1

11

nextTransition

0..1

1

requests* 1

requests* 1

requests* 1

1

elevator_button

1

*

elevator_button

1

*

requests* 0..1

elevator_button

1

*

currentState

10..1

nextState1

0..1

state

{ordered}

*1

elevator_button 0..1

*

11

1

1

currentfloor

*

1

currentfloor

*

1

currentfloor
0..1

*

1..*

1

element

*

1

next

0..1

0..1

next

0..1

0..1next

0..1

0..1

next

0..1

0..1

2

Fig. 4. The meta-models of the five sub-languages of E′.

shown in the top left of Fig. 4. In the generation process, all constructs (classes, associ-
ations and attributes) of E′ annotated with rt and ev are removed. The template consists
of a single DesignElement class with an id that has to be unique. This id will be used to
refer to link class instances of the DSML. No dynamic constructs are available in Ed,
so the modeller can only model the structure of a system (e.g., how Floors and Buttons
are linked), not its state.

Md = (Cd, Dd, Ad, αd, ιd, Pd, πd),

where the components ofMd are defined by design(M′,Mt):
Cd = {c | c ∈ C ∪ Ct ∧ rt, ev /∈ σ(c)}
Dd = D ∪Dt ∩ Cd

Ad = {a | a ∈ A ∪At ∧ rt, ev /∈ σ(a)}
αd = α ∪ αt

ιd = (Cd, p2(ι) ∪ p2(ιt) ∪ {(c,DesignElement) | c ∈ C ∧ @s ∈ C, (c, s) ∈ ι})
Pd = {p | p ∈ P ∪ Pt ∧ rt, ev /∈ σ(p)}
πd = π ∪ πt

where p is the projection operation and pi(x) denotes the element of x with index i.

The run-time language Er The run-time language enables modellers to define a state
of the system, e.g., an initial state as input of a simulation. It can also be used to visualise
a “snapshot” or state of a system, during run-time. Its generated meta-model is shown in
the top right of Fig. 4. In the generation process, all constructs of E′ are preserved. The
template consists of a single RunTimeElement class with an id. In Er, all information,
but structure and state (e.g., currentfloor), is available. As all constructs of the annotated
meta-model are preserved, the meta-model of a run-time language can be defined as
Mr = weave(M′,Mt, RunT imeElement) withMt the template described above.

The input language Ei The input language lets the modeller model the environment
of a system, by e.g., modelling an input scenario. Its generated meta-model is shown
in the middle left of Fig. 4. In the generation process, all constructs of E′ that are not
annotated with ev are removed. This means that classes that are not annotated with ev
are removed if they do not inherit an association or attribute that is annotated with ev.
The template models an Environment as an Event list containing InputElements. In Ei,
a series of inputs can consist of button presses. For now, we assume that at most one
button can be pressed in the same event, meaning that an event should not contain two
unattached elements. If the language engineer decides that more than one or exactly one
button can be pressed at the same time, he can create a variant of this template.

Mi = (Ci, Di, Ai, αi, ιi, Pi, πi),

where the components ofMi are defined by input(M′,Mt):
Ci = {c | c ∈ C ∧ ((ev ∈ σ(c))

∨ (∃p ∈ P, ev ∈ σ(p) ∧ c ∈ π∗(p))
∨ (∃a ∈ in∗(c) ∪ out∗(c), ev ∈ σ(a)))} ∪ Ct

Di = D ∪Dt ∩ Ci

Ai = {a | a ∈ A ∧ ev ∈ σ(a)} ∪At

αi = α ∪ αt

ιi = ι ∪ ιt ∪ {(c, InputElement) | c ∈ C ∧ @s ∈ C, (c, s) ∈ ι}
Pi = {p | p ∈ P ∧ ev ∈ σ(p)} ∪ Pt

πi = π ∪ πt

The output language Eo The output language can be used to represent execution
traces of a simulation. An output model is usually generated by a simulator or as
a counter-example by a verification tool, but can be generated manually as well for
e.g., modelling an oracle for a test case. Its generated meta-model is shown in the bot-
tom left of Fig. 4. In the generation process, all constructs of E′ are preserved. The
template consists of a Trace of States and Transitions. This language is able to express
a sequence of system states and the intermediate operations that caused the state change
(a rule application in the operational semantics E[[.]], and/or an input event). The output
of E[[.]], or the counter-example in verification are instances of Eo. Due to the possi-
bly large number of elements in such an execution trace, an instance of Eo is stored
more implicitly as text, and can be interpreted or “played out” by showing step-by-step
an instance of the run-time language Er. The meta-model of a output language can be
defined asMo = weave(M′,Mt, OutputElement) withMt the template described
above.

