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Samenvatting

In model driven engineering (MDE) staan modellen centraal. Deze modellen beschrijven

een softwaresysteem en zijn in alle ontwikkelingsfases prominent aanwezig. Verschillende

soorten modellen worden gebruikt om verschillende aspecten van het systeem te mod-

elleren. Omdat deze modellen allemaal hetzelfde systeem beschrijven moeten ze consis-

tent gehouden worden. Dit gebeurt door modeltransformaties, die een model automatisch

omzetten naar een ander model.

In een MDE framework moet het mogelijk zijn om nieuwe modelleertalen en modeltrans-

formaties toe te voegen. Modeltransformaties worden in een transformatietaal gedefinieerd.

Een belangrijk deel van deze transformatietalen zijn gebaseerd op Graph Grammars. Een

Graph Grammar bestaat uit een verzameling transformatieregels. Het uitvoeren van een

dergelijke regel transformeert een deel van het model. Deze regels worden op een bepaalde

volgorde uitgevoerd, en deze volgorde kan gemanipuleerd worden aan de hand van rule

scheduling-voorzieningen van de transformatietaal.

Transformatietalen of tools kunnen rule scheduling toelaten op verschillende manieren.

Sommige talen voorzien expliciete rule scheduling in de vorm van bijvoorbeeld conditionals

en loops. Een voorbeeld hiervan is de familie van tools die Story Diagrams, gebaseerd op

Graph Grammars, ondersteunen. Andere talen ondersteunen impliciete rule scheduling,

waarbij de volgorde van regels declaratief, dus ongedefinieerd is. De originele specificatie

van Graph Grammars is hiervan een voorbeeld.

De meeste tools ondersteunen echter slechts één van beide paradigma’s. Hierdoor wor-

den in bepaalde situaties gekunstelde constructies aangewend, terwijl het probleem ele-

gant zou uitgedrukt kunnen worden in het paradigma dat niet ondersteund wordt. Op deze

manier zijn transformatiemodellen veel minder leesbaar en duidelijk dan ze zouden kun-

nen zijn. Daarbovenop moet men in het begin van de software ontwikkelingscyclus een

tool kiezen, wat betekent dat men in deze fase al voor een designparadigma moet kiezen,

terwijl dit in een veel latere fase zou moeten gebeuren.

Deze thesis biedt een oplossing voor dit probleem door de rule scheduling-voorzieningen

Story Diagrams uit te breiden met impliciete rule scheduling. Concreet houdt dit in dat taal-

constructies als nondeterminisme, prioriteiten en laagstructuren worden geïmplementeerd
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in Story Diagrams. Zo ontstaat er een transformatietaal, genaamd ND-SDM, die hybride is

ten opzichte van rule scheduling.

Als men denkt aan nondeterminisme in rule scheduling, dan blijkt men niet één een-

duidige betekenis te vinden. Wordt er slechts één van de regels geëvalueerd, of allemaal

één keer? Verschillende varianten kunnen in een bepaalde context nuttig zijn. Het is echter

onmogelijk om alle varianten te implementeren in Story Diagrams.

De implementatie in Story Diagrams voorziet daarom een plug-in-systeem voor proto-

types, waarbij nieuwe varianten makkelijk als prototype kunnen toegevoegd of verwijderd

worden. Daarnaast is de implementatie tool-onafhankelijk. Dit betekent dat de imple-

mentatie geschikt is voor gelijk welke tool die Story Diagrams ondersteunt. Deze Tool-

onafhankelijkheid wordt bereikt door het gebruik van hogere orde transformaties, of HOTs,

die transformatiemodellen zelf transformeren. De HOT neemt ND-SDM modellen als input

en transformeert ze naar Story Diagrams, waarbij het gedrag wordt behouden. De HOT

kan door de tool zelf uitgevoerd worden.

Het gebruik van ND-SDM wordt geïllustreerd aan de hand van drie transformaties. De

eerste gevalstudie gaat over een transformatie van klassediagrammen naar relationele

databasemodellen. De tweede gevalstudie is een transformatie die de werking van een

Petri Net simuleert. De laatste gevalstudie simuleert een pokerspel.

Ook andere uitbreidingen op transformatietalen kunnen geïmplementeerd worden met

hogere orde transformaties. Om dit aan te tonen worden negatieve applicatiecondities

(NACs) geïmplementeerd als HOT. NACs worden door veel tools ondersteund, maar werd

nog niet op tool-onafhankelijke manier geïmplementeerd.
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Abstract

Transformation rules can be controlled explicitly using language constructs such as a

loop or a conditional. This approach is realized in Fujaba, VMTS, MOLA and Progres.

Alternatively, transformation rules can be controlled implicitly using a fixed strategy. This

approach is realized in AGG and AToM3. When modeling transformation systems using

one approach exclusively, particular aspects could have been expressed more intuitively

using the other approach. Unfortunately, most transformation languages do not enable

one to model the control of some rules explicitly while leaving the control of other rules

unspecified. Therefore, this thesis proposes a novel integration of implicit scheduling

constructs in Story Diagrams, a language based on explicit scheduling.

It has recently been shown how UML profiles and higher order transformations enable

one to extend transformation languages in a tool independent way. This technique will

be used to produce a tool independent implementation of implicit scheduling in Story

Diagrams. Moreover, this thesis validates the generality of this approach by means of

another case study. This second case study relates to negative application conditions, a

language construct that was already supported by several transformation environments

but no transformation tool realized the construct in a tool independent way yet.

4



CHAPTER 1

Introduction

MoTMoT is a tool that uses the UML (OMG01) as language, which makes platform in-

dependence and collaboration with other tools possible (Schippers04). Therefore, when

extending the language of MoTMoT, it is very desirable that such an extension is only de-

pendent of the standard language itself, both in syntax and implementation. This means

that a model in the new language extension can always be rewritten in the original lan-

guage. Of course, these extensions would not add to the expressiveness of the language.

But this is not worrying if the language is already Turing complete. Although not making

the language more expressive, these extensions can greatly enhance the ease of use of

the modeler, as well as the readability for fellow developers and third-party non-experts.

This thesis validates a technique that allows numerous extensions for such a standardized

language.

Transformation languages are the main scope of this thesis. In this thesis, the definition

and implementation of two language extensions for SDM Story Diagrams, the transforma-

tion language of MoTMoT, are studied. Thereby it will be important that the interchange-

ability of MoTMoT is preserved. The largest part of this thesis will be the implementation

of a language extension to allow hybrid rule scheduling. The general idea of this imple-

mentation will be applicable for numerous other language extensions. To back this up,

an implementation of another language extension (negative application conditions) will be

presented.

5



In short, the extension of transformation languages and the implementation of hybrid

rule scheduling in MoTMoT will be the main contribution of this thesis. To situate hybrid

rule scheduling in transformation languages, it has to be considered that certain choices

are made when defining transformation languages. The language can be imperative (i.e.,

operational) or declarative. Explicit rule scheduling mechanisms (e.g., conditionals) tend to

be called imperative since they enable one to model the execution of transformation rules

in terms of the state of the transformation system. Languages with implicit rule scheduling

tend to be called declarative due to the absence of an explicit state concept. There is no

better choice in this matter. For certain problems implicit rule scheduling feels more intuitive,

whereas in other cases explicit rule scheduling turns out to be convenient. However, tools

tend to support only one or the other, and not both implicit and explicit - thus hybrid - rule

scheduling.

In Chapter 2 an introduction to the context and the problem of this thesis is thoroughly

explained. A new language construct that allows hybrid rule scheduling is introduced in

Chapter 3. Chapter 4 explains higher order transformations (HOTs) and the implementation

of the new language construct. In Chapter 5 three exemplary transformations are given

as cases studies that show the usefulness of the extended transformation language. In

Chapter 6, another example of a new language construct that can be implemented using

a HOT is introduced, in the form of negative application conditions (NACs). Related work,

future work and a final conclusion are presented in Chapter 7.

6



CHAPTER 2

Transformation languages and rule scheduling

This chapter presents the context of this thesis, as well as the problem statement where

this thesis originated from.

2.1 Model-driven engineering

Model-driven engineering (MDE) is a young and upcoming paradigm for software engineer-

ing. Some of the main characteristics of MDE are (Kleppe03; Bézivin04):

• the definition and extensive usage of different formal models;

• abstraction through models (”everything is a model”);

• the usage of computer aided software engineering (CASE);

• the attempt to overcome the common problems of traditional software development,

such as low productivity, portability, interoperability, maintenance and documentation;

• the definition and usage of model transformations.

In particular, OMG’s Model Driven Architecture (OMG00) is a well-known framework for

model-driven engineering.
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Model transformations are of particular importance in MDE (Sendall03). They form the

glue that binds the different models together. In this thesis the main context are transfor-

mation languages, that is, the languages that can be used to define model transformations.

2.2 Transformation languages in MDE

Transformations are critical in model-driven development. Since in MDE, homemade mod-

eling languages may be defined and integrated at any time in the development process of

a software system, transformations have to be tailored accordingly to integrate these new

languages before they can actually be used. Therefore, a highly expressive transforma-

tion language is very useful, because it facilitates defining the needed transformations. In

general, transformation languages should be formal, which means that they have precise

syntax and semantics.

Figure 2.1: The transformation architecture

Figure 2.1 is a draft of how a transformation is built and executed. Purple squares rep-

resent languages, and orange squares are models. All languages are also models. The

architecture of Figure 2.1 follows the different modeling layers in OMG’s MDA (OMG00).

Each higher level is able to define the concepts of its lower layer, and each lower layer is

an instance of its higher layer. There are no instances of models in the M0 layer. Concepts
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in the M3 level can be described by a model in the same layer. This way, there is no need

for an infinite number of layers (Kleppe03). The layers are:

• layer M0: the concrete instances, like run-time information of a running application

such as data, logs, stackframes;

• layer M1: the models (each model is specified in a modeling language);

• layer M2: the models of the modeling languages, or the metamodels (specified in a

metamodeling language);

• layer M3: the models of the metamodeling languages, or the metametamodels.

In Figure 2.1, Model A and Model B conform to their Metamodels Metamodel A and Metamodel

B. A transformation definition is modeled to transform models that conform to Metamodel

A to models that conform to Metamodel B by a transformation tool. This can be done for-

mally because the metamodels are written in a metalanguage. It is very common that these

metamodels are written in the same metalanguage, because they are usually written us-

ing the same tool. It is also common that this tool is the transformation tool as well. The

transformation definition itself is written in a transformation language, which can be under-

stood by the transformation tool. Although Figure 2.1 follows MDA’s layers to clarify the

differences in the used models, the idea of its transformation architecture can be applied to

MDE in general.

2.3 Graph Grammars

A popular technique for transforming models are Graph Grammars (also known as Graph

Rewriting). A Graph Grammar is defined by a set of rules that describe changes to a graph

(Rozenberg97; Van Gorp08a). Since models can be interpreted as graphs, many model

transformation languages are based on Graph Grammars. With their set of transformation

rules (also known as rewrite rules), graphs are transformed to new graphs. Basically, a

rule consists of two graphs that share a common subgraph (sometimes called the invariant

graph). An application of a rule goes as follows. If the first graph (also called the left graph

or left-hand side, because historically vizualized on the left-hand side of a rule) of the rule

matches a subgraph of the host graph (the graph representing the model), this subgraph

is structurally transformed according to the second graph (also called the right graph or

right-hand side).
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The left-hand side (LHS) is also called the application condition. The act of trying to

match a subgraph is called pattern matching or evaluating a rule. When a subgraph is

found, it is said that the rule matches, if not, it is said that the rule mismatches, or simply

does not match. Finding a matching subgraph causes the graph to be transformed accord-

ing to the right-hand side (RHS). This is called the application of a rule, the execution of the

side-effects, or simply the execution of a rule. The evaluation was then successful.

A note has to be made on the terminology used throughout this thesis. To be entirely

correct, it is said that a subgraph of the hostgraph matches the pattern (i.e. the left graph).

So one has to say "the pattern is matched". Sometimes however, it is simply said that "the

pattern matches", as this reads more smoothly. Saying it this way is not ambiguous, as the

pattern and the subgraph actually match one another.

2.4 Rule scheduling

As explained in the previous chapter, rules can be scheduled in many different ways in

transformation languages, as shown in Figure 2.2 (Van Gorp08a). Some transformation

languages select rules explicitly, which allows controlled scheduling of rules with features

like loops and conditionals. Other languages select rules implicitly or nondeterministically.

In this case, no explicit scheduling order is put on the set of available rules. The use

of features like priorities and layers can however constrain which rules are scheduled at

a certain point in the transformation execution. The matching of rules can be subject to

negative application conditions (NACs) or regular expressions. The application of a rule

can be done for each matching subgraph or just one. In the transformation languages used

in this thesis, the latter applies. Alternatively, a matching subgraph can be manually chosen

by interaction with the modeler.

Figure 2.2: Transformation language features for rule scheduling (Van Gorp08a)
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In transformation tools or languages that are based on Graph Grammars, it is generally

considered out of the scope of Graph Grammars to define how multiple rules are scheduled

in a model transformation.1 This means that tools or languages based on Graph Grammars

can support any of the features described in Figure 2.2.

2.5 Story-driven modeling (SDM)

The context of this thesis is Story Driven Modeling (Zündorf02). SDM is designed by Zün-

dorf as a software engineering methodology highly based on the UML. It aims to bridge

the gap between analysis techniques and the formal specifications of a software system.

This is done by supporting analysis, design and implementation with graph-like structures.

These structures form the formal model of the system. Also, the input and output data of

the system are treated as graphs.

2.5.1 Story Diagrams

The core of a system specification is the main class or transformation class, with one or

more transformation methods. The behavior of a system is defined by so-called Story

Diagrams. For every Story Diagram, there is a method in the main class. Story Diagrams

are activated by a call to the method it is defined for. Therefore, they can be considered

method bodies.

Since the input to the system can be viewed as a graph, in Story Diagrams, these graphs

are transformed using a variant of Graph Grammars. Story Diagrams are thus a set of

scheduled rules, called Story Patterns. Roughly, Story Diagrams are represented by UML

Activity Diagrams, which define the control flow of the Story Patterns. Given the nature of

Activity Diagrams, SDM thus employs explicit rule scheduling.

More in detail, each state in a Story Diagram contains a Story Pattern. The transitions

between states define in which order the patterns are evaluated. Apart from the Activity

Diagram syntax, some elements of Story Diagrams are provided by introducing some ad-

ditional language constructs. Most of them (i.e. the ones that will be used throughout this

thesis) are given in Table 2.1.

1However, in the original definition of Graph Grammars, rules are all scheduled nondeterministically, and a
so-called start graph is given, which is the first graph that is evaluated. Rules are thus scheduled implicitly
(Rozenberg97; Van Gorp08a).
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Concept Annotated element Description

success Transition is followed after successful evaluation of a rule

failure Transition is followed after unsuccessful evaluation of a rule

loop ActionState iteratively loops over a rule

each time Transition followed each iteration

link (String) ActionState call to transformation method

constraint (String) ActionState application condition

Table 2.1: Language constructs in Story Diagrams

When the rule of a state is evaluated, an outgoing transition annotated with success

is followed if the rule matched. If the rule mismatched, an outgoing failure transition is

followed. If there is no annotated transition, the outgoing blank transition is followed. A

rule is executed repeatedly if it is annotated with the loop construct. More specifically, it is

executed for each subgraph the rule matches. Each time, an outgoing each time transition

is followed, allowing the iterative execution of a nested flow. Another Story Diagram can be

called with a method call in a link state. A boolean expression can be used as constraint

on a state as an additional application condition. If the Story Pattern of the state matches

but the constraint does not, the rule does not match.

2.5.2 Story Patterns

Story Patterns define the rewriting rules scheduled by the Story Diagrams. They are thus

closely related to Graph Grammars. But, instead of having to define two graphs for each

rule which is the case in Graph Grammars, only one graph is needed. This graph consists

of nodes and links, with some of them annotated with create or destroy. They will be

created and destroyed respectively when the side-effects are executed. So in terms of

Graph Grammars, the left diagram would be the subgraph of all elements that are not

annotated at all or annotated with destroy, and the right diagram would be the subgraph of

all elements that are not annotated at all or annotated with create.

