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1 Problem
The main problem statement in this Ph.D. is in the domain of modelling language engi-
neering:

How can we engineer domain-specific modelling languages (DSMLs) in a more
structured way?

We look at this problem from a tool-builder’s point of view. This means that our
solution is a tool that supports language engineers in modelling DSMLs in a more struc-
tured way.

This problem is a very broad one. We have chosen some sub-topics for which the
research questions can be described as:

In the case of evolution of a DSML, how can we provide support for (semi-)automatic
co-evolution of related artefacts such as instances and transformations? Since the cre-
ation of the DSML is part of the software development cycle, it is also subject to evolu-
tion. We investigate how we can automate co-evolution on models that are instances of
the language, and transformations defined for this language. Automatically co-evolving
the latter turns out to be very hard, as the language definition does not contain a formal
description of the semantic intent of the language, making it hard to make assumptions
on co-evolving related transformations. To simplify the co-evolution problem, we aim
at structurally splitting up languages, leading to the next research question.

How can we reuse existing languages or language fragments to compose a new
DSML? DSMLs are usually built from scratch, although they may share certain char-
acteristics with existing languages (e.g., it is a state-based formalism, or the language
includes simple mathematical expressions in a textual way, etc.). We aim at re-using a
DSML in all of its aspects; abstract syntax, concrete syntax and semantics. For abstract
and concrete syntax, this turns out to be a feasible research question, but semantics
description of a language can be quite extensive. Therefore we choose to investigate
the composition of one, yet common, way of describing semantics, leading to the next
research question.

How can instances of two different DSMLs run together in a modular way, in the
context of simulation? Here, we go a step further into combining operational semantics
of DSMLs, in the form of models of computation. This can be considered the most
difficult part of the composition of DSMLs, as not only data (e.g., events or signals),
but also control (when, during execution, a step needs to be executed for a model of
computation) and time (how time scales of models of different computation correspond)
need to be adapted to obtain a compositional execution. Additionally, we claim that
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verifying the correctness of a composition of two DSMLs can be achieved by describing
and verifying properties, leading to the next research question.

How can we provide automatic support for a DSML so that it does not only support
the design of systems, but also the precise modelling of properties, and the verification
of these properties? DSMLs are generally focused at designing systems at a domain-
specific level. When requirements need to be verified for this DSL, modellers usually
have to resort to general purpose languages such as CTL and LTL. This is in con-
tradiction with the spirit of domain-specific modelling (DSM), as domain experts are
expected to express properties in an unfamiliar, mathematical way. We aim at defining
a suite of languages we call ProMoBox for not only defining the design of a system, but
also properties, state, and input and output of a system.

In this paper, we focus on the last two problems because of space constraints and
because these topics are currently researched, which will be referred to as semantic
adaptation and ProMoBox. The first problem separates itself from the other three, and
was the first major research topic of my Ph.D., which resulted in a number of publica-
tions [1–6]. The second problem also resulted in some publications [7, 8], and is now
further under research by a master student I am supervising.

2 Related work
For the subject of semantic adaptation we chose to focus our study of the state of the
art on three different tools for heterogeneous modelling and simulation: Ptolemy II [9],
Simulink/Stateflow1, and ModHel’X [10]. All of them support the joint use of different
modelling paradigms in a model and they all use hierarchy as a mechanism for com-
posing the heterogeneous parts of a model. Other types of approaches are described
in [11].

In Ptolemy II semantic adaptation of time, control and data can be modelled within
one of the models that are composed, but this means that at least one of the models
needs to be changed in order to work with the other model. Consequently, modularity
is lost. Alternatively, default semantic adaptation can be used, leading to undesired be-
haviour, as one cannot define a single way to combine two formalisms semantically.
The modeller could change this default behaviour by delving into Ptolemy II’s code,
but this is in contrast to the domain expert-friendly visual environments of Ptolemy II
to model in, and the very ambition of DSM.