The properties language Ep The properties language allows the user to define tem-
poral properties, which are properties on the behaviour of systems. Its generated meta-
model is shown in the bottom right of Fig. 4, is constructed from four components.

[A] The quantification of the formula by (i) forAll or exists clause(s), and (ii) cor-
responding structural pattern(s). The modeller can choose to model a property for all
elements that match the associated structural pattern. This structural pattern is evalu-
ated on the design model, and can thus not refer to run-time concepts. Consequently,
the property must be satisfied for all, or for one (depending on the quantifier) match(es)
of the structural pattern. The resulting matches can be re-used as bound variables in
the property, if they have the same label. Quantification patterns can be nested, or can
contain a temporal or structural pattern.

[B] The temporal pattern, based on Dwyer’s specification patterns [7]. The tempo-
ral pattern allows the user to specify a pattern over a given scope, e.g., “the absence of
P, after the occurrence of Q”, or “P is responded by S, between occurrences of Q and R”
(with proposition variables P, S, Q and R). Over 90% of the properties that were inves-
tigated by Dwyer et al. can be expressed in this simple framework [7]. Six patterns are
supported, to express the absence, existence, bounded existence, universality response
or precedence for given proposition(s). Additionally a scope can be defined: must the
pattern be valid globally, or after, before, in between or after until the occurrence of

Fig. 5. The reachesFloor property as an instance of Ep.

given proposition(s). In total up to four proposition variables can be used in a temporal
pattern, and we implement them as structural patterns, that represent patterns on the
state of the system at run-time.

[C] The structural pattern, based on PaMoMo [11], for both static (when used in
a quantification pattern) as well as dynamic (when used in a temporal pattern) models.
Using a structural pattern, a query can be defined on a model. If the pattern is static,
it returns all bound variables in found matches, and if it is dynamic it returns true if
at least one match is found or false when no match is found. In our current approach,
we use simple patterns (e.g., the elevator is at a given floor) and an ad-hoc matching
algorithm, but we intend to re-use the matching algorithm presented in [9]. Only a
small part of PaMoMo’s expressiveness is included in the property language, but this
suffices for defining most properties. A StructuralPattern, and a PropertiesElement can
hold a condition, which returns true by default and is in our current approach modelled
as a string.

[D] The pattern elements, based on the RAM process [8,9]. The elements of a struc-
tural pattern are based onE′ but need to be changed in several ways in order to allow the
modeller to specify patterns that are match in model fragments. A similar problem ex-
ists when constructing a pattern language for creating a meta-model for transformation
rules, and is formalized by the RAM process. In this process, all classes are subclasses
of ModelElement and have a label (for binding variables) and a condition, attribute types
are now conditions, no more classes are abstract classes, and all lower bounds of asso-
ciation multiplicities are set to 0. Pattern elements are compiled to their corresponding
Promela variable names, which can be used in the Promela boolean expression of the
structural pattern.

The properties pattern is composed of parts A, B and C, which are generic. Only
component D, depends on E′ that is subjected to the RAM process for left-hand side
patterns [9]. Let us define the function RAM :M′ −M′ → that performs the RAM
process for left-hand side patterns on an annotated meta-modelM′, resulting in a RAM-
ified meta-modelMRAM :

RAM(M′) = (CRAM ,∅, ARAM , αRAM , ιRAM , PRAM , πRAM , S, σ),

then the meta-model of a properties language can be defined as:
Mp = weave(RAM(M′),Mt, P ropertiesElement),

withMt the template described above.

Fig. 6. The system from Fig. 1 mod-
elled in the design language, without
run-time information.

Generation of concrete syntax of the sub-
languages The concrete syntax of each of the
sub-languages is defined by the union of the con-
crete syntax of E′ of which an example is shown
in the top right of Fig. 1 (possibly leaving out re-
moved concepts in case of the design and input
language) and the predefined concrete syntax for
the templateMt.

An instance of the design language looks like
the traditional instance of the DSML but without
run-time concepts. In the case of Ed, it is impos-

sible to model whether buttons are pressed, on which floor the elevator is, whether its
doors are open and in what direction it is going. The system-under-study of Fig. 1, now
modelled in Ed, is shown in Fig. 6. An example instance of the run-time language Er

looks the same as the traditional instance of the DSML, shown at the top right in Fig. 1.
An instance of the input language is not used in the context of verification by model

checking. Its concrete syntax is a sequence of connected events represented as green
circles containing the events visualised using the concrete syntax as shown in the top
right of Fig. 1. Each step of an instance of the output language can be visualised as a
run-time instance. Alternatively, it can be visualised completely at once as red circles
containing the states, connected by arrows with the transition event(s) as label. An in-
stance of the property language Ep is shown in Fig. 5. It uses a combination of text and
domain-specific patterns.