Since SDM is based on the UML, Story Patterns are represented by Class Diagrams.

They are visualized inside their corresponding states in the Story Diagram. Classes are

nodes and associations are links. Labels (i.e. names and multiplicities) are added to the

links, adding to the expressiveness of the pattern definition. Like Story Diagrams, there are

some additional language constructs, presented in Table 2.2.

Create and destroy have already been explained as part of the side-effect of the rule. A

bound node is a node that was part of a previously matched rule, so it can be reused as a
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Concept Annotated elements Description

create UML Class, UML Association creates node as side-effect

destroy UML Class, UML Association destroys node as side-effect

bound UML Class node matched by previous rule

closure UML Association transitive closure for link label

constraint (String) UML Class application condition

Table 2.2: Language constructs in Story Patterns

fixed node. A transitive closure can be put on an association, meaning that this pattern can

match for nodes with one or more similar (meaning that the labels are equal to the label on

the given association) links between them. A constraint is a boolean expression that can

be put on a node as an additional application condition.

2.6 Explicit rule scheduling in MoTMoT

The tool that represents the school of explicit rule scheduling will be MoTMoT in this thesis.

MoTMoT (Van Gorp07) is based on Story Driven Modeling. In contrast to SDM in Fujaba

(Fujaba07), MoTMoT uses the standard UML 1.4 profile (OMG01). As a consequence, the

syntax of the models is UML compliant. Instead of employing a new UML-like syntax for

Story Diagrams, MoTMoT strictly uses a combination of UML Activity Diagrams and UML

Class Diagrams as an equivalent of Story Diagrams (Van Gorp08a). The ubiquitous usage

of wide-spread UML is thus maintained. The main difference is that MoTMoT takes this

UML basis a step further. In MoTMoT, the Activity Diagram part of Story Diagrams is fully

UML compliant, and therefore the Story Patterns can not be visualized inside the states.

A state may contain a tagged value named motmot.transprimitive with type UML Package,

that refers to the respective Story Pattern. A Story Pattern is implemented as a UML Class

Diagram residing in this package. MoTMoT uses explicit rule scheduling by using Activity

Diagrams. The language constructs of SDM, given in Tables 2.1 and 2.2, are implemented

as UML Stereotypes and TagDefinitions.

The usage of a UML profile is an advantage of MoTMoT (Schippers04). A basic profile

for transformation modeling was designed in (Van Gorp08b) as a means to allow portability

and reuse between tools2. On the other hand, a tool specialized in SDM, such as Fujaba,

makes modeling and reading better as it visualizes Story Diagrams by putting the Story

2The language constructs in Tables 2.1 and 2.2 are actually part of this profile.
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Patterns inside the states (Zündorf02).

MoTMoT is only a transformation tool, not a modeling tool. MoTMoT can read mod-

els and transformations, which are also models, and they are stored as XML Metadata

Interchange (XMI) (OMG05). Therefore, in the context of MoTMoT, the definition of a trans-

formation can be called a transformation model. Throughout this thesis, the award-winning

MagicDraw tool (No Magic09) is used as modeling tool.

Other tools supporting explicit rule scheduling are the previously mentioned SDM tool Fu-

jaba (Fujaba07), VMTS (Levendovszky07), MOLA (Kalnins08), MOFLON (Amelunxen09),

and Progres (Schürr09a).

2.7 Implicit rule scheduling in AToM3

In this thesis, AToM3 (De Lara00) represents the tools that use implicit rule scheduling. In

AToM3, rules are also heavily based on Graph Grammars. Additionally to the left-hand side

(LHS), a Condition can be added as some Python code. Additional side-effects can also

be added as Python code in the Action.

All defined rules are scheduled declaratively using priorities. Only if none of the rules of

a higher priority match, the rule of a certain priority can be evaluated. Note that the implicit

scheduling paradigm of AToM3 refers to the order of evaluation between rules. It does not

refer to the order in which subgraphs are matched, if more than one subgraph of the model

matches the LHS graph of the evaluating rule. This is random (and thus declarative) in

AToM3. When running a transformation, the application of a rule is performed one at a

time (as is the case in all transformation languages used throughout this thesis), but it is of

course possible in AToM3 (and very common) that the same rule is applied consecutively.

AToM3 also offers a feature where a matching graph can be chosen by user interaction.

Another tool that supports implicit rule scheduling is AGG (Täntzer97). As said previously,

in principle, Graph Grammars also use implicit rule scheduling, as there is no order of rule

application at all. Sometimes, like in AGG, the first graph that must be applied (the start

graph) is given.
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2.8 The schism between implicit and explicit rule scheduling

There is a schism between implicit and explicit rule scheduling. It turns out that trans-

formation tools only tend to support one of the two given paradigms of rule scheduling.

Therefore, the choice between implicit and explicit rule scheduling has to be made at the

moment when a tool is chosen, that is, before the design and implementation phase of the

development of the transformation. This is in contrast to usual tool (and language) choices

in other software projects, where this choice depends on the project’s architecture rather

than on its design or implementation. For example, when developing a web application,

the developer might want to use Ruby on Rails or the Spring framework. When a devel-

oper wants to program artificial intelligence, he might choose Lisp, Prolog or Python. These

choices can be easily made because certain languages, frameworks and tools have proven

to offer the right concepts for solving these problems.

This is not the case in the choice of a transformation tool. The choice of a tool, and thus

of a rule scheduling paradigm, depends on the developer’s implementation of the transfor-

mation rather than the architecture or nature of the project. For example, when a developer

feels he will need many conditionals, and will want to heavily define the control flow of his

transformation, he will want to use a tool that supports explicit rule scheduling. On the

other hand, when a developer wants to keep the order of execution of rules as abstract

as possible in order to avoid over-specification of his transformation, he will want to use a

tool that supports implicit rule scheduling. This design choice is part of the implementation

phase of the transformation, and should not be made in this early development phase. Un-

fortunately, when choosing between the present transformation tools, a developer is forced

to make such a choice at the very beginning of the development cycle.

This problem becomes even more apparent when thinking of a framework for model

driven development. This framework would contain a transformation tool and numerous

useful transformations between different modeling languages. On top of that, the framework

must allow developers to add new modeling languages and transformations for these new

languages. When choosing tool support for such a framework, there are three options.

2.8.1 Solution 1 - Always using the same transformation tool

In the first solution, the framework forces the user to model all transformations using either

implicit or explicit rule scheduling, possibly making some transformations a lot less read-

able, too verbose and full of code smells. This is the current situation. In fact this is not a

solution to the problem, it is evading it and dealing with the consequences.
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2.8.2 Solution 2 - A bridge between data representations for different tools

In the second solution, the framework includes more than one transformation tool, allow-

ing both implicit and explicit rule scheduling. This would allow developers to choose their

paradigm for each different transformation model, but it does not solve the previously stated

problem where the developer has to choose a paradigm too early in the development cycle.

A developer should be able to use both paradigms in the same transformation definition.

On top of that, the models resulting from a transformation execution performed by these

tools must be somehow interchangeable between the different transformation tools, to al-

low the models to be kept synchronized (Kleppe03). This would be possible if all the tools

in the framework would use the same language for data representation for its models and

metamodels, such as XMI (OMG05) or GXL (Holt00). Unfortunately, the lack of a standard

hinders this option. However, for example GXL is supported by a number of tools, so ex-

changing models between GXL tools is of course no problem. Using tools that support a

different data representation language can become very cumbersome however, but trans-

formations between these languages exist. For example, MOF based XMI to Ecore/EMF

based XMI has been described as an XSLT transformation (Gerber03).

2.8.3 Solution 3 - Using a tool supporting both paradigms

A better solution would be using one tool, or transformation language, that supports both

paradigms. That way, there can be no interchangeability problems of the transformed mod-

els. This tool or language would be hybrid with respect to rule scheduling. This language

can be either completely new or originate from an existing language that already supports

one of the paradigms.

Developing a new language from scratch is not necessary when there are already so

many qualified languages. Extending a language seems to be a better idea. The ex-

tended language must allow new language constructs to model the features of the oppos-

ing paradigm. In other words, the extended language should allow all of the features listed

in Table 2.3. Applying this to the two given tools, this means that we have a choice be-

tween either implementing ordering, conditionals and iterations in AToM3, or implementing

nondeterministic scheduling, layers and priorities in MoTMoT.

When extending a language, it is important to take into account that the new language

constructs should be easy to use and intuitive. It is hard to think of visually intuitive con-

structs for ordering, conditionals and iterations to extend a language that uses implicit

rule scheduling. In Chapter 3 it turns out that implementing implicit rule scheduling (i.e.
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Constructs for implicit rule scheduling Constructs for explicit rule scheduling

Basic language constructs

Nondeterministic scheduling Ordering

Conditionals

Optional language constructs

Layers Iterations

Priorities

Table 2.3: Language constructs in implicit and explicit rule scheduling

nondeterministic scheduling, layers and priorities) in a language that supports explicit rule

scheduling can be done by adding readable and intuitive constructs that are easy to use.

2.9 Conclusion of this chapter

In this chapter the context of this thesis was introduced. In model-driven engineering, find-

ing a suitable language for modeling the indispensable model transformations is essential.

In this so-called transformation language, there are two separate paradigms with respect

to rule scheduling: implicit and explicit rule scheduling. AToM3 is an example of a tool that

uses implicit rule scheduling, and MoTMoT is an example of a tool that uses explicit rule

scheduling. As tools only support the one or the other, this reduces the ability of the lan-

guage as a flexible, easy-to-use, easy-to-read transformation language, while this is a very

important property for models (if not everything) in a volatile MDE environment and transfor-

mation languages in particular. That is why a transformation language with both implicit and

explicit (i.e. hybrid) rule scheduling would be very useful. It turns out that extending a lan-

guage that supports explicit rule scheduling would be the best choice.
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CHAPTER 3

ND-SDM - Hybrid rule scheduling in SDM

This chapter introduces some language constructs for the integration of implicit rule schedul-

ing in an imperative language in order to allow both implicit and explicit rule scheduling. The

language constructs will be implemented in MoTMoT, but can be implemented in any tool

that supports Story Driven Modeling (SDM) as transformation language. The extended lan-

guage that arises from these new constructs will be called ND-SDM (nondeterminism in

SDM) throughout this thesis.

First, a new construct for nondeterminism is introduced that allows modeling the differ-

ent rules without having to impose an order on them. Moreover, the syntax allows both

paradigms to be used simultaneously in the same transformation model. When thinking of

the exact meaning of this construct, it turns that multiple possibilities arise. Therefore, all

possibilities that seem relevant are analyzed and classified.

Next, some more language extensions are presented that implement popular scheduling

concepts, namely layers (as in AGG) and priorities (as in AToM3), that are available in tools

that support implicit rule scheduling.

The resulting ND-SDM language is hybrid (imperative as well as declarative) with regards

to rule scheduling. ND-SDM is not more expressive than the SDM language (in fact, they

are both Turing complete). This means that a model written in ND-SDM can be rewritten in

Story Diagrams. This property will be used in the implementation of ND-SDM in Chapter 4.

The usefulness of this language is shown in Chapter 5, where a few case studies are given.
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To stay in accordance with the UML profile for SDM like MoTMoT envisions, this im-

plementation of ND-SDM must also be UML compliant. Similar to the syntax of the SDM

constructs in MoTMoT, UML Stereotypes and TaggedValues (OMG01) can be used as syn-

tax for the new constructs. When implementing ND-SDM in other SDM tools, alternative

visualizations for these constructs can be easily thought of.

3.1 Implicit rule scheduling

As stated previously, there are several constructs in SDM Story Diagrams to allow explicit

rule scheduling. This section presents syntax and semantics for a new language construct

that allows nondeterministic scheduling. Hence, this new construct is part of the new ND-

SDM language.

3.1.1 Syntax

As previously said, the new language construct should be UML compliant. This limits the

options for visualization of the new construct. By contrast, in Fujaba (Fujaba07) for ex-

ample, it would be possible to visually show that rules are scheduled nondeterministically

by dividing up the state in question into a number of sections, according to the number of

states that are scheduled nondeterministically. In each section, the pattern of each rule

can then be displayed. Unfortunately, this is not possible for ND-SDM if UML compliance

has to be maintained. However, a very similar notation to motmot.transprimitive (see also

Section 2.6) can be used.

Figure 3.1 shows in a generic example how rules can be scheduled in MoTMoT using

UML compliant Activity Diagrams (see also Section 2.6). A diagram written in SDM is given,

and as a consequence it employs explicit rule scheduling. Inside each state, on the first

line, there is a rule name, like Rule A. The tagged value motmot.transprimitive is visualized

between braces on the second line. Its value contains the reference to a UML Package,

in this case named SP A, containing the story pattern modeled as a UML Class Diagram

(Van Gorp08a). In effect, the value of this tagged value states which pattern has to be

evaluated when entering the state. This is different from original Story Diagrams, where

rules are visually embedded in the Activity Diagram. The transitions show the direction of

scheduling.

19



Rule A
{motmot.transprimitive=SP A}

Rule B
{motmot.transprimitive=SP B}

Rule C
{motmot.transprimitive=SP C}

Figure 3.1: Three rules scheduled consecutively in MoTMoT

Rule C
{motmot.transprimitive=SP C}

Rule A
{motmot.transprimitive=SP A}

Rule B
{motmot.transprimitive=SP B}

Figure 3.2: Three rules in another order
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When one wants to schedule Rules A, B and C implicitly, MoTMoT fails to offer a solution.

In MoTMoT, only explicit rule scheduling is possible, so an order has to be imposed when

scheduling the rules. In this case, every Story Diagram where the rules are scheduled in

any order, as in Figures 3.1 and 3.2, suffers from overspecification.

This chapter proposes a solution for this problem with a new language construct in the

new language ND-SDM. An example of what this construct would look like is shown in Fig-

ure 3.3. The three rules are scheduled inside one state, disposing of the notion of order in

the evaluation of the rules. In this new language construct, the three rules are summed up

as a motmot.transprimitiveND tagged value. Such a state is called a nondeterministic state

throughout the rest of this thesis. More general, a nondeterministic state can reference

more than one UML Package and chooses nondeterministically in which order the pack-

ages are evaluated, hence "ND" in the name. When control arrives in this state, the rules

are scheduled implicitly. Once these rules have been evaluated, control switches back to

explicit rule scheduling and follows the outgoing transition of the state.

Rule A, B and C
{motmot.transprimitiveND=SP A, SP B, SP C}

 

Figure 3.3: Three rules scheduled implicitly in ND-SDM

Figure 3.4: Three rules scheduled implicitly in AToM3
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Figure 3.5: The three rules scheduled implicitly in AGG

One can argue that the motmot.transprimitiveND tag still imposes an order to the rules,

as the rules are visually summed up in a particular order. However, in Story Diagrams

the semantics of UML Activity Diagrams are followed. First, by definition only transitions

impose an order on states. Second, when tags reference multiple values, there is by defi-

nition no ordering between these values (OMG01). Moreover, in tools that support implicit

rule scheduling, the "listed" rules are also subject to a visual order. For example, an im-

plementation in AToM3 of the three rules is shown in Figure 3.4. The rules are still visually

ordered, but they all have the same priority (i.e. 1) and can be evaluated in any order. AGG

offers a similar list-like visualization, as in Figure 3.5.

A nondeterministic state does not only allow some rules to be scheduled implicitly. Be-

sides story patterns, it can also reference whole Activity Diagrams. This allows the modeler

not only to use implicit rule scheduling inside a diagram based on explicit rule scheduling,

but also supports explicit rule scheduling in a diagram based on implicit rule scheduling. In

this way, the language construct truly allows hybrid scheduling.