In Simulink/Stateflow, which is a powerful and efficient simulation tool for hetero-
geneous models, semantic adaptation is even more diffuse. The global semantics of a
heterogeneous model (for instance a Simulink model including a Stateflow submodel)
is given by one solver which is used to compute its execution.

ModHel’X is a framework for modelling and executing heterogeneous models [10].
ModHel’X tries to resolve these issues by allowing modular semantic adaptation by ex-
plicitly defining an interface block between the parent model and the embedded model.
This block adapts the data, control and time between the different models [12]. Seman-
tic adaptation is specified using calls to a Java API in different methods of an interface
block. Therefore, constructing an interface block is a tedious and error prone process.

1 http://www.mathworks.com/products/simulink/
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In conclusion we can state that the adaptation of data, control and time is either
scattered over both models, or is hard-coded. No approaches exist that allow a domain-
specific syntax at the right level of abstraction like the models, while at the same time
respecting the modularity of the composition.

With respect to the contribution of ProMoBox, we distinguish two threads of related
work. First, we consider approaches that translate models to formal representations to
specify and verify properties that are created specifically for one modelling language.
Second, we discuss approaches that have a more general view on providing specification
and verification support for different modelling languages.

A plethora of language-specific approaches have been presented to define proper-
ties and verification results for different kind of design-oriented languages. For instance,
Cimatti et al. [13] have proposed to verify component-based systems by using scenar-
ios specified as Message Sequence Charts (MSCs). Li et al. [14] also apply MSCs for
specifying scenarios for verifying concurrent systems. The CHARMY approach [15]
offers amongst other features, verification support for architectural models described in
UML. Collaboration and sequence diagrams have been applied to check the behaviour
of systems described in terms of state machines [16–18]. Rivera et al. [19] map the
operational semantics of DSMLs to Maude, and thus, benefit from analysing methods
provided out-of-the-box of Maude environments such as checking of temporal proper-
ties specified in LTL. These mentioned approaches are just a few examples that aim
at specifying temporal properties for models and verifying them by model checkers
(see [20] for a survey). They have in common that they offer language-specific property
languages or that LTL properties have to be defined directly on the formal representa-
tion. Thus, these approaches are not aiming to support DSMLs engineers in the task of
building domain-specific property languages.

There are some approaches that aim to shift the specification and verification tasks
to the model level in a more generalised manner. First of all, there are approaches that
propose OCL extensions, often referred to Temporal OCL (TOCL), for defining tem-
poral properties on models [21–23]. As OCL may be combined with any modelling
language, TOCL can be seen as a generic model-based property language as well.
In [24, 25] the authors discuss and apply a pattern to extend modelling languages with
events, traces, and further runtime concepts to represent the state of a model’s execution
and to use TOCL for defining properties that are verified by mapping the design models
as well as the properties expressed in TOCL to formal domains that provide verification
support. In addition, not only the input for model checkers is automatically produced,
but also the output, i.e., the verification results, is translated back to the model level.
The authors explain the choice of using TOCL to be able to express properties at the
domain level, because TOCL is close to OCL and should be therefore familiar to do-
main engineers. However, they also state that early feedback of applying their approach
has shown that TOCL is still not well suited to many domain engineers and they state
in future work that more tailored languages may be of help for the domain engineers.
In this Ph.D. I directly go in this direction by enabling domain engineers to use their
familiar notation for defining properties and exploring the verification results.

Another approach that aims to define properties on the model level in a generic way
is presented in [26]. The authors extend a language for defining structural patterns based
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on Story Diagrams [27] to allow for modelling temporal patterns as well. The result-
ing language allows to define conditionally timed scenarios stating the partial order of
structural patterns. They authors argue that their language is more accessible for domain
engineers, because their language allow decomposition of complex temporal properties
into smaller ones by if-then-else decomposition and quantification over free variables.
Their approach is tailored to engineers that are familiar to work with UML class dia-
grams and UML object diagrams as their notation is heavily based on the concepts of
these two languages. Furthermore, they explain how the specification patterns of Dwyer
et al. [28] are encoded in their language, but there is no language-inherent support to
explicitly apply them. In our work, we tackle these two issues in the context of DSM
by reusing the notation of domain engineers for specifying properties and providing
explicit language support for specification patterns.