3.3 Generation of Mappings for Model Checking With the SPIN Environment

Verification is automated in five steps, as depicted in Fig. 2.

Step 1: Transformation to LTL and Promela As shown in Fig. 2, a generic transfor-
mation generates the LTL formula and the Promela model by means of a model-to-text
transformation. The operation results in a .pml file, in the example called Elevator.pml,
that serves as input for the SPIN verification tool. The .pml file is generated from a num-
ber of models, and its overall structure is shown in Listing 1.1, where code snippets are
referenced between < and >. The role of each model in the compilation process is
discussed below.

The design meta-model (line 3 in Listing 1.1): The design meta-model, in our case
Ed is translated to a number of Promela typedefs. Only the three classes on top of
the inheritance hierarchy become Promela types. Their instances are stored as static ar-
rays, and instances are accessed by indexing that array. Since Promela is not an object-
oriented language, inheritance and associations has to be encoded in a particular way
as shown in Listing 1.2). For the types on line 1-21, inheritance is implemented by the
subtype attribute, that refer to any class in the design meta-model. Associations

are implemented with bidirectional accessibility by shorts, that refer to the index
of the target, rather than an object. For instance, if the currentfloor out of an
Elevator is 1, its target is the Floor with index 1. If a target is the null object,
its index is set to -1. The Promela typedefs are also influenced by the model of the
initial configuration of system-under-study (modelled as a run-time instance), which is
modelled as a System type on line 22-26, with static arrays of 7 Buttons, 1 Elevator
and 3 Floors. These numbers are extracted from the run-time instance and are prede-
termined, as the number of buttons, elevators and floors are static. Suppose they are
not static, then a maximum number must be set because SPIN requires the state to be
bounded. On line 27 the system is created, and values should be filled in (see below).

The output meta-model (line 4 in Listing 1.1): A function called print state
(not shown) is defined that prints the current state of the system in a predefined encod-
ing. Only run-time concepts are printed. This, in combination with printing the input
events and the applied rule (done in the rule schedule code, which is not shown), pro-
vides all the necessary information to construct an output trace.

A run-time instance (line 5-6 in Listing 1.1): After all type, variable and function
declarations, the process declaration starts on line 5. Only one process is used. It starts
with the initial configuration of the system (line 6, not shown in detail), by setting all
values of s (declared in Listing 1.2 on line 27). This results in the initial state of s.

The operational semantics (line 7-14 in Listing 1.1): At line 7, the initial rule, in our
case opendoor up, is scheduled using a go to statement that jumps to one of the rules
at line 10-13 (one of which is shown in Listing 1.5). This rule schedule is generated
from the operational semantics model of Fig. 1. Upon evaluation of the rule, a boolean
variable will be set that denotes whether the rule was successfully applied or failed to
match. If the rule was applied, execution is continued at the environment section (line
15) and the next rule is scheduled by setting a variable according to the operational
semantics model. If the rule fails, the rule schedule decides to try the next rule accord-
ing to the operational semantics model. If all rules fail, code continues execution at the
SKIP RULE label on line 14, printing the state and subsequently continuing to the en-
vironment section. Fig. 7 shows the movedown last rule of the schedule at the bottom of
Fig. 1. Its Promela code resides in the overall structure of Listing 1.1 at one of the rules
that are referenced at line 10-13, and is fully shown in Listing 1.5. For performance,
the generated code uses a d step to calculate the rule matching as an atomic step.
The code generator traverses the left-hand side pattern of Fig. 7 element by element by
following associations in the pattern. In Promela, the match candidates are represented
by indices of s (line 4). The code consists of nested for loops, where match candidates
are traversed checked that (1) they are not null (i.e., the match candidate is not -1), (2)
if applicable, they are not the same as a previously matched item, (3) if applicable, their
dynamic type, represented by the subtype attribute, is correct, and (4) if applica-
ble, node conditions that are specified are satisfied (in case of the movedown last rule
the elevator should have its doors open and should go down - line 12-13, not visual in
Fig. 7). When a match for the pattern is found, the right-hand side (RHS) of the rule is
applied (line 26-29), which is generated from the difference between the RHS and the
left-hand side of the rule. The rule is flagged successful, the state of the LTL proposi-
tions is updated (see below), and the rule is exited on line 30-32. Finally at line 43, the
execution jumps back to the rule schedule, which will decide the next step.