However, a small problem may occur when putting many states into one nondeterministic

state. Constraints in motmot.constraint tags can not be used anymore on nondeterministic

states, as it is impossible to derive to which of the rules these constraints apply. This is not

a big problem however, as these constraints can be put on any node of the pattern it relates

to, while maintaining the same behavior. Alternatively, instead of a Story Pattern, a new

Story Diagram can be referenced by the nondeterministic state, and this Story Diagram

can obviously include states with motmot.constraint tags.
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3.1.2 Semantics

An obvious question arises. What is the exact meaning of this state? Nondeterministic

states can be implemented according to many different criteria. Can the same rule be

evaluated many times? Will the algorithm stop after a rule failed to match? Many different

interpretations can be considered, and each of them can turn out to be useful in a certain

context.

Two useful variants

In particular, two different interpretations will turn out to be most useful in the case studies

in Chapter 5. As an example for the first variant, consider a housewife managing her

household. There are three tasks she must attend to:

• mop up a dirty room;

• help a child with his or her homework;

• clean a dirty window.

There are several rooms, children and windows in her house, and these tasks have to be

executed for each room, child or window. It doesn’t matter in which order all these tasks

are performed, but the job has to be done by the end of the day. Because the scheduling

order is not important, the tasks are best modeled using implicit rule scheduling.

The top side of Figure 3.6 models the household using the new language construct of

ND-SDM presented in Section 3.1.1. The housewife has to get up before performing any

household tasks, so this is scheduled explicitly. After the tasks are done, her spouse takes

her to dinner, because he is delighted with the finished work.

The states Get up and Have dinner are MoTMoT’s usual motmot.transprimitive states

(see also Section 2.6). The state Manage household is a nondeterministic state containing

a motmot.transprimitiveND tag with references to the rules representing mopping, helping

and cleaning, similar to the new ND-SDM construct introduced in Section 3.1.1. However,

there is a subtle difference with the nondeterministic state of Figure 3.3: the nondetermin-

istic state contains a �loop� stereotype. This stereotype denotes that the three different

tasks can be executed more than once. In general, stereotypes on the nondeterministic

state can be used to indicate which variant is applied.

As said previously, one of the referenced packages in Manage household could con-

tain another Activity Diagram with several scheduled rules instead of just a rule. In this
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Get up
{motmot.transprimitive=getup}

 «loop» 
Manage household

{motmot.transprimitiveND=mopup, help, clean}

Have dinner
{motmot.transprimitive=dinner}

:=

Get up
{motmot.transprimitive=getup}

Choose rule

Mop up room
{motmot.transprimitive=mopup}

Clean window
{motmot.transprimitive=clean}

Help child
{motmot.transprimitive=help}

Ignore next time

Have dinner
{motmot.transprimitive=dinner}

Clear ignore set
[all ignored]

[else]

 «failure»  «success» 

[choice == 1]

[choice == 2]

[choice == 3]

Figure 3.6: A household modeled using hybrid (top) and explicit (bottom) rule scheduling
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way it could be modeled more in detail how, for example, the housewife cleans a window.

The Activity Diagram could start with the initial state, with a transition to a state Fetch

tools, from which a transition goes to a nondeterministic state clean inner and outer

window-glass, from which a transition goes to a nondeterministic state dry inner and

outer window-glass, from which a transition goes to a state Put away tools, from which

a transition goes to a final state.

In the bottom diagram of Figure 3.6 it is modeled what the top diagram exactly means.

Both are equivalent, but the bottom diagram uses plain old explicit rule scheduling. The

nondeterministic state is replaced with several states that are modeled explicitly, thus ac-

cording to the existing language featured in MoTMoT. After getting up, a rule is chosen1,

meaning that a household task is chosen. According to this choice, one of the task states

is entered, for example the Mop up room state. Because all rooms have yet to be mopped,

a certain room is chosen and eventually mopped. The�success� transition is followed to

the Clear ignore set state, which is explained below. From the Clear ignore set state

the transition is followed to the Choose rule state. In other words, a task is finished (that

is, one room is mopped, but there might be several other dirty rooms), and the housewife

is ready to choose the next task.

Having completed a number of tasks, it might occur that for example the Mop up room

task is chosen, but there are no rooms left to be mopped (i.e. the rule doesn’t match). In

this case, the �failure� transition is followed to the Ignore next time state. There,

the rule, in this case Mop up room, is added to a set called the ignore set. This means

that the housewife has concluded that all rooms are cleaned, so there is no point in trying

to find dirty rooms at some later point that day, and she will ignore the Mop up room task.

Then, the transition is followed to the Choose rule state. Now, a new rule is chosen with

the exception of Mop up room, as this rule would not match anyway. In a following iteration,

a window is cleaned for example. The transition to Clear ignore set is followed. In this

state, the ignore set is cleared (i.e. no tasks will be ignored when choosing a new task),

because it might occur that due to the completion of the previous task, an ignored task

might match again. In this case, the soapy water used when cleaning on the window might

spread on the floor, so the floor has to be mopped again. So next iteration, the ignore set

is empty again. If all tasks are done, all three would automatically end up in the ignore

set. Then, from the Ignore next time state, the transition is followed to the Have dinner

state. An example execution is given in Table 3.1 for a household with three rooms (say

r1, r2, r3), two children (say c1, c2) and four windows (say w1, w2, w3, w4). Note that in
1In the current implementation of ND-SDM, this choice is made by a random number generator. It can also be

done by a fixed choice, or by letting the user choose at run-time. However, in this context, it is not that important
how the choice is really made. See also Chapter 4.
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iteration 9, by cleaning window 3, room 3 gets dirty again. Every other time the housewife

cleans a window, she manages to keep the room clean. After iteration 14, the Have dinner

state is entered.

# Rule chosen Subgraph Tasks to be done Ignore set

1 Mop up room room 2 r1,r3,c1,c2,w1,w2,w3,w4 {}

2 Clean window window 4 r1,r3,c1,c2,w1,w2,w3 {}

3 Clean window window 1 r1,r3,c1,c2,w2,w3 {}

4 Mop up room room 1 r3,c1,c2,w2,w3 {}

5 Help child child 1 r3,c2,w2,w3 {}

6 Mop up room room 3 c2,w2,w3 {}

7 Clean window window 2 c2,w3 {}

8 Mop up room - c2,w3 {mopup}

9 Clean window window 3 r3,c2 {}

10 Help child child 2 r3 {}

11 Mop up room room 3 - {}

12 Help child - - {help}

13 Mop up room - - {mopup, help}

14 Clean window - - {mopup, help, clean}

Table 3.1: A possible execution order of the househould tasks

It turns out that the behavior of this variant can be described briefly as keep matching

rules until all failed to match. Because each task can be done more than once, a�loop�
stereotype2 is used on the nondeterministic state at the left hand side.

An example of the second variant is given in Figure 3.7. It models the way a sous chef

composes a plate. The sous chef needs to apply asparagus, beef and mashed potatoes.

Note that this nondeterministic state does not have a �loop� stereotype, because the

same rule must not be applied twice. Again, the order in which these ingredients are

applied to the plate is not important. However, in a fancy restaurant, the presentation of the

plate is essential. If the sous chef fails applying any of these ingredients properly, the plate

goes wrong, and the sous chef has to start over by fetching a new plate.

According to the top diagram of Figure 3.7, the sous chef first has to fetch a plate and can

then apply the ingredients. When failing, the sous chef has to start over, when succeeding,

2Originally in MoTMoT, this stereotype enumerates all possible subgraphs one by one (and only once) as
explained in Section A.6.2 of (Zündorf02). This is not the case in this usage of the stereotype. The same subgraph
can be evaluated several times. The stereotype is used to denote the iterating nature of the variant.
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Fetch plate
{motmot.transprimitive=fetch}

Apply ingredients
{motmot.transprimitiveND=asparagus, beef, mash}

 «failure» 

 «success» 

:=

Fetch plate
{motmot.transprimitive=fetch}

Choose rule

Apply asparagus
{motmot.transprimitive=asparagus}

Apply mashed patatoes
{motmot.transprimitive=mash}

Apply beef
{motmot.transprimitive=beef}

Add to ignore set
[all ignored]

[else]

 «failure» 

 «failure» 

 «failure» 

 «success»  «success»  «success» 

[choice == 1]

[choice == 2]

[choice == 3]

Figure 3.7: A model of the composition of a plate in a restaurant using hybrid (top) and
explicit (bottom) rule scheduling
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the sous chef’s job is done. In the bottom diagram, the meaning of the top diagram with

the nondeterministic state in particular is modeled in detail. After fetching a plate, the

sous chef can apply one of the three ingredients. When successful, the sous chef applies

another ingredient (not the same because the performed rule is added to an ignore set),

and finally the sous chef applies the final ingredient. However, if he fails, he starts over.

In this example, the variant means match each rule once until one fails to match. Each

rule can be executed or evaluated at most once, which is illustrated by the absence of the

�loop� stereotype.

As a conclusion, it seems appropriate to define the ND-SDM language to behave like the

first variant in the case of a�loop� stereotype, and like the second variant when there is

no stereotype. This means that a modeler is able to use two variants of nondeterministic

scheduling. However, there may be more useful variants besides these two.

All possible relevant variants

The previous section presented two variants of a nondeterministic state that turn out to be

most useful (see also Chapter 5 for case studies). However, there are many other variants,

which may also turn out to be useful in a certain context. Therefore, it is useful to analyze

all possible variants.

Let us analyze the two previous examples, with nondeterministic states interpreted as

keep matching rules until all failed to match and match each rule once until one fails to

match. They resemble each other in that there is a nondeterministic choice between some

available rules. This choice is made iteratively. The variants differ in how these iterations

are terminated. In the first variant, termination only occurs when all rules failed to match. In

the second variant, termination can occur when all rules matched at some point, or when a

rule fails. Also, in the second variant, any rule can only be evaluated once. In other words,

when a rule is evaluated, it must be ignored in the next iteration.

In conclusion, different interpretations can be made according to whether a rule, or all

rules, matched after evaluation (succeeded), or failed to match (failed). There are numer-

ous variants that can be useful in a certain context, but it turns out that four dimensions

cover the relevant variants:

• terminate/continue after one success or terminate after all succeeded at some point;

• terminate/continue after one failure or terminate after all failed at some point;

• remove/keep a rule after success;

• remove/keep a rule after failure.
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It turns out that the first two dimensions address the termination criteria of the nonde-

terministic state. These two dimensions are used in disjunction (OR). They can also be

used in conjunction (AND), but those variants (e.g. terminate after all succeeded and one

failed) turn out to be somewhat far-fetched. The last two dimensions address the per-rule

repetition criteria and they must be used in conjunction. So taking these possibilities into

account, it means that we will see 36 (3*3*2*2) combinations.

All variants ignore failed rules (in the aforementioned ignore set) until any rule succeeds

in order to boost performance and allow pseudo-nondeterministic implementations (which

would impose an order on the rules, rather than choosing a rule at run-time). It also means

that when all rules fail consequently to match, the nondeterministic state is exited. In this

way, endless loops that are caused by rules that do not match, are avoided.

Taking these criteria into account, the variant of the household problem (keep matching

rules until all failed to match) and the restaurant problem (match each rule once until one

fails to match) can be described as in Table 3.2. Note that in the restaurant problem, it

makes no difference whether the variant is defined to keep or remove a rule after failure,

because the iterations are ended after the first failure. This suggests that some combina-

tions of the criteria might result in the same variant. All the possibilities are presented in

The household problem The restaurant problem

continue after one success terminate after all succeeded at some point

continue after one failure terminate after one failure

keep a rule after success remove a rule after success

keep a rule after failure keep a rule after failure

Table 3.2: The properties of the household problem and restaurant problem

Tables 3.3, 3.4 and 3.5 below, where the first two dimensions are combined in rows and the

last two are combined in columns. As said, many combinations result in the same variants.

In fact, their are 14 different variants, and each has its own color.

The tables can be read as follows: the upper left combination of the diagram, part of

variant try one, follows criteria S1∨F1/S-∧F- (see legend). According to termination criteria

S1∨F1, the iterations are terminated after a successful rule or a failed rule (i.e. after the

evaluation and possible execution of the first rule). According to repetition criteria S-∧F-,

a rule is ignored after it failed and after it succeeded (i.e. the same rule can never be

evaluated again). In this case, the repetition criteria do not really matter, since the variant
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terminates iterations after the first rule. Therefore, all possibilities with termination criteria

S1∨F1 (i.e. the first row) are the same variant: try one.

The meaning of each possibility in Tables 3.3, 3.4 and 3.5 is illustrated with a simple,

concise diagram. Since all variants in the tables below share similarities, their diagrams all

use a combination of the following states:

• ? (choose): this state chooses and evaluates an available rule. An available rule

is a rule that is not in ignore set (as explained in the household example) or ignore2

set. When the chosen rule matches, its side-effects are executed and the�success�
transition, here denoted by s, is followed. If the rule doesn’t match, the failure transi-

tion, here denoted by f, is followed;

• i and i2 (ignore and ignore2): these states put the evaluated rule in an ignore

set, respectively ignore set and ignore2 set. When an outgoing transition has

a guard [i full] or [i2 full], it means that every available rule is in respectively

ignore set or ignore2 set. ignore set and ignore2 set are technically the same,

but in some variants two different ignore sets are needed;

• _i (clear ignore): this states empties the ignore set ignore set. This means that

the ignored rules can be chosen again in the choose state;

• r and r2 (remember and remember2): these states put the evaluated rule in a set

that remembers it. The rules that are elements of these remember sets are not ig-

nored by the choose state. These sets are used to track which rules have been

already evaluated and/or executed.

These variants do not take the return value of the nondeterministic state into account. In

MoTMoT, a motmot.transprimitive state returns true when its rule matched or false when

it didn’t, which means that respectively a �success� link or a �failure� transition will

be followed. Hence, variants of nondeterministic states should also take return values into

account.

A natural policy for the return value would be that if the state is exited according to a

termination criterion it implemented, it returns true. If the state was exited abnormally, false

is returned. For example, consider the variant where termination occurs after all rules ever

succeeded (class S∗ in Table 3.4). When all rules fail to match consequently before all

rules ever matched, the nondeterministic state would be exited abnormally, returning false.

Note that, when this return value policy would be applied to the variants, there would be

more than only 14 different variants. For example, variant A following criteria S∗∨F∗/S-∧F-
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would be different from variant B following criteria S∗/S-∧F-. A would always return true if

all rules matched or all failed to match, but it would return false if some rules matched and

others didn’t. On the other hand, B would return false when one of the rules failed to match.

However, this policy might also result in unnatural behavior in some cases. The variant

of the household problem (the bottom right variant match until all fail, φ/φ) could never

return true, as it can only terminate "abnormally" by failing to match all rules consecutively.

However, it might be more desirable to some modelers that true is returned if one rule

matched at some point. Other modelers want the variant to return true if all rules matched

at some point. This discussion can occur for several other variants too.