3 Proposed solution
The solution we aim at in this research takes the form of a tool. We will use our in-house
tool AToMPM [29], a tool for meta-modelling and model transformation. We consider
these as the traditional methods of language engineering we will build on.

For the subject of semantic adaptation, we will design a DSML for modelling the
interaction or adaptation between simulators. This includes a transformation to an exe-
cution platform and back, such as ModHel’X [10]. We focus on semantic adaptation of
models of computation, meaning that we consider adaptation at run time. As described
in [10] we adapt data, control and time at runtime, with a hierarchy in the two models:
there is always one “outer” model and one “inner” model. Our goal is to first describe
this adaptation in detail for one case, i.e., the Discrete Events model of computation to
the Synchronous Data Flow model of computation. Different variants of the adaptation
can be devised, and we can distil an adaptation DSML that allows describing these vari-
ants in their essence. A next step is to generalise this adaptation DSML by applying it to
more models of computation. As a consequence, more and more features will be added
to the DSML. Not only a usable DSML will be the result, but also a clear classification
of the adaptation possibilities.

For the subject of ProMoBox, we will design a collection of transformations and
model templates in ATOMPM, and transformation to an execution platform and back,
such as SPIN [30]. We will mainly focus on behavioural DSMLs and temporal prop-
erties, as we can consider these to entail structural properties of one state of a system.
The ProMoBox framework consists of the following three parts:

Generic languages for modelling all artefacts that are needed for specifying and ver-
ifying properties. For a given DSML, ProMoBox defines a family of five sub-languages
that are required to modularly support property verification, covering (i) design mod-
elling as supported by traditional DSMLs, (ii) run-time state representation, (iii) event-
based input modelling (to model the behaviour of an environment), (iv) state-based
output representation (to model an execution trace of the system or verification results),
and (v) property specification. Property languages generated by ProMoBox are specifi-
cally tailored to ease the development of temporal patterns as well as structural patterns
needed to describe the desired properties of the system’s design by domain engineers in
the DSML’s concrete syntax. To allow to formulate temporal properties at a high-level
of abstraction, we formalise Dwyer’s specification patterns [28] for defining temporal
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patterns as a DSML. With the help of this DSML, domain engineers are able to express
temporal properties for finite state verification such as absence, existence, or universal-
ity. To ease the development of structural patterns to be checked on snapshots of the
system’s execution states, we propose an automated technique based on [31, 32] that is
able to produce a specialised language from a given DSML tailored to express structural
patterns. The language for defining structural patterns is inspired by PaMoMo [33, 34],
a language supporting several pattern kinds such as enabling, positive, and negative pat-
terns. Finally, we introduce the possibility to define quantifiers for temporal properties
to express complex properties in a more concise manner, e.g., every element of a certain
type has to fulfil a certain property.

A fully automated method to specialise and integrate these generic languages to
a given DSML. We extend meta-modelling and model transformation languages with
annotations, to add necessary information for every language construct and semantic
step. This additional information enables the fully automatic generation of the five sub-
languages and necessary transformations between the sub-languages, thus minimising
the effort of the language engineer. Because of their generative definition, consistency
between the languages and their models is guaranteed by construction. We use tem-
plates that describe the generic part of each language, and that are subsequently woven
with the DSML. By using templates, we allow the ProMoBox framework to be config-
urable for different types of DSMLs.

A verification backbone based model checking directly plug-able to DSM environ-
ments. Properties in ProMoBox are translated to LTL and a Promela system is generated
that includes a translation of the initialised system, the environment, and the rule-based
operational semantics of the system. The properties are checked by SPIN [30]. The
verification results (in case of a counter-example) are translated back to the DSM level.