The input meta-model (line 15-17 in Listing 1.1): At line 15, a model of the envi-
ronment like Listing 1.3. It consists of an atomic block containing an if-statement. The
if-statement in Promela non-deterministically chooses an option for which the guard (in
this case “1”) is true. This environment model thus selects a possible event that will be
input for the system (lines 3-9), or none (line 10). For each event, a print statement is
generated. The numbers on the left side of the dot are the node id attributes of the node
as presented in Fig. 4, and can be used to denote a specific node. In this case, the Ele-
vator instance has an id value of 0, the Floors have id values of 1 to 3 and the Buttons
have id values between 4 and 10. Finally a jump to the LOOP label is generated (line 16
in Listing 1.1), so that the rule schedule can decide the next step.

A property instance (line 1-2 in Listing 1.1): The property instance, in our case
reachesFloor, is translated to the LTL formula at line 1-3 of Listing 1.4. The LTL for-
mula is composed by concatenating three times an Eventually pattern �(!Q ∨ ♦(Q ∧
♦P)) [7], as the property must hold for all (in this case three) floors. In Promela, it is

only allowed to specify LTL formulas without boolean expressions. Therefore, propo-
sition variables are used in the LTL formula, and they are updated boolean expressions
using when the update state function is called (line 4-13). Q0, Q1 and Q2 repre-
sent the possible button presses at floors 0, 1 and 2, as defined by the middle pattern
in Fig. 5. Note how the bound floor f is used in the boolean expressions to select the
correct s.button indices that match f . On line 9-11 P0, P1 and P2 represent the
right pattern in Fig. 5, where it is checked whether the elevator is at floor f and its doors
are open. The function update state will need to be called every time the state of
the system changes.
Step 2: Verification with SPIN Step 2 of the verification process shown in Fig. 2 is the
automatic verification by SPIN on the Promela model (using the -a option). The LTL
formula is checked on all possible execution traces. In this process, printing is sup-
pressed. If the Promela model satisfies the LTL property, the verification is completed,
and steps 3-5 are not followed. If the SPIN encounters a counter-example during veri-
fication, the verification process is terminated and a .trail file is generated, as shown in
Fig. 2.
Step 3: Trace generation by SPIN In case of a counter-example, SPIN is used to per-
form a guided simulation using the trail on the Promela model (-t option). In this step,
the print statements in the Promela model are executed, so that all relevant information
about the counter-example is written to Trace.txt. In our example, one line in Trace.txt
may look like: “0.going up=1; 0.doors open=1; 0.currentfloor out=
2; 4.pressed=0; 5.pressed=0; 6.pressed=1; 7.pressed=1; 8.p
ressed=0; 9.pressed=0; 10.pressed=0;”. Other lines can show the trans-
formation rule that is applied (e.g., “movedown last”), or the input that was gener-
ated by the environment model, as discussed before (e.g., “6.pressed=1”). On the
left side of each dot, the ids for model elements as presented in Fig. 4 are used to refer
to the node in question. Depending on the type of the attribute/association, the value
behind the equal sign is interpreted as boolean, integer or id. In case of class that can
be created or deleted at run-time, all instances are printed out using newly assigned ids.
For conciseness, associations are printed in one direction only.
Step 4: Transformation of the counter-example to the domain-specific level As
shown in Fig. 2, the Trace.txt is transformed to an output model, making use of the de-
sign model to map corresponding ids. This results in an output model, that sequentially
shows all the system states of the counter-example.
Step 5: Animation of the counter-example The output model can be “played” out
step-by-step by visualising each state. As described in [6], one state is visualised as a
run-time model, which may look like the instance model on the top right of Fig. 1.

To conclude, as shown in Fig. 2 ProMoBox enables the modelling and verification of
properties while the user only has to provide the bare minimum of models: an anno-
tated meta-model, the concrete syntax (implicit in Fig. 2), the operational semantics,
the system he wants to verify, a configuration of the system, and the property.

4 Example and Evaluation
We implemented the ProMoBox framework in AToMPM [13], and the compiler that
compiles models to and from Promela or text were written in Python.

1 <LTL FORMULA>
2 <UPDATE STATE FUNCTION DEFINITION>
3 <METAMODEL>
4 <PRINT STATE FUNCTION DEFINITION>
5 active proctype instance() {
6 <INSTANCE>
7 <SET INITIAL RULE>
8 LOOP:
9 <RULE SCHEDULE>

10 <RULE 1>
11 <RULE 2>
12 ...
13 <RULE N>
14 SKIP_RULE: print_state();
15 <ENVIRONMENT>
16 goto LOOP;
17 }

Listing 1.1.
The overall structure of the
generated Promela model.