The purpose of this section is to show that these differences must be considered when

implementing a variant for the implementation of a nondeterministic state. 14 variants are

presented in Tables 3.3, 3.4 and 3.5, but infinitely more are possible (e.g. taking the return

value into account, looping exactly five times, etc.). In other words, all possible variants

can not be implemented when realizing ND-SDM. Moreover, doing so would make it harder

to come up with suitable syntactical differences (in the form of stereotypes and tags on

the nondeterministic state) between all variants. The section also shows that the exact

meaning of variants can differ slightly from modeler to modeler. Therefore, when discussing

the implementation in Chapter 4, it is taken into account that it should be easy for a modeler

to add his own variants in the implementation of his own transformation.
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Legend

S1: terminate after one success S∗: terminate after all ever succeeded

F1: terminate after one failure F∗: terminate after all ever failed

S-: remove a rule after success

F-: remove a rule after failure

?: chooses a rule i: add rule to ignore set

i2: add rule to another ignore set _i: ignore set is cleared

r: rule is remembered r2: rule is remembered in another set

+: rule matched -: rule didn’t match

S-∧F- S- F- φ

S1∨F1

try one

?
f s

S1∨F∗

S1

match one

?

i

f s

[i full]

[else]

Table 3.3: Possible variants of implicit rule scheduling
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S-∧F- S- F- φ

S∗∨F1

match all once
until one fails

?

i

f s

[i full]

[else]

match until all
matched once or
one fails

?

r

f s

[r full]

[else]

S∗∨F∗

try all once

?

i

f s

[i full]

[else]

match all once
until all failed
once

?

i _i

r i2

f s

[r full]

[else]

[i full]
[else]

[i2 full]

[else]

match succeed-
ing until all
matched once

?

i r

f s

[i full]

[else]

[r full]

[else]

match until all
matched once or
all failed once

?

i _i

r r2

f s

[r full]

[else]

[i full]
[else]

[r2 full]

[else]

S∗

match all once

?

i _i

i2

f s

[i full]

[else]

[i2 full]

[else]

match succeed-
ing until all failed
once

?

i

f s

[i full]

[else]

match until all
matched once

?

i _i

r

f s

[i full]

[else]

[r full]

[else]

Table 3.4: Possible variants of implicit rule scheduling (continued)
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S-∧F- S- F- φ

F1

match all once
until one fails

?

i

f s

[i full]

[else]

match until one
fails

?
f s

F∗

try all once

?

i

f s

[i full]

[else]

match succeed-
ing until all failed
once

?

i

f s

[i full]

[else]

match all until all
failed once

?

i

r

_i

f s

[i full] [else]

[r full]

[else]

φ

match all once

?

i _i

i2

f s

[i full]

[else]

[i2 full]

[else]

match until all fail

?

i _i

f s

[i full]

[else]

Table 3.5: Possible variants of implicit rule scheduling (continued)
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3.2 Layers

Literature proposes helpful language constructs for implicit rule scheduling. Because the

goal of designing ND-SDM is to facilitate the modeling of model transformations, all remain-

ing constructs of Table 2.3 (i.e. layers and priorities) should be available in ND-SDM. As it

turns out, they can be easily implemented.

In 1997, Rekers and Schürr introduced layers as a means to order implicitly scheduled

rules (Rekers97). The need to order rules can be interpreted as an early need for a hybrid

transformation language with respect to rule scheduling. Layers are for instance imple-

mented in AGG. Layers allow rules or groups of rules to be evaluated in a certain order.

This behavior can be easily obtained in ND-SDM by simply using transitions between dif-

ferent (nondeterministic) states as shown in an example in Figure 3.8.

Rule A and B
{motmot.transprimitiveND=SP A, SP B}

Rule C, D and E
{motmot.transprimitiveND=SP C, SP D, SP E}

Rule F and G
{motmot.transprimitiveND=SP F, SP G}

Figure 3.8: A series of implicitly scheduled rules with three layers

3.3 Priorities

Another scheduling mechanism for implicit rule scheduling is the use of priorities. The

role of priorities in rule scheduling was first described by Kaplan and Goering in 1989

(Kaplan89). It is implemented in AToM3 (see also Section 2.7). Priorities are similar to lay-

ers. In case of priorities however, rules with a higher priority are always evaluated first. Only

when rules with a higher priority fail to match, rules with a lower priority can be evaluated.

Priorities are realized in AToM3.
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The first question that arises when thinking of realizing priorities in ND-SDM is how prior-

ities will be visualized. One could argue that rules ordered implicitly with priorities must be

modeled into one state, because they are in the first place a set of rules scheduled implicitly.

It would be very hard to achieve this syntactically while maintaining UML compliance. For

instance, it is not possible to have a set of ordered pairs (UmlPackage,priority) as tagged

value. So a notation in the form of {motmot.transprimitiveND =(SP A, 1), (SP B, 2),

(SP C, 2)} is impossible.

It would however be possible to omit the priority numbers and make the order in which

the packages are summed up decisive. In that case, a new tag must be defined, because

if motmot.transprimitiveND would be used, suddenly an order (in the sense of priorities)

would be imposed on all rules, which is exactly what we tried to avoid. So suppose that

motmot.transprimitiveNDprior =SP A, SP B, SP C would mean that rule A has priority

over rule B, which has priority over rule C. But then two problems arise. First, every single

rule has a different priority. Again, imposing an order on rules is exactly what we wanted to

avoid in the first place, so rules with the same priority should be scheduled like nondeter-

ministic states described earlier in this chapter. Second, as previously said, tagged values

are by definition unordered (OMG01). It would be very confusing to consider the value of

motmot.transprimitiveND as a set and the value of motmot.transprimitiveNDprior as a list.

On the other hand, one could argue that the availability of transitions can offer an elegant

way of describing priorities. Indeed, using different states with "special" transitions between

them are visually clarifying for the modeler. The transitions that describe the priorities can

be distinguished from regular transitions (which describe explicit scheduling) by adding a

stereotype. The top diagram of Figure 3.9 shows the syntax of eight rules scheduled using

priorities. Two or more states are scheduled with priorities if there are �nextPriority�
transitions between them. If there is an outgoing �nextPriority� transition from a state,

another outgoing transition from that state is never followed, except if it is an�each time�
transition from a�loop� state. Rule A and B both have top priority, followed by C, D and

E, and F and G have lowest priority. While the presence of some transitions would suggest

otherwise, this is an example of rules scheduled completely implicitly in ND-SDM. This

means that this example can be copied straight into AToM3, as shown in Figure 3.10. The

priorities are visualized by integers next to the rule name. The lowest number has highest

priority. Note that in the ND-SDM solution, the separation between different priorities is

syntactically more distinct.

The bottom diagram explains the meaning of priorities in ND-SDM as an equivalent in

which the �nextPriority� transitions are converted to regular transitions known by SDM.
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When a state returns false, the rules of the next priority can be evaluated. When a state

returns true, rules of the top priority have to be evaluated again, as they might match

now because side-effects of the execution could have changed the model. Note that the

return value of the variant of a nondeterministic state, as discussed in section 3.1.2, is very

important in this context. Therefore, in order to ensure proper behavior, priorities should be

used only with a regular state or with a nondeterministic state of the variant match one (see

also Table 3.3), with the variant returning true if a rule matched and false if all rules failed to

match. These states will then exhibit an iterative behavior, as the state with highest priority

will be visited again after a rule matched.

There is another restriction on the use of priority transitions. When there is an outgoing

�nextPriority� transition, there cannot be an outgoing �success� or �failure� tran-

sition because this would semantically result in two outgoing �success� or �failure�
transitions, which is illegal in SDM. A�loop� stereotype on a regular state is allowed, and

this state can have an outgoing�each time� transition. These restrictions can be added

to ND-SDM as OCL constraints (OMG06) to the model of the transformation language it-

self. However, since OCL constraints are not used yet in the metamodel in MoTMoT, this is

beyond the scope of this thesis.

3.4 Caveat

The nondeterminism of implicit rule scheduling can lead to unexpected results: in many

cases, one rule for example creates elements that are used by another one and deleted by

yet another rule. Since such dependencies can be introduced accidentally, dedicated anal-

ysis support is desirable in transformation tools that support languages with implicit rule

scheduling. For example, AGG offers a so-called Critical Pair Analysis (CPA) (Lambers08).

To be applicable on the proposed hybrid language, CPA algorithms need to take into ac-

count nodes that are already bound from previously executed rules in a control flow. In

this thesis, this issue is considered to be the responsibility of the programmer because not

knowing (and not caring) in which order the rules are executed is part of the meaning of

nondeterminism.

37



Rule A and B
{motmot.transprimitiveND=SP A, SP B}

Rule C, D and E
{motmot.transprimitiveND=SP C, SP D, SP E}

Rule F and G
{motmot.transprimitiveND=SP F, SP G}

:=

Rule A and B
{motmot.transprimitiveND=SP A, SP B}

Rule C, D and E
{motmot.transprimitiveND=SP C, SP D, SP E}

Rule F and G
{motmot.transprimitiveND=SP F, SP G}

 «nextPriority» 

 «nextPriority» 

 «failure» 

 «failure» 

 «failure» 

 «success» 

 «success» 

 «success» 

Figure 3.9: A series of implicitly scheduled rules with priorities and its meaning

Figure 3.10: A series of implicitly scheduled rules with priorities in AToM3
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3.5 Conclusion of this chapter

This chapter introduced ND-SDM as a language extended from SDM Story Diagrams. ND-

SDM allows modelers to schedule their rules implicitly and explicitly. It thus allows hybrid

rule scheduling. In defining this language, it is important that it remains UML compliant.

The core extension is the construct for nondeterministic scheduling. Syntactically, many

rules can be summed up in one so-called nondeterministic state (which can be thought

of, in terms of explicit rule scheduling, as an atomic scheduling entity) instead of one,

as in SDM. An equivalent with the same behavior as this nondeterministic state can be

defined using only explicit scheduling. Therefore, it is possible to make the implementation

of this construct a preprocessing step (a technique used very often in compiler design),

which converts instances of the nondeterministic state into regular MoTMoT diagrams (see

Chapter 4). When trying to define the semantics of such a nondeterministic state, it turns

out that there are many different possible interpretations. Therefore, a number of useful

variants are analyzed and classified into four dimensions. Also, the return value of the

nondeterministic state itself is an important factor. Some variants appear more useful than

others in certain contexts, or for certain modelers. As a consequence, it will be important for

the implementation of the nondeterministic state that it is possible for the modeler to easily

define his own variant, and plug it into the implementation. To make this convenient for the

modeler, new personalized variants should be plugged in into the implementation without

having to compile or interpret it again. Also, it can be shown that the implicit scheduling

concepts of layers and priorities can be added easily in ND-SDM. Layers do not need an

extra language construct, and the construct for priorities can also be implemented as a

preprocessing step.
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CHAPTER 4

Implementation of ND-SDM

In this chapter we will discuss how implicit rule scheduling is implemented in order to make

ND-SDM transformations readable by the Core profile of SDM. The presented implemen-

tation is done in MoTMoT. First we will list some not-so-obvious requirements for the im-

plementation. Then we will propose two techniques that will be used, being higher order

transformations and prototypes. In the next section we will present the implementation

itself, followed by a conclusion of this chapter.

4.1 Requirements

As discussed in the introduction of Chapter 3, the MoTMoT implementation of ND-SDM has

to be UML compliant, just like the SDM language for MoTMoT. In that way the implemen-

tation is tool-independent, which means that it can be used on any UML compliant SDM

tool.

The implementation has to support the following features:

• implicit scheduling of possibly mixed story patterns (rules) and Story Diagrams (a set

of scheduled rules);

• the implementation of priorities, by implementing the meaning of the�nextPriority�
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stereotype (see also Section 3.3). Layers are implemented without an additional con-

struct (see also Section 3.2);

• the ability to easily add and remove new variants of nondeterministic scheduling (see

also Section 3.1.2).

Besides these requirements, it is desirable that this implementation is platform independent.

In other words, the SDM tool may not be changed, and the solution should be applicable

for all tools implementing SDM. The Critical Pair Analysis mentioned in Section 3.4 is out

of the scope of this thesis and is not implemented.

4.2 Higher order transformations

Higher order transformations (HOTs, or metatransformations) are transformations that op-

erate on other transformations as their input or output (Varró04). In other words, by using

a higher order transformation, a transformation definition itself can be transformed to an-

other transformation definition. In MDE this is possible, since transformation models can

be represented as models. According to Varró and Pataricza, a framework or tool is suited

for higher order transformations when the following prerequisites are met:

• there is a representation of instance-of relations in the modeling space;

• transformation rules are represented as models.

The first prerequisite can be met either in an explicit way, by e.g. edges between instance

and class, or in an implicit way, by e.g. instance names of the form o: Class. A model

of the transformation language (i.e. the metamodel of a transformation definition) must be

available in order to support higher order transformations. In MoTMoT, instance-of rela-

tionships are possible in the implicit way. The second prerequisite is also met by MoTMoT

and SDM in general, as transformation models are represented in UML (in this case Class

Diagrams and Activity Diagrams), just like first order models.

In my opinion, these prerequisites fit very well in the MDE vision, where models con-

form to metamodels (first prerequisite) and everything is a model (second prerequisite).

This is especially applicable to the domain of tools with visual transformation languages

(MoTMoT (Van Gorp07), AToM3 (De Lara02), AGG (Täntzer97), Progres (Schürr09a), Fu-

jaba (Fujaba07)), which is the domain of languages in this thesis. However, not many tools

support higher order transformations (yet), because generally the metamodel of the trans-

formation language is not available. AToM3 for example does not feature a metamodel for
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its Graph Grammar transformations. Also, some (older) tools with textual transformation

languages sometimes tend to fail the second prerequisite.

Generally a tool has only one transformation language, so one might think that higher

order transformations tend to be endogenous transformations (i.e. transformations with

input and output models that conform to the same metamodel), as the metamodel of the

input and output transformation model can only be that one transformation language. In

this thesis, higher order transformations are used as a means to transform transformation

models written in an extended transformation language to a well known transformation

language. Both are the UML, so technically this is an endogenous transformation. The

resulting transformation model can then be executed by any tool supporting the original

language. This idea is presented by Muliawan (Muliawan08) and is used by Van Gorp et

al. (Van Gorp08b) as a means to overcome the problem of portability and to allow reusing

existing language constructs among transformation tools. A preface to this thesis also

presented this idea at the Sixth International Fujaba Days (Meyers08).

4.3 Prototypes

In the context of this thesis, prototypes do not refer to software prototyping in software

development, a practice in which basic versions of a software project are being developed.

In this thesis, prototypes are generic models containing a partial implementation.

When used in a transformation, prototypes typically are a pre-generated, fixed part of the

output model. In this case, the metamodel of prototypes is the same as the metamodel

of the output model. When the transformation is executed, the prototype is copied into a

designated place in the output model.

Prototypes can also be used for pattern matching1, but then their metamodel is the same

as the input model and the prototype is deleted at the end of the transformation execution.

(In fact, they can even mix the metamodels of the input and output models, or have their

own metamodel. In these cases, the transformation will either have to remove the copied

prototype, or alter the copied prototype in a later stage of the execution, in such a way that

it conforms to the metamodel of the output model at the end.) In any case, although the

prototype is considered a part of the transformation, it is not written in the transformation
1This idea is very similar to transformation patterns in AToM3, which actually use subgraphs that conform to

the metamodel of the input/output model for its LHS/RHS.
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language, but in the language of the input or output model. In terms of OMG layers, a

prototype resides in the same layer as the input and output models, one layer lower than

where the transformation model resides.

Using prototypes has the following advantages:

• because prototypes reside in a lower layer than the transformation model, concepts

can be modeled much more concise (thus less error-prone) than when the same

concepts would be modeled in the transformation model. The reason is that lan-

guages in lower layers offer more problem-oriented (less abstract) language con-

structs (Kleppe03);

• because prototypes reside in the same layer as the input and output models, they are

very readable and understandable for modelers. After all, modelers tend to think in

terms of their input and output model when modeling a transformation model;

• when the modeler keeps the prototype and the transformation model separate, the

prototype can be used as a plugin. Then, the prototype can be replace with another

(resembling) prototype, without having to change the transformation model. This en-

ables the modeler to reuse the same transformation, even as a black box. Because

only models in the layer of the input and output model have to be changed, it means

that even users of the transformation who are not familiar with modeling transforma-

tions can personalize the transformation without knowing of its implementation.

Separating the prototype from the transformation model has also a disadvantage. In the

transformation model, there is no connection with the prototype through bound variables

(see also Section 2.5). Elements will have to be bound again after creation in order to use

them, which might come down to a slight overhead in patterns that use elements of the

prototype.

As an example, suppose a transformation with a Class Diagram as output model. (The

input model is not important for this example.) A transformation rule is implemented that

creates a package containing a simple parent-child relationship. A parent of type Parent

has a two-way association with a child of type Child. In Figure 4.1, it is implemented as

an ordinary transformation pattern. This pattern gets quickly very verbose, unreadable and

error-prone. There are a lot of elements with a �create� stereotype, which account for

the creation of the two elements and their association.

In Figure 4.2, a prototype implementing the package is shown. It is concise and takes

a lot less time to implement. It is a lot less error-prone and a lot more readable, as this
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Figure 4.1: A transformation rule that creates a parent and a child and their association
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Figure 4.2: A prototype of the transformation rule

Figure 4.3: The integration of the prototype into the transformation rule
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prototype is modeled using the metamodel of the output model. This metamodel is the true

mental context of this transformation (together with the metamodel of the input model) as

this prototype is the result that the modeler aimed for with the pattern of Figure 4.1.