For both research tracks, a formal, theoretical framework will be elaborated, and
a prototype is created as an extension of our tool AToMPM. Using the prototype, the
approach is tested and a comparison is made with existing approaches. This whole re-
search process is repeated many times, whenever our vision is changed because of e.g.,
feedback, new literature or unsatisfactory results. When the results are satisfactory, they
should be published in a journal. During this project, we aim for close collaboration
with the research community to allow cross-fertilisation of our research. In this con-
text, I have been invited by Prof. Juan de Lara for a research visit to the Universidad
Autónoma de Madrid (Spain), by Prof. Frédéric Boulanger at Supélec, by Dr. Manuel
Wimmer at the Technische Universität Wien (Austria), and by Dr. Alexandre Petrenko
at the Computer Research Institute of Montréal (Canada). Other collaborations are evi-
denced by publications with several people from the research community.

4 Preliminary work
I have six year research experience in the field of modelling language engineering. In
2008-2009, I worked in the context of my master’s thesis on transformation languages,
which resulted in two international peer-reviewed workshop papers [35, 36] and a the-
sis [37]. In 2009-2010, I worked on the problem of evolution of modelling languages.
During my research, I attended top conferences and workshops on model-driven engi-
neering (i.e., MoDELS, ASE, ICMT), and fruitfully worked together with international
researchers to write several internationally refereed papers [1–6].d
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We investigated the composition of DSMLs for textual models using metaDepth [38]
in [8], where we proposed techniques for the modular definition and composition of lan-
guages, including their abstract, concrete syntax and semantics. These techniques are
based on (meta-)model templates rather than aspects, where interface elements and re-
quirements for their connection can be established. As a side-track we did research on
how to add aspects to Petri nets [7], where we looked into adding a “aspect-oriented
language module” to an existing language, in this case Petri nets.

The research for the tracks semantic adaptation and ProMoBox were outlined in
the section “Proposed solution”. We will briefly go over what has been done. For the
subject of semantic adaptation we investigated how we can describe the semantic adap-
tation using a textual DSML from the Discrete Events model of computation to the
Synchronous Data Flow model of computation as described in [39]. For the subject of
ProMoBox, we showed in a first step how we can generate a properties language for
Statecharts [40]. In a next step, we broaden our scope to any event-based formalism,
for which we want to check temporal properties with the expression power of LTL. We
are finishing this chapter, and we are in the process of writing a technical report and a
paper we will submit to the SLE conference.

5 Expected contributions
The contributions will be formal models, validated by a prototype implementation (see
also “proposed solution”). We aim for publication in SoSyM (Software and Systems
Modeling, published by Springer), JVLC (Journal of Visual Languages and Comput-
ing, published by Elsevier), SCP (Science of Computer Programming, published by
Elsevier), TSE (IEEE Transactions on Software Engineering), MoDELS (ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems), SLE
(International Conference on Software Language Engineering), etc.

6 Plan for evaluation and validation
The evaluation and validation of this research will be done mainly in the form of tool
prototypes (see “proposed solution”). We will touch on some larger case studies, but
we will refrain from industry case studies or empirical studies, as our focus is on defin-
ing and implementing a formal model. To conclude, we aim at preparing a prototype
that could be used for industry case studies or empirical studies or to re-implement on
different platforms.

7 Current status
A large part of the work already has been done (see “Preliminary work”), yet we plan
to finish the two main research tracks that are presented here.

The cooperation with Supélec is a good basis to work on semantic adaptation. We in-
tend to improve the DSML for semantic adaptation that support more types of DSMLs.
Although we cannot be complete and support every existing DSML, we want to be able
to support “core” DSMLs that together form a broad range of all behavioural modelling
languages (Discrete Event, Synchronous Data Flow, Petri nets, and Timed Finite State
Machines). We intend to publish our final results in a journal like Software and Systems
Modeling.
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We are currently finishing a ProMoBox paper for SLE, and in a next step we want
to broaden our scope to different types of DSMLs (as we want to do for semantic adap-
tation), and different types of properties, with consequently different types of execution
platforms. We also intend to showcase the approach using a realistic case study with the
“GISMO” DSL [41]. Because of the computational limitations of model checking, we
wish to investigate the employment of test case generation techniques with Dr. Alexan-
dre Petrenko, an expert in the domain. As we believe that this is a relevant research
track and that we have nice results, we intend to publish the results in a journal like
Transactions on Software Engineering.