1 typedef Button {
2 short __subtype;
3 bit pressed;
4 short requests_out;
5 short elevator_button_in;
6 }
7 typedef Elevator {
8 short __subtype;
9 bit doors_open;

10 bit going_up;
11 short currentfloor_out;
12 short elevator_button_out[3];
13 }
14 typedef Floor {
15 short __subtype;
16 short nr;
17 short next_out;
18 short next_in;
19 short currentfloor_in;
20 short requests_in[3];
21 }
22 typedef __System {
23 Button button_[7];
24 Elevator elevator_[1];
25 Floor floor_[3];
26 }
27 __System s;

Listing 1.2. The compiled
bounded meta-model.

1 atomic {
2 if
3 :: 1 -> s.button_[0].pressed=1;

printf("4.pressed=1\n");
4 :: 1 -> s.button_[1].pressed=1;

printf("5.pressed=1\n");
5 :: 1 -> s.button_[2].pressed=1;

printf("6.pressed=1\n");
6 :: 1 -> s.button_[3].pressed=1;

printf("7.pressed=1\n");
7 :: 1 -> s.button_[4].pressed=1;

printf("8.pressed=1\n");
8 :: 1 -> s.button_[5].pressed=1;

printf("9.pressed=1\n");
9 :: 1 -> s.button_[6].pressed=1;

printf("10.pressed=1\n");
10 :: 1 -> skip;
11 fi;
12 }

Listing 1.3. The compiled
environment model.

1 ltl reachesFloor {
2 [](!Q0 || <>(Q0 && <>P0)) && [](!Q1 || <>(Q1 && <>P1)) && [](!Q2 || <>(Q2 && <>P2))
3 }
4 inline updatestate() { // called after the evaluation of a RHS
5 d_step {
6 Q0 = (s.button_[0].pressed == 1 || s.button_[3].pressed == 1);
7 Q1 = (s.button_[1].pressed == 1 || s.button_[4].pressed == 1 || s.button_[5].pressed == 1);
8 Q2 = (s.button_[2].pressed == 1 || s.button_[6].pressed == 1);
9 P0 = (s.elevator_[0].currentfloor_out == 0 && s.elevator_[0].doors_open == 1);

10 P1 = (s.elevator_[0].currentfloor_out == 1 && s.elevator_[0].doors_open == 1);
11 P2 = (s.elevator_[0].currentfloor_out == 2 && s.elevator_[0].doors_open == 1);
12 }
13 }

Listing 1.4. The compiled LTL formula.

Fig. 7. The movedown last rule.

1 MOVEDOWN_LAST:
2 MOVEDOWN_LAST_success = 0;
3 d_step {
4 short elevator5, floor1, floor0, button3, button3_candidate;
5 floor1 = 0;
6 do // look for floor1 match
7 :: (MOVEDOWN_LAST_success == 0 && floor1 < 3) ->
8 if // check floor1 conditions
9 :: (floor1>= 0) ->

10 elevator5 = s.floor_[floor1].currentfloor_in;
11 if // check elevator5conditions
12 :: (elevator5>= 0 && s.elevator_[elevator5].doors_open == 0
13 && s.elevator_[elevator5].going_up == 0) ->
14 floor0 = s.floor_[floor1].next_in;
15 if // check floor0 conditions
16 :: (floor0>= 0 && floor0 != floor1) ->
17 button3_candidate = 0;
18 do // look for button3 match
19 :: (MOVEDOWN_LAST_success == 0 && button3_candidate < 3) ->
20 button3 = s.floor_[floor0].requests_in[button3_candidate];
21 if // check button3 conditions
22 :: (button3>= 0 && s.button_[button3].pressed == 1) ->
23 if // global condition
24 :: (s.floor_[floor0].nr < s.floor_[floor1].nr) ->
25 // apply right-hand side
26 s.elevator_[elevator5].currentfloor_out = -1;
27 s.floor_[floor1].currentfloor_in = -1;
28 s.elevator_[elevator5].currentfloor_out = floor0;
29 s.floor_[floor0].currentfloor_in = elevator5;
30 MOVEDOWN_LAST_success = 1; // for multi-loop break
31 update_state();
32 break;
33 :: else -> skip; fi;
34 :: else -> skip; fi;
35 button3_candidate++;
36 :: else -> break; od;
37 :: else -> skip; fi;
38 :: else -> skip; fi;
39 :: else -> skip; fi;
40 floor1++;
41 :: else -> break; od;
42 }
43 goto MOVEDOWN_LAST_schedule;

Listing 1.5. The compiled movedown last rule.

Fig. 8. The counter-example of the staysAtSecondFloor property.