Figure 4.3 shows the integration of the prototype of Figure 4.2 into the transformation. In

fact, it is the replacement of the pattern of Figure 4.1. The package pkg is the copy of the

package in the prototype. It is copied previously (i.e. in a previous state which performs the

special operation of reading and copying), so therefore it is bound. The only thing left to do

is putting the dangling copied prototype into the model.

The idea of using a combination of prototypes and higher order transformations is briefly

mentioned though not elaborated in (Van Gorp08a) as an improvement of the higher or-

der transformation that supports an SDM extension for specifying copy operations more

concisely.

By extensively using prototypes, pattern matching with LHS and RHS as in AToM3 (see

also Section 2.7) can be mimicked as follows. All LHS’s and RHS’s are prototypes (in other

words, rules are implemented as prototypes). The transformation model implements the

behavior of pattern matching in AToM3: try to match the one prototype (which represents

the LHS) and then apply another prototype (which represents the RHS). There has to be a

form of traceability between elements of the LHS and RHS, which can be easily achieved

by naming. The transformation model also implements the scheduling of the rules2. Using

a LHS and a RHS is, in terms of readability, one of the strengths of AToM3 (and graph

transformation in general), which come down to the same advantages of using prototypes.

4.4 A higher order transformation and prototypes as imple-

mentation of ND-SDM

This section provides an implementation of ND-SDM in MoTMoT. The instances of the

new language constructs (motmot.transprimitiveND and�nextPriority�) are converted to

equivalents written in the Core profile of the SDM language, a strategy suggested in the

2In theory, the scheduling of rules can also be implemented in a prototype. This means that the transformation
model is generic and can perform any transformation. In other words, the transformation model is now a trans-
formation tool itself, and the according transformation language consists of certain conventions in the prototypes.
This is interesting, because it proves that Story Diagrams powerful enough to model a transformation tool, with a
transformation language. This illustrates the concept of getting rid of the layers (Kleppe03) (see also Section 2.2).
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conclusion of Chapter 3. This conversion is done by means of a higher order transfor-

mation. This methodology can be called "preprocessing", "desugaring" or "flattening" a

language. In Chapter 3, the equivalents were already presented. However, it turned out

that there can be many interpretations for a nondeterministic state, which may vary from

modeler to modeler. But they all came down to breaking up the nondeterministic state into

a state for each Story Diagram or Story Pattern, and a (in many cases iterated) nondeter-

ministic choice between these states. Because there are many variants which all share

several characteristics, prototypes are used as plugins to allow each nondeterministic state

to transform to the necessary variant.

Figure 4.4: The architecture of the ND-SDM implementation

Figure 4.4 shows the architecture of the implementation using a HOT and prototypes.

The main idea of the HOT is the transformation of a transformation model trfodef conform

to the ND-SDM language to a transformation model trfodef' conform to the SDM Core

profile. trfodef' can then be executed to transform a model Mi conform to a metamodel

MMi to a model Mo conform to a metamodel MMo. In the HOT execution, multiple prototypes

are used. In this context, Mi and Mo are called first order models, and trfodef and trfodef'

are called first order transformation models.
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4.4.1 Prototype contract

As concluded in Section 3.1.2, there are too many interpretations to put all in one ND-SDM

implementation. Modelers might even design their own variants. Therefore, it is the aim of

this implementation that it allows conversion of the nondeterministic state to any variant as

a prototype. It must be possible that more than one variant is used on the nondeterministic

states of the same model. As suggested in Chapter 3, stereotypes or tagged values can

be used on the nondeterministic state to denote the difference between variants.

For example, the nondeterministic state of the household problem of Section 3.1.2 was

annotated with a �loop� stereotype, while the nondeterministic state of the restaurant

problem was not. In this case, the presence of the �loop� stereotype can be called the

application condition of the variant used in the household problem. Of course, the presence

of a motmot.transprimitiveND tag is also a requisite for a nondeterministic state. If there is

a�loop� stereotype on a nondeterministic state, apply variant 1, else apply variant 2. Of

course, this particular application condition is designed for usage with these particular vari-

ants. Usually the application condition is chosen in a way that all the available variants can

be distinguished intuitively. In other words, each variant has its own application condition.

Therefore, a prototype model must contain a representation of its application condition.

This can be done in a simple way, by adding a dummy state annotated with the concern-

ing stereotypes and/or tagged values. Then, if the annotations of a nondeterministic state

match those of the dummy state, the prototype in question must be applied.

Figure 4.5: The application condition of the variant of the household problem

The application condition of the prototype of the household problem, is given in Fig-

ure 4.5, and the actual prototype Story Diagram, is given in Figure 4.6. Together, the

diagrams represent the full prototype model.

As said, the application condition shown in Figure 4.5 is simply a nameless state with

a �loop� stereotype. This means that for all nondeterministic states with a �loop�
stereotype this variant will be used.

The actual prototype Story Diagram is given in Figure 4.6. As documentation, the code

script is attached as a note to each�code� state. A�code� state is a state containing
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Figure 4.6: The actual prototype of the variant of the household problem
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some Java code instead of referencing a Story Pattern. As said in Chapter 3, this variant

means keep matching rules until all failed to match. Note the similarities with the equiva-

lent of the nondeterministic state in the bottom diagram of Figure 3.6. The details of this

prototype and prototypes in general are explained below.

Figure 4.7: The application condition of the variant of the restaurant problem

The prototype model suited for the variant of the restaurant problem is presented in

Figure 4.7 (the application condition) and Figure 4.8 (the actual prototype Story Diagram).

As said, this variant has the meaning match each rule once until one fails to match. In

this case, the return value of the nondeterministic state is important, as in the example

of Figure 3.7 the nondeterministic state has an outgoing �success� transition and an

outgoing �failure� transition. When all rules are executed, the nondeterministic state

returns true, but if a rule fails, it immediately returns false.

The application condition shown in Figure 4.7 is empty. This means that this prototype

is used for states without the�loop� state. The actual prototype Story Diagram shown in

Figure 4.8 uses a variable is_success declared in the "initialize" state to define the return

value. This boolean remains true, but is set to false in the state "flag unsuccessful" if a

pattern did not match. At the end, the "exit" state with an empty pattern (which always

matches) is evaluated according to its motmot.constraint is_success. The transition that

is followed from this state will secure the return value of the prototype.

In order to allow modelers to build their own prototypes besides those that are presented

above, certain conventions have to be established:

• a prototype is a separate XMI file (OMG05) (with extension .xml or .xmi) in a prototypes/

subdirectory of the working directory. When executing the HOT, this file will be read,

and loaded in the repository, which contains all current models. The file names im-

pose the order on the prototypes: the application condition of 1.xmi will be evalu-

ated before the application condition of 2.xmi, etc. In the case of the variants of

the household and restaurant problem, the prototype for the household problem has

to be named 1.xmi and the prototype for the restaurant problem has to be named

2.xmi, in order for the application condition of the household problem (Figure 4.5)

to be evaluated first.Otherwise, all nondeterministic states would be transformed us-

ing the prototype of the restaurant problem, because they would all match its empty

application condition of Figure 4.7;
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Figure 4.8: The actual prototype of the variant of the restaurant problem

51



• a prototype contains an Activity Diagram called "AC", containing the application con-

dition. This comes down to a single nameless state, annotated with the stereotypes

and/or tagged values in question;

• a prototype contains an Activity Diagram called "NondeterministicSDM_Proto", con-

taining the actual prototype Story Diagram. This Activity Diagram has the following

conventions:

– it contains a �code� state called "set number of patterns". The �code�
stereotype on the state denotes that the state corresponds to (Java) code in-

stead of a transformation rule, denoted by a motmot.transprimitive tag. It must

have a code script, but it can be left blank. The HOT will eventually put here a

declaration in Java code that declares an int and assigns the number of rules in

the nondeterministic state to it. This state is scheduled as the first state of the

prototype. So all incoming transitions of the nondeterministic state will be reas-

signed by the HOT to incoming transitions of this state, thus preserving possible

stereotypes or guards on these transitions;

– it contains a �code� state called "initialize". Its code script is not empty, but it

contains at least this declaration:

int rannr;

This int will be used at each iteration as the random number that indicates which

rule will be evaluated next. Next to this declaration, other declarations must be

made when ignore sets or remember sets are used (see Section 3.1.2). For

example, when only an ignore set is used, the following declaration must be

added to the code script:

java.util.Set ignored = new java.util.HashSet();

Other sets may be declared, as long as their names contain the string "ignored"

or "remembered". Also, when the return value of the variant is important, the

following declaration may be added:

boolean is_success = true;

In this case, is_success may be switched at any point, and another state with

a tag motmot.constraint=is_success may be used later on in the prototype to

enforce that the correct (�success� or�failure�) transition is followed. When

this is done in the last state, it determines the return value. Finally, a counter

iter may be declared for several purposes:

int iter = 0;
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– it contains a �code� state called "choose state". Its code script contains the

following:

rannr = (int) (Math.random()*number+1);

number represents the number of rules in the nondeterministic state in question.

So this line of code assigns an integer between 1 and number to rannr. rannr

represents the rule that is chosen this iteration. If ignore sets are used, patterns

that are in the ignore sets can’t be chosen, so the code script must look like this

(in the case of one ignore set):

do {

rannr = (int) (Math.random()*number+1);

} while (ignored.contains(new Integer(rannr)));

As said previously, for each rule of the nondeterministic state a motmot.transprimitive

state will be created. In the HOT, a transition is created from the "choose state"

to each of the motmot.transprimitive states, with a guard [rannr==X] with X a

different number between 1 and number for each rule. In that way, according

to rannr, one of the motmot.transprimitive states is entered (analogous to what

was explained in Chapter 3, in particular in Figures 3.6 and 3.7);

– it contains states called "success state" and "failure state". This state will be the

target of a �success� respectively �failure� transition from each state gen-

erated from a rule of the nondeterministic state. This state may be a �code�
state, containing a code script that performs actions like ignore rule next time or

clear ignore set (see also Figures 3.6 and 3.7), although such actions may be of

course implemented in other states and scheduled as wanted;

– it contains a motmot.transprimitive state called "exit" pointing to an empty pat-

tern. This state must be scheduled as the last state of the prototype. In that way,

outgoing transitions of the nondeterministic state will be reassigned by the HOT

as outgoing transitions of the "exit" state, similar to the "set number of patterns"

state. This state may contain {motmot.constraint=is_success} when using

the is_success variable described above. In that way, the correct behavior of the

outgoing�success� and�failure� transitions of the nondeterministic state is

maintained after having converted the first order transformation model.

Besides these obligations, the modeler is free to include the following in the Activity Dia-

gram called "NondeterministicSDM_proto" (some of which are indeed included in Figure 4.6

and Figure 4.8):
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• a state called "perform pattern". This state can be used to visualize the motmot.transprimitive

states created from the rules of the nondeterministic state. Because it is only used

for illustration and clarity, the state and its incoming and outgoing transformations are

ignored when copying the prototype. It can however greatly help the modeler to grasp

the workings of the prototype;

• states, possibly with SDM stereotypes and SDM tagged values. They will be copied

accordingly;

• transitions, possibly with SDM stereotypes and guards. They also will be copied

accordingly;

• patterns, if their package resides in the same package of the Activity Diagram called

"NondeterministicSDM_proto". Because states with tagged values are also allowed, it

is possible to use motmot.transprimitive states that refer to patterns in the prototype3;

These prototypes are integrated into the first order transformation model (i.e. the input

model of the HOT) by the following HOT tasks:

• copy all states and transitions with the exception of the initial state, the final states,

the "perform pattern" state, and all connected transitions;

• rename the names of all newly introduced variables of the copied prototype. This must

be done for two reasons. First, suppose that a Story Diagram with two nondetermin-

istic states is transformed. In this case, the nondeterministic states are transformed

to their equivalents, resulting in a Story Diagram with states with the same name

(for example "initialize"). However, in UML Activity Diagrams, state names must be

unique (OMG01). Second, all variable names must be made unique in order to avoid

double declarations in the Java code that is generated by MoTMoT. This last reason

is however an issue of MoTMoT itself;

• reassign incoming and outgoing transitions of the nondeterministic state to the copy

of the prototype. The prototype is now connected to the Story Diagram of the first

order transformation model;
3However, because the prototype resides in a separate file, there is no direct access to the metamodel of

the input model of the first order transformation. In the architecture of Figure 4.4, the metamodel that is meant
here is MMi. Without access to the metamodel, no useful patterns can be modeled in the prototype. This makes
sense, because otherwise the prototype would contain domain-specific information of a particular transformation.
The prototype should be able to be used in any kind of model transformation regardless the model language it
transforms. Nevertheless, when supposing that the prototype conventions would allow the prototype to be part
of the transformation model, this dependence can be allowed, as in this case, the prototype can be considered
transformation-specific. In this thesis however, a prototype is considered a variant of a nondeterministic state and
it is part of the transformation language ND-SDM.
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• create a motmot.transprimitive state for each rule of the nondeterministic state and

create the three transitions similar to the incoming and outgoing transitions of the

"perform pattern" state in Figures 4.6 and 4.8;

• remove the nondeterministic state.

Get up
{motmot.transprimitive=getup}

 «loop» 
Manage household

{motmot.transprimitiveND=mopup, help, clean}

Have dinner
{motmot.transprimitive=dinner}

Figure 4.9: A household modeled using hybrid rule scheduling

While a vague equivalent to the nondeterministic state was shown in the bottom diagram

Figure 3.6, a detailed equivalent conform to the SDM Core profile (thus usable by MoTMoT

and other SDM tools) can now be constructed for each nondeterministic state and inte-

grated into the Story Diagram. An execution of the HOT on the household problem (once

again shown in Figure 4.9) results in the Story Diagram shown in Figure 4.10, using the

application condition of Figure 4.5 and the prototype of Figure 4.6. Again, the code scripts

of the�code� states are included as notes for clarification. To conclude, this diagram has

the same behavior as the diagram in Figure 4.9 envisioned, but this one can be executed

by a tool that supports Story Diagrams.

4.4.2 Overview of the higher order transformation

In this section an overview of the implementation of the HOT is given. The actions the

HOT must perform were already described briefly in the previous section, but it was not yet

explained how this is done. As said in Section 4.2, according to the transformation tool,

the HOT resembles any other transformation. So it consists of Story Diagrams and Story

Patterns.
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Figure 4.10: A household after execution of the HOT
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Figure 4.11: An overview of the ND-SDM implementation HOT
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The main Story Diagram of Figure 4.11 gives an overview of the HOT. First, the package

containing the SDM Core profile and ND-SDM extensions (i.e. the model of the ND-SDM

language) is looked up by name in the transformation model. Also, a new package named

protoContainer is created that will contain all the application conditions of the prototypes

that are available. The pattern of this state is given in the Appendix in Figure A.7.

Then, data of the metamodel (i.e. the SDM model) is matched in the first three Match

metadata states. Language constructs such as the �success� stereotype (part of the

SDM Core profile) and the motmot.transprimitiveND Tag Definition (part of the ND-SDM

extensions) are looked up and bound in these patterns. Also, some Java language con-

structs, such as the boolean type that are also needed are matched. The necessity of Java

is discussed in the section about tool-independence (Section 4.4.7). The patterns are given

in Figures A.8, A.9 and A.10.

All previous patterns must not fail, because the elements that are bound here are needed

later on in the HOT. Failing one of these patterns causes the HOT to stop. This is not

visualized in the simplified Story Diagram of Figure 4.11.

4.4.3 Prototype loading

In the next state, load prototypes, another Story Diagram is called, given in Figure 4.12.

Its purpose is to read the application condition of each available prototype. Each appli-

cation condition is then registered by copying it in the package protoContainer, created

previously (see Figure A.7).

After having finished this Story Diagram, all application conditions are loaded. These

application conditions can be consulted when a nondeterministic state is transformed, in

order to choose the correct prototype.