To finish both research tracks, writing two more journal papers as well as writing the
thesis, I have time until January 2016. We plan to finish the research on ProMoBox first,
as we are currently working together productively with Romuald Deshayes (Université
de Mons, “GISMO” case study), Dr. Manuel Wimmer (Technische Universität Wien),
Prof. Eugene Syriani (Université de Montréal), Dr. Levi Lucio (McGill University), and
in the near future Dr. Alexandre Petrenko (Computer Research Institute of Montréal). I
believe that such international co-operations are key to the success of a Ph.D.
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18. Schäfer, T., Knapp, A., Merz, S.: Model Checking UML State Machines and Collaborations.
ENTCS 55 (2001) 357–369

19. Rivera, J.E., Guerra, E., de Lara, J., Vallecillo, A.: Analyzing Rule-Based Behavioral Se-
mantics of Visual Modeling Languages with Maude. In: SLE. (2008) 54–73

20. Gabmeyer, S., Kaufmann, P., Seidl, M.: A classification of model checking-based verification
approaches for software models. In: VOLT. (2013)

21. Ziemann, P., Gogolla, M.: OCL Extended with Temporal Logic. In: PSI. (2003) 351–357
22. Kanso, B., Taha, S.: Temporal Constraint Support for OCL. In: SLE 2012. Volume 7745 of

Lecture Notes in Computer Science., Springer (2012) 83–103
23. Bill, R., Gabmeyer, S., Kaufmann, P., Seidl, M.: OCL meets CTL: Towards CTL-Extended

OCL Model Checking. In: OCL Workshop. Volume Vol-1092. (2013) 13–22
24. Zalila, F., Crégut, X., Pantel, M.: Leveraging Formal Verification Tools for DSML Users: A

Process Modeling Case Study. In: ISoLA. (2012) 329–343
25. Combemale, B., Crégut, X., Pantel, M.: A Design Pattern to Build Executable DSMLs and

Associated V&V Tools. In: APSEC. (2012) 282–287
26. Klein, F., Giese, H.: Joint structural and temporal property specification using timed story

scenario diagrams. In: FASE. (2007) 185–199
27. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A New Graph Rewrite

Language Based on the Unified Modeling Language and Java. In: TAGT. (2000) 296–309
28. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Specifications for Finite-

State Verification. In: ICSE. (1999) 411–420
29. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Mierlo, S.V., Ergin, H.: AToMPM:

A Web-based Modeling Environment. In: MoDELS Demonstrations. (2013)
30. Holzmann, G.J.: The Model Checker SPIN. TSE 23 (1997) 279–295
31. Kühne, T., Mezei, G., Syriani, E., Vangheluwe, H., Wimmer, M.: Explicit transformation

modeling. In: MoDELS Workshops. (2009) 240–255
32. Syriani, E.: A Multi-Paradigm Foundation for Model Transformation Language Engineering.

PhD thesis, McGill University Montreal, Canada (2011)
33. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F.: A Visual Specification Language for

Model-to-Model Transformations. In: VL/HCC. (2010) 119–126
34. Guerra, E., de Lara, J., Wimmer, M., et al.: Automated verification of model transformations

based on visual contracts. ASE 20 (2013) 5–46
35. Meyers, B., Van Gorp, P.: Towards a hybrid transformation language: Implicit and explicit

rule scheduling in story diagrams. In: Sixth International Fujaba Days, Germany (2008)
36. Muliawan, O., Meyers, B., Janssens, D.: BPMN2BPEL in MoTMoT. In: 5th International

Workshop on Graph-Based Tools, Zürich (Switzerland) (2009)
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