We verified three properties on the modelled system with the configuration at the
top right of Fig. 1:
• reachesFloor: when a button that requests the elevator to go to a certain floor is

pressed, the elevator will eventually open its doors at that floor;
• skipFloorOnce: when a button that requests the elevator to go to a certain floor is

pressed, the elevator will open its doors at that floor at the latest the second time it
passes that floor;

• staysAtSecondFloor: when the elevator is at a certain floor, it stays at that floor. The
system will not satisfy this property, and this it should yield a counter-example.

The properties are checked with SPIN [12] version 6.2.6 on a 64-bit Windows 7 SP1
PC with an Intel(R) Core(TM) i7 Q 720 CPU at 1.60 GHz 8 GB of DDR3 memory.
The results are shown in Table 1. The properties reachesFloor and skipFloorOnce take
more than a minute to evaluate, and use up to almost 2GB of memory as the depth
of the search tree is more than 5×104. We can conclude that the performance of the
approach in terms of time and memory consumption is acceptable but poor, as this can
be considered to be a small example. Alternatively it is possible to evaluate up to a
given search tree depth (using the -m option in SPIN) to obtain a fair confidence in the
correctness of the modelled system.

As expected, the staysAtSecondFloor property yields a counter example. In that
case, the verification only takes a very limited amount of time and memory. This turns
out to by exemplary due to the relative simplicity of the LTL formula in comparison
with the Promela system: if there is a counter-example, it is relatively quickly found.
This raises the confidence of using a maximum depth for the SPIN verification.

Table 1. Verification results of the system with initial state as shown at the top right of Fig. 1.
property counter-

example
depth # states memory time taken

reachesFloor no 54422 8× 106 1934 MB 104s
skipFloorOnce no 54518 8× 106 1934 MB 172s
staysAtSecondFloor yes 255 127 0.226 MB 0.037s

5 Assumptions and Limitations
We now discuss the assumptions and current limitations of the ProMoBox approach.
Format of the DSL. It is assumed that we can express the abstract syntax of the DSML
as a meta-model, its concrete syntax is defined graphically by icons for every abstract

syntax concept and its semantics are given by a transformation model with a rule sched-
ule supporting control flow.
Boundedness. The rule-based nature of the operational semantics ensure a step-wise,
state-based semantics. In its current state, ProMoBox supports DSMLs that have a no-
tion of state. Since we apply model checking, the possible number of states must be
bounded. In the example, this is assured by the limited cardinality of the run-time ele-
ments (especially the currentfloor association). If such boundedness is not achieved in
the meta-model because of an infinite cardinality value, this value must be bounded in
order to allow model checking. Such abstraction operations (including decreasing state
spaces that are bounded but too large) are nonetheless key to modelling in SPIN, and
are beyond the scope of this paper.
Format of the properties. The only type of properties that is currently supported is
based on LTL. However, properties language also supports quantification and structural
patterns, so the approach can be considered representative for a wide range of proper-
ties. Although we cannot provide any proof, we feel that the ProMoBox approach de-
scribed in this paper can be reused for different kinds of properties by defining generic
mappers to tools supporting model checking with OCL and CTL, real time properties,
or properties using distributions. The target tool has to be expressive enough so that
a correct structure and operational semantics can be defined, i.e., all elements can be
queried, variables can be stored and throughout the evaluation of the temporal formula
(context-dependency), etc. The key of the approach is that it is defined on the meta-level
formalisms (class diagrams, concrete syntax definitions, and rule-based transformation
with scheduling), in combination with pre-defined, generic templates.
Scalability. Scalability remains the main concern however. On the one hand, model
checking as a technique is a cause of scalability limitations, on the other hand gener-
ates the Promela code generator generic code, which could be optimised. A radically
different solution to the problem of scalability would be not to map to a model check-
ing approach, but instead use test case generation techniques to generate relevant test
cases in the form of input models and output models (oracles). Tests are executed by
using the input models as initial state, applying the operational semantics transforma-
tion, and comparing (by using model comparison, e.g., the DSMDiff algorithm [14]) the
resulting trace with the oracle. This illustrates how ProMoBox benefits from its mod-
elling approach, because mappings to different semantic domains can be implemented.
However, this research direction is not investigated for the ProMoBox approach.

6 Related Work
With respect to the contribution of this paper, we distinguish two threads of related
work. First, we consider approaches that translate models to formal representations to
specify and verify properties that are created specifically for one modelling language.
Second, we discuss approaches that have a more general view on providing specification
and verification support for different modelling languages.