Prototypes are stored in separate files. First, all files containing prototypes are listed in

list possible prototypes. Then, a counter is initialized and increased. The state For

each found file references an empty Story Pattern, so it iterates while the counter is

smaller than nFiles, the number of available prototype files. For each file, a container is

added. Then, the file is read and the application condition is loaded as an Activity Diagram.

Next, the only state in this Activity Diagram, representing the application condition (for

example, see Figures 4.5 and 4.7), is bound. The application condition consists of the

present stereotypes and tag definitions on this state, so these are put into the container,

created in add container. The patterns and code blocks are given in Figures A.11 to A.17.
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Figure 4.12: Loading the application conditions of the prototypes
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4.4.4 Priority transitions transformation

After the prototypes are loaded, the transform priority transitions state of the main

Story Diagram in Figure 4.11 is entered. It calls another Story Diagram, given in Fig-

ure 4.13.

Figure 4.13: Transforming the�nextPriority� transitions

This Story Diagram will transform a �nextPriority� transition chain (i.e. successive

states connected with �nextPriority� transitions) to its equivalent, as explained in Sec-

tion 3.3. The first state of Figure 4.13 iterates over every �nextPriority� transition chain.

Its pattern matches a state highestState with an outgoing �nextPriority� transition, but

without an incoming�nextPriority� transition. In other words, a state is found that has top

priority in the priority chain. From this state, a �success� transition is created from and

to highestState, conform to Figure 3.9. The pattern is shown in Figure A.18.

Figure 4.14: The Story Diagram that checks for incoming priority transitions

As said, the pattern may only match if highestState has no incoming �nextPriority�
transitions. "Not having an incoming �nextPriority� transition" can not be expressed

in a story pattern. Therefore, there is an extra constraint on the "for each first priority
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transition" state. It says that the method hasIncomingPriorityTransition must fail for

highestState. This method calls the Story Diagram given in Figure 4.14. Its pattern,

shown in Figure A.19, matches if highestState does have an incoming �nextPriority�
transition. If so, the �success� transition is followed to the final state, which causes the

method hasIncomingPriorityTransition to return true. As a consequence, the constraint

fails and thus the pattern For each first priority transition fails for this particular

binding of highestState. If on the other hand, no incoming �nextPriority� transition is

found in has incoming priority transition, the method returns false and the pattern

For each first priority transition can match. Actually, this is an implementation of

a negative application condition (see Chapter 6), as evaluation can only succeed if a sub-

pattern does not match.

For each �nextPriority� transition chain, the Transform next priority state in Fig-

ure 4.13 is entered, which calls a Story Diagram given in Figure 4.15. The first thing that

stands out is that this graph calls itself in the Transform next priority state. This is

because the graph represents a recursive loop. Recursion is a good example of the ex-

pressive power of explicit rule scheduling in combination with the ability to call other Story

Diagrams from states.

Figure 4.15: The Story Diagram that transforms the next priority

In Figure 4.15, the Transform this priority state is entered first. This state performs

the actual transformation of one transition to a �success� and �failure�, according to

Figure 3.9. The pattern is given in Figure A.20.
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In the next state, the following �nextPriority� transition of the chain is bound, if there

still is one. If successful, the Story Diagram is recursively called in the Transform next

priority state, but with the new transition as parameter. As a consequence, all�nextPriority�
transitions are transformed one by one until the end of the chain is reached. Then, the

Lookup next priority transition state fails and a �failure� stereotype is put on the

outgoing transition of the �nextPriority� transition chain, as shown in Figure A.22. After

each �nextPriority� transition chain has been transformed, the loop in for each first

priority transition in Figure 4.13 ends and the next state in Figure 4.11 is entered.

4.4.5 Prototype choice

After having transformed the �nextPriority� transitions, the code of state init id initial-

izes a variable id. This variable will provide a unique ID for each nondeterministic state

that is transformed. The value of this ID can be added to the names of states that are

added during the transformation, to ensure that there are no states with the same name in

one Activity Diagram. After all, as said previously, this is illegal in UML Activity Diagrams

(OMG01). The code of this state is given in Figure A.23.

Next, in the for all activity diagrams (see Figure A.24), a loop is started that binds

each Story Diagram one by one. For each diagram, it is tested whether the graph is actually

used as Story Diagram in the transformation model. If not, the next Activity Diagram is

looked up. The pattern is given in Figure A.25.

Then, an iteration starts over each nondeterministic state in the current Story Diagram

(see Figure A.26). For each nondeterministic state, the ID is incremented (see Figure A.27).

In the next state, choose prototype, the correct prototype must be chosen for this particu-

lar nondeterministic state.

The state calls the Story Diagram given in Figure 4.16. Each application condition that

has been loaded in the Story Diagram of Figure 4.12 must be inspected. Note that, as

previously said, the order in which the application conditions are checked is important when

the stereotypes and tag definitions of one application condition are a subset of those of

another application condition. In MoTMoT, the order is kept from reading the prototypes,

so no extra ordering is needed4.

First, a boolean found is initialized to false in the init found state. Next, an itera-

tion is started over each prototype. For each prototype, a boolean nomatch is initialized
4To have a fixed order in matching the application conditions, the way of matching patterns must be influ-

enced. This would require to get round the usual pattern matching algorithm of Story Driven Modeling and Graph
Grammars in general. This concept may also be useful in other contexts.
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to false. Then, all stereotypes of the prototype are matched iteratively in the for each

stereotype state. For each matched stereotype, the nondeterministic state is checked for

a stereotype with the same name in the match stereotype state. If a stereotype was not

matched at some point, this means that the current prototype does not match. nomatch is

then flagged true in the stereotype does not match state, causing the�loop� state for

each stereotype to fail for the next iteration. The stereotype matched? state is entered

and returns false, so the�failure� transition is followed to the for each prototype state,

where a new prototype is matched. If this time, all stereotypes match, the stereotype

matched? state returns true and all tag definitions are evaluated in a similar way. If all

stereotypes and tag definitions match, the matching prototype is found and can be cre-

ated (see below). The boolean found is flagged true, in order to stop the iteration in the

for each prototype state in the next visit5. The patterns and code blocks are given in

Figures A.28 to A.37.

If all stereotypes and tag definitions of a nondeterministic state match those of a certain

application condition, its prototype will be used. In the create prototype state, the proto-

type is read and integrated into the Story Diagram of the nondeterministic state. The state

calls the Story Diagram of Figure 4.17. This Story Diagram mainly consists of five phases.

In these phases, whenever necessary, variable names for states etc. are made unique, for

the reason stated above.

1. the prototype is read;

2. the necessary states, transitions and patterns (conforming to the prototype contract

of Section 4.4.1) are moved to the given Story Diagram;

3. the incoming and outgoing transitions of the nondeterministic state are reassigned to

the first and last state of the prototype in order to integrate it into the Story Diagram;

4. annotations such as tag definitions and stereotypes are reassigned by name to those

of the metamodel of the transformation model;

5. the now empty Story Diagram of the prototype is removed from the working repository.

After having finished the Story Diagram of Figure 4.16, the currently bound Story Diagram

has been enriched with the prototype. The prototype conforms to the SDM metamodel and

is connected to the other states in the Story Diagram.
5The boolean variables have to be used, as MoTMoT forbids a transition from for example the match

stereotype state to the for each prototype state. After an �each time� transition, control must eventually
end up in the�loop� state in order to properly exit the iteration.
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Figure 4.16: Choosing the right variant according to the application conditions
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Figure 4.17: Reading and integrating the chosen variant
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4.4.6 Nondeterministic state transformation

In the next few states of Figure 4.11, the added prototype is altered according to the Story

Patterns and Story Diagrams that are referenced by the nondeterministic state. The in-

tegrated prototype will be shaped in such a way that the result conforms to the prototype

contract (see Section 4.4.1), like Figure 4.10 for example. First, in the set number of

patterns state, a declaration for the actual number of referenced packages is added in

the code script of the freshly added �code� state, which was also named set number

of patterns (see the section about the prototype contract, Section 4.4.1). The pattern is

shown in Figure A.38. Then, a variable named it is initialized, which will be used as a

counter, as shown in Figure A.39.

Next, each pattern is looked up one by one in the for all referenced packages state

(see Figure A.40). For each package, it is increased (see Figure A.41). Then, in the

addstate state, a state is added which will reference the current package, either with a

motmot.transprimitive tag or with a method call. The incoming and outgoing transitions are

also generated. The pattern is shown in Figure A.42.

If the referenced package contains a Story Diagram, a method call is added to the new

state. Otherwise, a motmot.transprimitive tag is generated. The test for an Activity Diagram

is done in the check for flow in package state, with its pattern shown in Figure A.43.

The pattern where a motmot.transprimitive tag is created, is shown in Figure A.44. The

other case, where a method call is added, is a bit more complicated and needs its own

Story Diagram, shown in Figure 4.18.

If a method call to a Story Diagram must be added to the new state, the method itself

must also be created. In the first state of Figure 4.18, the method and the call are cre-

ated (see Figure A.45). The Story Diagram that will be called may contain some patterns

with some �bound� elements. These bound elements must be added as parameters in

order to make sure that they can be used in the called Story Diagram. This is done in

the next state by iteratively executing the pattern in Figure A.46. After all parameters have

been generated, the parameter list of the method call is closed in close param list (see

Figure A.47).

Again in the main Story Diagram of Figure 4.11, al referenced packages are taken care

of like described above, for each found nondeterministic state in the currently bound Story

Diagram. The only thing left to do is remove the nondeterministic state itself, as it is now

transformed to an equivalent. This is done in the remove nd states state, with its pattern
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Figure 4.18: Adding a method and a call to this method

given in Figure A.486.

After all Activity Diagrams in the model have been treated, the model is cleaned up

by removing the package containing the application conditions in the remove prototype

package state (see Figure A.49). Then, the higher order transformation is finished. Now,

the transformation model is usable by the SDM tool because all ND-SDM constructs are

transformed to their equivalents.

It can be noted that many of the states in the higher order transformation can be sched-

uled themselves using nondeterministic scheduling. For example, when loading prototype

application conditions in Figure 4.12, the copying of stereotypes and tag definitions can be

modeled in one state, as it is conceptually the task get all state annotations. Also in many

other cases, for example when reading the variant in Figure 4.17, using nondeterministic

states would make the Story Diagram more concise and readable.

4.4.7 Tool-independence

This higher order transformation is modeled as a Story Diagram with Story Patterns, just

like the input- and output model it reads and generates. This is done in order to minimize

6The nondeterministic states are removed all together outside the loop of the for all transprimitiveND

states state. If this was done inside the loop, the Java iterator generated by MoTMoT that is generated for the
for all transprimitiveND states state will get erroneous after deleting the nondeterministic state. This is
because the code for deleting the state is stateContainer.remove(state) instead of iterator.remove().
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the need for proprietary infrastructure. The applicability of higher order transformations for

language extension was discussed by Olaf Muliawan (Muliawan08).

This approach can be realized on any tool for SDM, like MoTMoT, Fujaba 3, Fujaba 4,

etc. Moreover, the same concepts can be used on other tools and frameworks that are

not related to SDM. Combining a very limited set of language constructs as proposed in

(Van Gorp08b), and extending the core language by using higher order transformations,

can overcome interchangeability problems between transformation tools.

While the fundamental idea of this implementation makes it tool-independent, there are

still some minor problems with respect to tool-independence. Indeed, the prototype has

many�code� states containing Java code. So, apart from the UML, this implementation

is also dependent of Java. In other words, the transformation language of the higher order

transformation consists of both the UML and Java.

A first idea to avoid the dependency of Java is to avoid Java code at all. Following Fig-

ure 4.10, this would mean that for example the ignored_1 set would become a UML Pack-

age. Elements representing the nondeterministically scheduled Story Patterns or Story

Diagrams can then be added and removed from the package when they must be ignored

next time or not. However, this idea comes with a serious problem. The package contents

must be able to change during execution of the first order transformation. So in order to

be able to use the package in an execution of the transformation, it can not be modeled as

part of the transformation model. It must be added at some place in the first order model,

as this is the transformation’s working space. Consequently, it must be either conform to

the metamodel of this first order model to blend in, or it can have its own metamodel, which

must also be added to the first order model. However, changing the first order by the higher

order transformation is conceptually impossible, for the same reason as explained in the

footnote on page 54. The model entity of the first order input model has to be looked up,

which requires knowledge of the input model’s metamodel. It is very important that this

metamodel is not visible to the HOT, because the HOT must be independent of the kind of

transformation it takes as input.

The HOT must be independent of Java code, without needing access to the first order

input model. This can be done by using some kind of profile for generic containers. This

profile would be an interface for constructs such as a set and a node. The modeler can use

this interface in the same way as the UML. An according mapping to source code, in the

case of MoTMoT, Java code, can then be implemented. In that way, the first order input

model does not have to be touched while still obfuscating the fact that MoTMoT generates
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Java code. Other useful constructs and operations can be added to this profile, like reading

a model from a file or URL (this is different for each transformation tool, because it depends

on the transformation language), constructs for boolean expressions, integers, the size of

a collection, strings and string manipulation. These are all constructs and operations that

are now used as plain Java code in the higher order transformation. Also, constructs for

traceability between input and output models can be added to this profile. A disadvantage

of this approach is that the tool itself has to be extended with this profile. However, the SDM

profile (for transformation concepts) and this profile (for utilities and simple operations) form

a mature, versatile, usable and extendable core for a transformation language. On top of

that, it is also a stimulus for standardization of these language concepts.

When using the generic containers, the architecture of the higher order transformation,

previously given in Figure 4.4, would look like Figure 4.19. The metamodels of the trans-

formation models (i.e. the SDM Core profile and ND-SDM) are enriched with the structures

and operations provided by the generic container. Since in this thesis MoTMoT would be

used as transformation tool, a Java implementation is used.

4.5 Conclusion of this chapter

Nondeterministic scheduling is implemented in SDM as a higher order transformation,

which transforms nondeterministic constructs to their equivalents in the SDM Core profile.

By using a higher order transformation, the transformation language is extended without

extending the transformation tool. This means that this approach can be used on any tool

supporting the concept of higher order transformations and SDM. In addition, the ability to

add and remove variants for nondeterministic scheduling is also achieved by using proto-

types. With prototypes, the higher order transformation does not have to be altered when

adding or removing a new variant. Moreover, when following the prototype contract, these

prototypes can easily be built by users of ND-SDM, as it is in the same conceptual layer

as the transformation models they build. Besides this, users can schedule rules implicitly

in an explicitly scheduled diagram, but also the other way around. This is because it is

possible to reference a whole Story Diagram in a nondeterministic state. Therefore, the

language ND-SDM can be truly called hybrid with respect to rule scheduling. Summarized,

the technique of higher order transformations and prototypes can be used to extend the

transformation language further and further in an elegant and tool-independent way.
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Figure 4.19: The architecture of the ND-SDM implementation using generic containers
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CHAPTER 5

Case studies in the usage of ND-SDM

This chapter contains three case studies of example transformations that use the featured

language constructs for nondeterministic scheduling of ND-SDM. The first two example

transformations start with an implementation either in a language that supports only explicit

rule scheduling, such as MoTMoT, or in a language that supports only implicit rule schedul-

ing, such as AToM3. The weaknesses of these implementations are discussed, and a better

alternative in ND-SDM is implemented. The third example illustrates the usage of another

nondeterministic variant and priorities.

5.1 The UML to RDB transformation

5.1.1 UML to RDB

For model transformations, the Conceptual Data Model to Relational Data Model is a com-

mon case study (for instance in (Bézivin05)). In this case, we will use a variant of UML

Class Diagrams as Conceptual Data Model. This is particularly interesting in the context of

this thesis, as UML Class Diagrams are also part of the transformation language. In fact,

it illustrates a property of MDE: metalanguages such as UML Class Diagrams can also be

used as first order model languages.
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Figure 5.1: A storehouse inventory system in Class Diagrams

Figure 5.2: A storehouse inventory system in a UML Relational Data Model
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Figures 5.1 and 5.2 represent an example of the execution of such a transformation.