Specific Solutions. In the last decade, a plethora of language-specific approaches
have been presented to define properties and verification results for different kinds of
design-oriented languages. For instance, Cimatti et al. [15] have proposed to verify
component-based systems by using scenarios specified as Message Sequence Charts

(MSCs). Li et al. [16] also apply MSCs for specifying scenarios for verifying concur-
rent systems. The CHARMY approach [17] offers amongst other features, verification
support for architectural models described in UML. Collaboration and sequence di-
agrams have been applied to check the behaviour of systems described in terms of
state machines [18–20]. Rivera et al. [21] map the operational semantics of DSMLs to
Maude, and thus, benefit from analysing methods provided out-of-the-box of Maude
environments such as checking of temporal properties specified in LTL. These men-
tioned approaches are just a few examples that aim at specifying temporal properties
for models and verifying them by model checkers (see [22] for a survey). They have in
common that they offer language-specific property languages or LTL properties have to
be defined directly on the formal representation. Thus, these approaches are not aiming
to support DSMLs engineers in the task of building domain-specific property languages.

Generic Solutions. There are some approaches that aim to shift the specification
and verification tasks to the model level in a more generalized manner. First of all, there
are approaches that propose OCL extensions, often referred to Temporal OCL (TOCL),
for defining temporal properties on models [23–25]. As OCL may be combined with
any modelling language, TOCL can be seen as a generic model-based property lan-
guage as well. In [26, 27] the authors discuss and apply a pattern to extend modelling
languages with events, traces, and further runtime concepts to represent the state of a
model’s execution and to use TOCL for defining properties that are verified by map-
ping the design models as well as the properties expressed in TOCL to formal domains
that provide verification support. In addition, not only the input for model checkers is
automatically produced, but also the output, i.e., the verification results, is translated
back to the model level. The authors explain the choice of using TOCL to be able to
express properties at the domain level, because TOCL is close to OCL and should be
therefore familiar to domain engineers. However, they also state that early feedback of
applying their approach has shown that TOCL is still not well suited to many domain
engineers and they state in future work that more tailored languages may be of help for
the domain engineers. The work presented in this paper goes directly in this direction
by enabling domain engineers to use their familiar notation for defining properties and
exploring the verification results.

Another approach that aims to define properties on the model level in a generic way
is presented in [28]. The authors extend a language for defining structural patterns based
on Story Diagrams [29] to allow for modelling temporal patterns as well. The result-
ing language allows to define conditionally timed scenarios stating the partial order of
structural patterns. The authors argue that their language is more accessible for domain
engineers, because their language allow decomposition of complex temporal properties
into smaller ones by if-then-else decomposition and quantification over free variables.
Their approach is tailored to engineers that are familiar to work with UML class dia-
grams and UML object diagrams as their notation is heavily based on the concepts of
these two languages. Furthermore, they explain how the specification patterns of Dwyer
et al. [7] are encoded in their language, but there is no language-inherent support to ex-
plicitly apply them. In our work, we tackle these two issues in the context of DSM
by reusing the notation of domain engineers for specifying properties and providing
explicit language support for specification patterns.

Finally, [30] present specification patterns for describing properties over reachable
states of graph grammars. These specification patterns are purely defined on graph
structures (i.e., nodes and edges) and thus are reusable for any modelling language.
However, the authors do not discuss integration with current modelling languages to
use such specification patterns for specific properties. A possible line of future work
may aim to integrate such specification patterns to our generic meta-model.

7 Conclusion and Future Work
We presented the ProMoBox approach, in which a minimum number of models is
required as input to specify and check properties with SPIN and visualise possible
counter-examples, while the user is shielded from the underlying formal methods. This
is made possible by using annotations on the DSML meta-model to generate five sub-
languages, and by compiling models to Promela and back. The key of the approach is
that all information of the DSML is explicitly modelled. We presented the approach
on a state-based DSML for elevator control. The process of evaluating properties using
ProMoBox is described in detail, including a formal description of the generation of the
sub-languages, and a compiler to Promela. Our results show that ProMoBox is applica-
ble for current DSMLs and the resulting specification languages are usable by domain
engineers.

For future work, we intend to use ProMoBox in a case study for gestural interac-
tion [31]. In this case study, we plan to do more research on the performance of model
checking using ProMoBox. Moreover, we plan to investigate how different property
languages can be supported using different templates, and how these templates can
be re-used, e.g., an existing template for structural properties could be re-used in the
properties template that is presented in this paper. We are also interested in broadening
the types of languages that are supported by ProMoBox, e.g., languages that explic-
itly include time. We expect that this would typically result in investigating associated
templates for real-time properties.