Because the modeling tool that is used in this thesis, Magic Draw, supports the UML,

the metamodel of both diagrams is the UML. However, certain stereotypes and tagged

values are used as annotations to describe domain-specific language features. The UML

metamodel is shown in the appendix, in Figures A.1 to A.6.

In this respect, in the Class Diagrams, attributes can have a �primary� or a �non-

persistent� stereotype. �primary� means that this attribute represents the unique iden-

tifier for this class. A �non-persistent� attribute is an attribute for which its value does

not have to be stored permanently. Methods and associations are omitted in this simplified

example.

The metamodel of Relational Database Models is a bit more complicated. Tables, columns

and foreign keys are modeled as classes, and their type is defined by the value of the

motmot.metatype tag. A table can have many columns and foreign keys, modeled by an

association. A foreign key references one table, denoting the type of the foreign key, also

by means of an association. A column is a primary key of a table if there is a �pkey�
stereotype on the association between them.

All classes from the Class Diagram of Figure 5.1 become tables in the Relational Database

Scheme of Figure 5.2. Attributes are transformed to either columns or foreign keys, depend-

ing on whether the type of the attribute is a basic datatype such as int or String or an

instance of a class that is part of the model such as Location.

5.1.2 Implementation in MoTMoT

Figure 5.3 represents a simplified model transformation that transforms a Class Diagram

to a Relational Database Scheme. Rules are scheduled using SDM Story Diagrams, the

original transformation language of MoTMoT. The first rule, Match metadata, looks up the

metamodel of the Class Diagrams and the Relation Database Schemes. Then, the input

model is checked on the presence of tables, as this would mean that the transformation

already has been executed. If a table can be found, the �success� transition is followed

and the algorithm ends. If not, the actual transformation of class diagrams is started, and

first, each class is transformed to a table in the �loop� state Transform classes to

tables.

Next, class attributes must be transformed. As explained before, it turns out that there

are two kinds of attributes that need two separate transformation rules. More detailed,

attributes can be of a simple data type or of an object type, which is represented differently
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Figure 5.3: A transformation from Class Diagrams to a Relational Database Scheme
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in databases. Attributes of a simple data type t become columns of type t. Object attributes

of class T become foreign keys with references to table T, as is the case with the location

attribute of the Class Diagram of Figure 5.1. In short, in Figure 5.3, all datafields are

transformed, and then all object fields are transformed.

Having to express the transformation of attributes in two different rules decreases the

quality of the transformation model in several ways. First, one has to impose an order on

these two rules, which has no meaning. This is thus a clear case of overspecification. Sec-

ond, modeling the transformation of all attributes as two different rules stresses the need for

two separate transformation rules. This should not be stressed in the Story Diagram, as the

Story Diagram is of a different level of granularity. Third, the transformation of all attributes

is conceptually one action, and should be modeled as such in the Story Diagram. Fourth,

the model becomes too verbose, which decreases readability and usability. This would es-

pecially be the case when a lot more than two rules are in this situation. Alternatively, for

these two rules, implicit rule scheduling would be a good choice.

Suppose that the whole transformation were implemented using implicit rule scheduling

in the first place, in for example, a tool such as AToM3. With implicit rule scheduling, the

Match metadata and A table exists states (this kind of sanity checks are rather common

at the start of model transformations) could not have been scheduled before the other rules

without having to rely on hand-written code or other tool-specific approaches, such as a

dedicated state variable. Contradicting what has been stated previously, this is a reason

why modeling in a language using explicit rule scheduling is a good choice for this problem.

5.1.3 Implementation in ND-SDM

It turns out that both implicit and explicit rule scheduling are needed to model the example

of Figure 5.3 in a decent way. Therefore, the ND-SDM language is very suited as it intro-

duces a new language construct for the SDM language that allows implicit rule scheduling.

In Figure 5.4, a nondeterministic state is used, following the variant keep matching rules

until all failed to match, just like in the household problem (see Section 3.1.2). Its prototype

contained an application condition consisting of a �loop� stereotype (present of course

on the state in Figure 5.4), and the actual prototype was given in Figure 4.6.

When using the transformation model of Figure 5.4 as input model, an execution of the

higher order transformation described in Chapter 4 generates the transformation model in

Figure 5.5. This transformation can, in contrast to Figure 5.4, be executed by MoTMoT, but

has the same behavior as the ND-SDM transformation in Figure 5.4.
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Figure 5.4: The UML to RDB transformation in ND-SDM

Using the nondeterministic state in Figure 5.4 solves the problems of the ND-SDM imple-

mentation of Figure 5.3. The two similar rules are scheduled as one state named Transform

attributes to columns, which is conceptually a single action. The transformation model

is less verbose, and it is now very clear at first glance that first tables and then attributes

are transformed.
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Figure 5.5: The flattened UML to RDB transformation
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5.2 The Petri Net simulation transformation

5.2.1 Petri Net simulation

The next case is the simulation of the execution of Petri Nets (Peterson77). The execution of

the Petri Net simulation transformation presented in this section preserves the structure of

the Petri Net, but changes the marking of the Petri Net in such a way that it simulates firing

an enabled transition, if there is one. Both the input and output model of the transformation

are Petri Nets. This transformation is called endogenous (Mens06), since the input and

output model have the same metamodel. Another difference with the previous case is that

this time, the first implementation is in AToM3 (De Lara00), using implicit rule scheduling,

rather than in MoTMoT, using explicit rule scheduling.

5.2.2 Implementation in AToM3

In this section a model transformation is introduced that implements the Petri Net simulation

transformation of Petri Net models in AToM3 (see also Section 2.7). In AToM3, rules can

be scheduled using priorities. Some advantages and disadvantages of using implicit rule

scheduling will emerge.

As said previously, both the input and output model confirm to the same metamodel,

which is described below. The metamodel, the transformation model and the input model

are all modeled using AToM3.

Petri Net access control example in AToM3

A marking of a Petri Net will be the input model of the transformation. As an example, Fig-

ure 5.6 models access control of one resource. Tokens in places represent processes in

certain states (except for the tokens in the access control place: they represent available

resources), and the firing of transitions triggers state changes. Three different processes

can read the resource at the same time. A write action however can only happen if the re-

source is not being read. An execution of the Petri Net simulation transformation described

below could perform for instance the firing of t6, where one token would move from reader

processing to ready to read. Another execution could fire t2, which would empty the

places ready to write and access control, and put a token in writing. Note that the

resulting output model could serve as the input model of a new transformation execution,

allowing chained transition firings.
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Figure 5.6: A Petri Net in AToM3 that models access control

Petri Net metamodel in AToM3

The Petri Net model of Figure 5.6 is conform to the metamodel of Figure 5.7. This meta-

model is modeled and interpreted by AToM3. It is an Entity-Relationship diagrams, one of

the metalanguages provided by AToM3. Besides using it as a metamodeling tool, AToM3

will also be used as transformation tool below.

Figure 5.7 describes a metamodel of Petri Nets. PNPlaces and PNTransitions must be

connected by arcs, either from a transition to a place (TransitionToPlace) or from a place

to a transition(PlaceToTransition). A place can be connected to many transitions, and

the other way around. Places can have tokens (0 by default), and a minimum (0 by default)

and maximum (10000 by default) token capacity. Arcs can have a weight (1 by default) that

depicts how many tokens are used when a transition fires.

The Petri Net simulation transformation in AToM3

Tables 5.1, 5.2 and 5.3 present the rules of the Petri Net simulation transformation in AToM3.

For each rule, a priority is given (see Section 2.7). Each rule can have a LHS subgraph and

a RHS subgraph, and some Python code for a condition and action for each rule is added.

The transformation goes as follows. First, with rules of the highest priority, some variables

are initialized in the initializing phase. Once everything has been initialized, these rules

won’t match anymore, so the StopInitializing rule of priority 3 gets executed, which puts

the algorithm in the idle phase. Then, it is tested whether the transitions can really fire. If
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Figure 5.7: A metamodel of Petri Nets in AToM3
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Priority 1 - Start

LHS / Condition RHS / Action

not hasattr(environment, "phase") environment.phase = "initializing"

This rule starts the transformation by flagging that the algorithm is in initialization

phase (by initializing the global variable environment). This rule does not need

any graphs for pattern matching.

Priority 2 - InitializeTransition

LHS / Condition RHS / Action

environment.phase == "initializing"

and not transition.enabled ==

"unknown"

transition.enabled = "unknown"

This rule, when in initialization phase, initializes a flag enabled to unknown for

each transition.

Priority 2 - InitializeIncomingArc

LHS / Condition RHS / Action

environment.phase == "initializing"

and arc.fired

arc.fired = False

When in initialization phase, this rule initializes a flag fired to False on each arc

that goes from a place to a transition.

Priority 2 - InitializeOutgoingArc

LHS / Condition RHS / Action

environment.phase == "initializing"

and arc.fired

arc.fired = False

When in initialization phase, this rule initializes a flag fired to False on each arc

that goes from a transition to a place.

Table 5.1: Implementation of the Petri Net simulation transformation in AToM3
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Priority 3 - StopInitializing

LHS / Condition RHS / Action

environment.phase == "initializing" environment.phase = "idle"

After everything has been initialized, the side-effects of this rule stop the

initialization phase.

Priority 4 - DisableTransitionByInput

LHS / Condition RHS / Action

transition.enabled == "unknown"

and environment.phase == "idle"

and (place.tokens < arc.weight

or place.tokens - arc.weight <

place.minCapacity)

transition.enabled = "no"

This rule rules out transitions that are supposedly enabled, but turn out to be not,

when checking (one of its) incoming states. This can only happen in idle phase,

otherwise a transition can be falsely disabled while firing.

Priority 4 - DisableTransitionByOutput

LHS / Condition RHS / Action

transition.enabled == "unknown"

and environment.phase == "idle"

and place.tokens + arc.weight >

place.maxCapacity

transition.enabled = "no"

This rule rules out transitions that are supposedly enabled, but turn out to be not,

when checking (one of its) outgoing states.

Table 5.2: Implementation of the Petri Net simulation transformation in AToM3 (cont.)
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Priority 5 - DecreaseInput

LHS / Condition RHS / Action

transition.enabled == "yes" and not

arc.fired

place.tokens -= arc.weight

arc.fired = True

environment.phase == "firing"

This rule decreases the number of tokens of the input states of the enabled

transition.

Priority 5 - IncreaseOutput

LHS / Condition RHS / Action

transition.enabled == "yes" and not

arc.fired

place.tokens += arc.weight

arc.fired = True

environment.phase == "firing"

This rule increases the number of tokens of the output states of the enabled

transition.

Priority 6 - ChooseTransition

LHS / Condition RHS / Action

not environment.phase == "firing" and

transition.enabled == "unknown"

transition.enabled = "yes"

A transition is chosen to try to fire.

Table 5.3: Implementation of the Petri Net simulation transformation in AToM3 (cont.)
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a transition cannot, DisableTransitionByInput or DisableTransitionByOutput disables

the transition. Then, the next two rules will not match, because they require a transition to

be enabled, and for now, some are disabled and for some it is unknown whether they are

enabled. As a consequence, they are skipped, and the scheduling algorithm reaches the

rule ChooseTransition with lowest priority. This allows a random transition that was not

disabled to be enabled. Now, DecreaseInput and IncreaseOutput can match and conse-

quently the number of tokens of the input place(s) is decreased and the number of tokens

of the output place(s) is increased. Once this is done, none of the rules can match since the

algorithm is in the firing phase and the firing is done, so the transformation ends. On the

other hand, if all transitions would have been disabled by the DisableTransitionByInput

and DisableTransitionByOutput rules, the transformation would end because no transi-

tion can be chosen in ChooseTransition.

In short, this transformation transforms a Petri Net marking into another marking where

one transition has fired. The transformation can easily be extended so that it keeps firing

transitions until there are no possibilities left. This would be done by adding a rule with

lowest priority that does nothing but putting the algorithm back in the initialization phase.

This is not done here, because one execution of the transformation is the firing of a single

transition, if there is one enabled. Note that in the case of the access control example, this

causes the transformation execution to never terminate.

Advantages and disadvantages of using AToM3

As a conclusion, we sum up the advantages and disadvantages of the use of AToM3, a

transformation language using only implicit rule scheduling:

• overall, the transformation is very concise and elegant. This is due to the concept of

declarative programming that is associated with implicit scheduling. On the scope of

rule scheduling, it is modeled "what" must happen, and not "how";

• unfortunately, the modeler is obliged to annotate the rules with some Python code.

This code is not visible in the LHS and RHS graphs. This is in contrast with the visual

graph grammar language;

• unfortunately, in order to allow a correct termination of the transformation if there is

no enabled transition in the input model, a string flag enabled must be used. This

complicates the whole transformation model1;

• some loops over one rule can be modeled using only that rule;

1Note that in a way, due to the enabled variable as well as the phase variable, the transformation model gets
suspiciously many characteristics of a state machine, which is deterministic.
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• similar rules can be somewhat bundled by giving them the same priority. However,

they are still separated, as any two other rules;

• there are three phases in the algorithm: the initializing phase, the phase where a

transition is fired, and an idle phase. This is not immediately recognizable in this

transformation model. Instead, unfortunately, the artificial usage of a global variable

environment.phase is required.

5.2.3 Implementation in ND-SDM

This section introduces a model transformation that implements the Petri Net simulation

transformation of Petri Net models in ND-SDM. Both implicit and explicit rule scheduling

will be used. The disadvantages that emerged from the implementation in AToM3 will turn

out to be solved.

Petri Net access control example in ND-SDM

Figure 5.8 shows the same Petri Net with the same marking as the access control example

of the AToM3 implementation in Figure 5.6. Since the Petri Net metamodel is now written in

the UML, the model looks a bit different graphically, but it still models resources with access

control. Tags are used to model the number of tokens, the minimum and maximum capacity

(both not visual) of a place, and the weight of an arc.

Figure 5.8: A Petri Net in the UML that models access control
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Petri Net Metamodel

The metamodel of the ND-SDM implementation is UML Activity Diagrams. The metamodel

for Activity Diagrams is shown in the Appendix in Figure A.6. ActionStates are used to

model places, PseudoStates (i.e. forks and joins) are transitions, and Transitions model

arcs.

The Activity Diagrams are enriched with some TagDefinitions, to model the Petri Net

constructs such as weights, tokens and capacities. Tags are part of the so-called exten-

sion mechanisms in the UML, and their metamodel is shown in Figure A.3. Tag definitions

are declared for weight, which are applicable on Transitions, and tokens, minCapacity and

maxCapacity, which are applicable on ActionStates. As said, minCapacity and maxCapacity

are marked to be not visual in their ActionState. (In the access control example, all mini-

mum capacities are 0 and all maximum capacities are infinite.)

The Petri Net simulation transformation in ND-SDM

Both rule scheduling constructs of AToM3, namely nondeterminism and priorities, are also

available in ND-SDM. Therefore, it is possible to mindlessly copy the scheduling of the

rules of any AToM3 transformation. Although this would be interesting when one wants to

transform transformation models automatically from one tool to another, doing so does not

necessarily results in the most elegant result, as the availability of constructs for explicit

rule scheduling is entirely ignored.

In the context of the Petri Net simulation transformation, while discussing the AToM3

implementation, it has been suggested that some constructs for explicit rule scheduling

could be quite useful. The three different phases can be scheduled successively. The

Story Diagram of the ND-SDM transformation is shown in Figure 5.9. In the Start state,

some metadata is matched, like in the UML to RDB transformation in Figure 5.3. It is called

Start to emphasize the similarity to the Start rule of the AToM3 implementation. After all,

both are rules that initialize the environment.

Next, all transitions and arcs are initialized in the initialize state. This is done in

the same way as in the AToM3 rules. initialize references two rules. Because UML’s

Transitions are used to model both incoming and outgoing arcs, there is no need for two

separate InitializeIncomingArc and InitializeOutgoingArc rules. Next, transitions

that are in fact not enabled are marked as disabled by checking their input and output

places.
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Then, a transition that is not disabled is chosen in the ChooseTransition state. If no

enabled transition can be found, the transformation is terminated. Otherwise, the marking

of the Petri Net is changed by changing the number of tokens of the input and output

places of the chosen transition. It turns out that the referenced packages DecreaseInput

and IncreaseOutput do not just contain patterns, but they are actual Story Diagrams. This

can be considered as a case of explicit rule scheduling (i.e. the Story Diagram) inside an

implicitly scheduled environment (i.e. the nondeterministic state). The nondeterministic

state itself is of course a case of implicit rule scheduling inside an explicitly scheduled

environment. Indeed, both are possible, making implicit rule scheduling and explicit rule

scheduling virtually equal in hierarchy2. When the fire transition state is finished, the

transformation terminates.