References

1. Gray, J., Tolvanen, J.P., Kelly, S., Gokhale, A., Neema, S., Sprinkle, J.: Domain-specific
modeling. Handbook of Dynamic System Modeling (2007)

2. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: ICSE. (2007)

3. Risoldi, M.: A Methodology For The Development Of Complex Domain Specific Lan-
guages. PhD thesis, University of Geneva (2010)

4. Visser, W., Dwyer, M., Whalen, M.: The hidden models of model checking. SoSym 11
(2012) 541–555

5. Meyers, B., Deshayes, R., Lucio, L., Syriani, E., Wimmer, M., Vangheluwe, H.: The Pro-
MoBox approach to language modelling. Technical Report SOCS-TR-2014.3, School of
Computer Science, McGill University (2014)

6. Meyers, B., Wimmer, M., Vangheluwe, H.: Towards domain-specific property languages:
The ProMoBox approach. In: DSM. (2013)

7. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Specifications for Finite-
State Verification. In: ICSE. (1999)

8. Kühne, T., Mezei, G., Syriani, E., Vangheluwe, H., Wimmer, M.: Explicit transformation
modeling. In: MoDELS Workshops. (2009)

9. Syriani, E.: A Multi-Paradigm Foundation for Model Transformation Language Engineering.
PhD thesis, McGill University Montreal, Canada (2011)

10. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F.: A Visual Specification Language for
Model-to-Model Transformations. In: VL/HCC. (2010)

11. Guerra, E., de Lara, J., Wimmer, M., et al.: Automated verification of model transformations
based on visual contracts. ASE 20 (2013) 5–46

12. Holzmann, G.J.: The Model Checker SPIN. TSE 23 (1997) 279–295
13. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Mierlo, S.V., Ergin, H.: AToMPM:

A Web-based Modeling Environment. In: MoDELS Demonstrations. (2013)
14. Lin, Y., Gray, J., Jouault, F.: DSMDiff: A Differentiation Tool for Domain-Specific Models.

European Journal of Information Systems 16 (2007)
15. Cimatti, A., Mover, S., Tonetta, S.: Proving and Explaining the Unfeasibility of Message

Sequence Charts for Hybrid Systems. In: FMCAD. (2011)
16. Li, X., Hu, J., Bu, L., Zhao, J., Zheng, G.: Consistency Checking of Concurrent Models for

Scenario-Based Specifications. In: SDL. (2005)
17. Pelliccione, P., Inverardi, P., Muccini, H.: CHARMY: A Framework for Designing and Ver-

ifying Architectural Specifications. TSE 35 (2008) 325–346
18. Brosch, P., Egly, U., Gabmeyer, S., Kappel, G., Seidl, M., Tompits, H., Widl, M., Wimmer,

M.: Towards Scenario-Based Testing of UML Diagrams. In: TAP. (2012)
19. Knapp, A., Wuttke, J.: Model checking of UML 2.0 interactions. In: MoDELS’06. (2006)
20. Schäfer, T., Knapp, A., Merz, S.: Model Checking UML State Machines and Collaborations.

ENTCS 55 (2001) 357–369
21. Rivera, J.E., Guerra, E., de Lara, J., Vallecillo, A.: Analyzing Rule-Based Behavioral Se-

mantics of Visual Modeling Languages with Maude. In: SLE. (2008)
22. Gabmeyer, S., Kaufmann, P., Seidl, M.: A classification of model checking-based verification

approaches for software models. In: VOLT. (2013)
23. Ziemann, P., Gogolla, M.: OCL Extended with Temporal Logic. In: PSI. (2003)
24. Kanso, B., Taha, S.: Temporal Constraint Support for OCL. In: SLE. (2012)
25. Bill, R., Gabmeyer, S., Kaufmann, P., Seidl, M.: OCL meets CTL: Towards CTL-Extended

OCL Model Checking. In: OCL Workshop. (2013)
26. Zalila, F., Crégut, X., Pantel, M.: Leveraging Formal Verification Tools for DSML Users: A

Process Modeling Case Study. In: ISoLA. (2012)
27. Combemale, B., Crégut, X., Pantel, M.: A Design Pattern to Build Executable DSMLs and

Associated V&V Tools. In: APSEC. (2012)
28. Klein, F., Giese, H.: Joint structural and temporal property specification using timed story

scenario diagrams. In: FASE. (2007)
29. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A New Graph Rewrite

Language Based on the Unified Modeling Language and Java. In: TAGT. (2000)
30. da Costa Cavalheiro, S.A., Foss, L., Ribeiro, L.: Specification Patterns for Properties over

Reachable States of Graph Grammars. In: SBMF. (2012)
31. Deshayes, R., Palanque, P.A., Mens, T.: A generic framework for executable gestural inter-

action models. In: VL/HCC. (2013)