Figure 5.9: The Petri Net simulation transformation in ND-SDM

2If one wants to use only explicit rule scheduling in MoTMoT, one is still obliged to surround the implicitly
scheduled rules with an initial state and a final state, so there still remains a small notion of explicit rule scheduling.
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Figure 5.10: A possible marking after the execution of the transformation

An execution of the transformation possibly yields the marking given in Figure 5.10,

where a process starts to write on the resource. Executing the higher order transformation

described in Chapter 4 on the ND-SDM model, results in a MoTMoT compatible transfor-

mation model with the same behavior, given in Figure 5.11. Three nondeterministic states

are transformed, all using the variant of the household problem (see Figure 4.6). It turns

out that, in terms of scheduling, this variant exhibits the same behavior as an AToM3 rule of

the highest priority.

Advantages of using ND-SDM

By using the hybrid transformation language, the disadvantages of the language with im-

plicit rule scheduling are solved, while the advantages remain (see Section 5.2.2 about the

advantages and disadvantages of implicit rule scheduling):

• the Story Diagram of the transformation is even more concise and elegant since sim-

ilar rules can be modeled in one state;

• the use of additional platform-dependent code is very limited to some conditions (as

boolean expressions), which can be imitated in virtually any language because no

new variables are declared in code, and no global variables are used. The use

of platform-dependent code could be solved by using the profile described in Sec-

tion 4.4.7;

• when there is no enabled transition, the transformation stops. This is visually modeled

by the conditional rule choose transition;
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Figure 5.11: The flattened Petri Net simulation transformation
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• iteratively evaluating rules, as in AToM3, can still be modeled when using the�loop�
stereotype and the right variant of the nondeterministic state;

• similar rules are modeled in only one state. Conceptually similar actions are bundled,

making the transformation model more readable and intuitive;

• the three phases of the algorithm can be modeled visibly and intuitively. No global

variable needs to be used for modeling different phases;

• since priorities can still be used, their advantages remain. However, it turns out that

this transformation can be better modeled without priorities.
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5.3 The poker game simulation transformation

5.3.1 Poker simulation

Poker (Wikipedia09) is a card game based on a ranking system. In a game, each player

gets a number of cards. For each player, the highest five card hand can be determined by

the predefined ranking rules. The player with the highest hand wins. The ranking depends

on the combination that can be formed from the suits (spades, hearts, diamonds and clubs)

and spots (2 to 10, jack, queen, king, ace) of the cards. The ranking is given in Table 5.4.

Straight Flush Three of a Kind

Four of a Kind Two Pairs

Full House Pair

Flush High Card

Straight

Table 5.4: The poker ranking with examples, in descending order (Wikipedia09)

91



The poker simulation transformation presented in this section follows the popular Texas

hold ’em variant. Besides dealing cards for each player, community cards are dealt too,

which can be used by all players to construct their best hand. Each player gets two cards,

then three community cards are dealt (this is called the flop), then another one (the turn),

and a final one (the river ). The players can bet between these dealing phases (also called

betting rounds). At the end, each player can construct the best hand using his two cards

and the five community cards, and the player with the best hand wins.

The goal of the poker simulation transformation is to give each player its ranking and

to point out the winner of the game. The poker simulation transformation will generate a

deck of cards, deal cards to the players, and deal the community cards in the three betting

rounds (the flop, the turn, and the river). Because in Texas hold ’em betting can be done

after each round, it is useful to calculate after each round what is the best hand for each

player. Once the river is dealt, the player with the highest hand is denoted as the winner.

This transformation illustrates the use of priorities and another prototype as the ones used

in the two previous transformation examples. This time, only the ND-SDM implementation

is given.

5.3.2 Implementation in ND-SDM

Similar to the other transformations in MoTMoT, the metamodel of the poker game is the

UML. This time, Class Diagrams are used. A card is a UML Class, and a player, the com-

munity cards and the deck are UML Packages, because they are all able to hold cards.

To make a difference between different cards, Stereotypes are used. For example, the dia-

mond queen is a class with two stereotypes: diamond and Queen. Players have a stereotype

Player, and the board of community cards has a stereotype Community Cards. When the

transformation is executed, a Winner stereotype is put on the player with the highest hand.

Each player also gets a stereotype denoting its ranking, following the rankings of Table 5.4.

Figure 5.12 shows the input model of the poker game simulation transformation. The only

thing that is modeled is which players will join the game. First, the card deck is generated,

the board of community cards is created and each player is dealt two cards, as shown

in Figure 5.13. It looks like Patrick has been dealt some pretty good cards: two queens.

After the (imaginary) betting round, the flop is dealt and it seems that Frank is winning (also

called in front), as he can construct a straight (kings to 9) from his cards and the community

cards. Patrick is also doing OK, as his hand has three queens. Mary and Jane’s hands both

have only a pair for now. At the turn (Figure 5.15), a three of spades is dealt. Now Jane’s

hand has a three of a kind, but Mary’s hand has 5 spades, forming a Flush, so she is in
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front now. At the river (Figure 5.16), the last queen of the deck is dealt. So Jane can form

a full house of threes over queens, but Patrick’s hand has now a four of a kind, so he is the

winner. Figure 5.16 is the output model of the transformation, where the final hand rankings

and the winner are denoted.

Figure 5.12: The input model of the poker simulation transformation

The Story Diagram of the ND-SDM transformation is shown in Figure 5.17. It starts with a

series of sanity checks, which look up the metadata, such as the stereotypes for the differ-

ent ranks (Full House, Pair, etc.), spots (2 to 10, Jack, etc.) and suits (diamonds, spades,

etc.). An ordering is created for the different rank stereotypes by generating some associa-

tions between them (an association between High Card and Pair, between Pair and Two

Pair, and so forth). The same is done for the spots, as they too have an ordering. These

patterns are scheduled using a nondeterministic state with a �sanity check� stereotype.

This variant of nondeterministic scheduling will try all the patterns once, until one fails. If all

patterns match, the�success� transition is followed. If one fails, the�failure� transition

is followed. Note that this is the same variant as in the restaurant problem of Section 3.1.2.

The prototype was shown in Figure 4.8. Note that this time, the application condition is not

an empty state, but a state with a�sanity check� stereotype.

Some of the patterns, such as Match ranks, are split into many patterns. This is done

for performance reasons. After all, in order to match a whole pattern (or graph), a subgraph

is built up by matching one node at a time. Therefore, for each node of the pattern, all

possibilities can be tried. In this way, the search space for a pattern is exponential to its

number of nodes. In other words, large patterns can be huge performance bottlenecks. By

splitting up the pattern, the cumulative search space of the resulting smaller patterns is a

lot smaller.

If the sanity checks were successful, the card deck and all 52 cards are generated. Then,

each player is dealt two cards. In the deal player cards state a player is given a card as
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Figure 5.13: The players are dealt two cards each
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Figure 5.14: Frank is winning after the flop
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Figure 5.15: Mary is winning after the turn
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Figure 5.16: Patrick has won after the river
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Figure 5.17: The Story Diagram of the poker simulation transformation
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long as he has less than two cards. Next, the board of community cards is generated, by

simply creating a new package with the�Community Cards� stereotype. Then, the three

flop cards are dealt one by one in the deal flop state by putting them in the�Community

Cards� package.

The next twelve states are scheduled using priorities, denoted by the blue�nextPriority�
transitions. As discussed in Section 3.3, this means that patterns with higher priorities that

match will be executed first. Remove cards from hand has the highest priority, and Form

player hand the lowest. The first time, none of the patterns with higher priority match, so

the call of the Form player hand state is made. In the called Story Diagram (which is not

shown), a player is chosen and the player’s hand is constructed. The hand consists of the

cards that are available for the player to construct the highest hand. In other words, the

hand of a player contains five cards at the moment: the cards of the player plus the three

community cards (dealt in the flop).

Once the hand has been created, the highest ranking of the hand has to be found. The

two states with highest priority can not match, as long as the player has not yet received his

ranking for this betting round. However, one of the ranking states (Straight Flush to High

Card) can match now. Because of the priority structure of the states, the highest possible

ranking will match. When following the example above, the pattern of the Straight state

will match for Frank. The High Card pattern would match too, but is not even evaluated

because of the priorities. All these ranking patterns are rather similar.

For example, the pattern for matching a full house is shown in Figure 5.18. fh_c1 to

fh_c5 represent the cards, which have to be part of the hand fh_hand. Three cards have to

have the same spot fh_spot, and two other cards have to have the same spot fh_spot2. If

the pattern matches, a stereotype fullhouse is put on the current player fh_player.

Once the best hand for the current player is found, the pattern of the Remove cards

from hand state matches. In this pattern, a card is removed from the hand. This state

keeps matching until all cards are removed from the hand. This way, a new hand can be

constructed for the next player. Then, the Remove cards from hand pattern fails to match,

so the Remove hand pattern matches and removes the hand. Because there is no hand,

none of the patterns with higher priority match, and the situation is the same as when first

entering the priority flow. Hence, the call from the Form player hand is made and a new

unranked player is chosen, and the same path is traversed for this player.

After all players have been ranked, the call from Form player hand will return false, so

the priority chain is left, as none of the patterns in the priority chain matches. Next, the deal
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turn/river state is entered. In its pattern, one card is dealt to the community cards. Once

the turn is dealt, the rankings are removed from the players so that the ranking can start all

over again3. After each player is ranked once again, the river is dealt, and all players are

ranked once more. When the deal turn/river state is entered after the river, its pattern

fails, and the player with the highest hand is denoted as winner.

To summarize, different constructs of explicit and implicit rule scheduling can be mixed

up in the Story Diagram. Note that in the priority chain of this diagram, not only patterns,

but also a whole Story Diagram, are scheduled implicitly. This is again a case of explicit rule

scheduling inside an implicitly scheduled environment (see also the Petri Net transformation

of Section 5.2). Finally, Figure 5.19 shows the diagram that results from executing the HOT

with the poker transformation as input.

Figure 5.18: The pattern for matching a full house

3Removing the rankings seems to make the ranking of the players after the flop useless, but in practice, the
current rankings can be printed, or the transformation can be paused to check the rankings.
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Figure 5.19: The Story Diagram after the execution of the HOT
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CHAPTER 6

Negative application conditions in SDM

In Chapter 4, we implemented hybrid rule scheduling as a higher order transformation. It

turns out that many other language extensions can be implemented using this technique.

To illustrate this, we implement negative application conditions (NACs) as a HOT. NACs

are another useful language extension that is not available in the MoTMoT transformation

language.

6.1 Negative application conditions

Negative application conditions in graph grammars were first presented by Habel et al.

(Habel95). A NAC is a condition of a graph that must not be matched in order to match

the graph. For example, a pattern that matches persons that do not have children can be

elegantly expressed using a NAC. The NAC that would express that a person that does

have a child can not match.

The example above only describes one type of NAC. In my opinion, four kinds of NACs

can be useful in SDM:

• a NAC on a state: in contrast to a usual state, if the pattern of the state matches, false

is returned. If the state does not match, true is returned;
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• a NAC on an association in a pattern: a subgraph matches the pattern if there is

no association that matches the NAC association between the matched elements.

Table 6.1 presents a simple graph example to illustrate this;

• a NAC on an attribute of an element of a pattern: a subgraph matches the pattern if

the value of the NAC attribute does not equal the value of the attribute of the matching

element. This is very similar to a constraint on the element saying attr != value;

• a NAC on a subgraph of a pattern: a subgraph can match the pattern if it is not

connected in the same way with any subgraph that matches the NAC subgraph. The

implementation of this type is discussed in this chapter, as it is the most complicated

type of NACs. Table 6.2 presents a simple graph example to illustrate this type of

NAC.

In his description of Story Driven Modeling, Zündorf describes so-called negative graph

elements (Zündorf02). They have the same behavior as NACs on a subgraph, but only one

element can be the NAC instead of a whole subgraph.

A NAC on a subgraph can be used in the example of the childless persons. A NAC on

an association can not be used, as using a NAC on an association would imply that at least

one child must exist, which is not the intent of the pattern.

As said, an implementation of NACs on subgraphs of patterns is presented in this chap-

ter. The evaluation (the examples of Table 6.2 follows these semantics) of a pattern takes

three steps:

1. the subgraph without the NAC subgraph must be matched. If no matching subgraph

can be found, the pattern fails to match. If a matching subgraph can be found, con-

tinue with the next step;

2. the NAC subgraph is evaluated. If no match can be found, the pattern matches. If a

matching subgraph is found, continue with the next step;

3. the edges connecting the matched NAC subgraph with the other matched subgraph

are evaluated. If not all of them match, the NAC passes and the pattern matches. If

they all match, this subgraph fails to match and another one is tried in the first step.

This type of NAC is used inside a Story Pattern, thus NACs, as language construct, differ

a lot from nondeterministic scheduling, where everything happens at the level of the Story

Diagrams. To illustrate NACs, the UML to RDB example of Section 5.1 is revisited. It turns

out that the patterns of this transformation (not shown in Section 5.1) are very suitable
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Pattern

The pattern has a NAC on the edge f between a and b.

Pattern match Pattern match

A subgraph of this graph matches the
pattern as a, b, c and the edge e

match, while there is no edge f

between a and b.

A subgraph matches, as there is no
edge labeled f between the two left
nodes a and b.

No match No match

No subgraph matches, as there is an
edge f between the only occurrences
of a and b.

No subgraph matches, as there is no
node a.

Table 6.1: An example of a NAC association
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Pattern

The pattern has a NAC covering the nodes a and d, and the edge f in between.
Note that the NAC would exhibit the same behavior if the edge g was included.

Pattern match Pattern match

A subgraph of this graph matches the
pattern as the NAC subgraph can not
be matched.

A subgraph matches, as the NAC
subgraph can not be matched.

Pattern match No match

A subgraph matches, as there is no
edge g between node b of the
matching subgraph and node a of the
matching NAC subgraph.

No subgraph matches, as there is an
edge g between node b of the
matching subgraph and node a of the
matching NAC subgraph.

Table 6.2: An example of a NAC subgraph
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for using NACs. Since nondeterministic scheduling can now be considered a part of the

transformation language, we can start from the diagram with the nondeterministic state.

Figure 6.1: The UML to RDB transformation in ND-SDM

The Story Diagram shown in Figure 6.1, is however slightly different from the one of

Figure 5.4. Instead of the A table exists, there is now a state called No RDB constructs

used, and the outgoing �success� and �failure� transitions have been switched. This

state is much more intuitive, as we are not really trying to match tables, but we are checking

if there are no RDB instances in the model. Before, the transformation would terminate if

Match metadata was not matched. Then, it would terminate if A table exists was indeed

matched, which can be confusing. Now, both patterns simply have to match in order to

continue.

The first state in Figure 6.1, Match metadata, binds some useful metadata that will be

used in the following patterns. Then, the No RDB constructs used state is entered. The

pattern is presented in Figure 6.2. The pink UML Package with the �NAC� stereotype

immediately stands out. This is how NACs will be visualized. This way, the transforma-

tion language stays conform to the UML, as this is still a requisite of course. The pattern
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matches if no class c can be found which has a sdm_metatype tag (i.e. the tag named

motmot.metatype) that references a class that resides somewhere in the RDB metamodel.

In other words, no instance of RDB may exist. Note that the element c has to be inside

the �NAC� package. If not, the pattern states that a class must be found in pkg, and

this is not what we want to express. On the other hand, it does not matter whether bound

elements are inside or outside the�NAC� package, as they match anyway.

Figure 6.2: This pattern matches when no RDB constructs can be found

If no RDB constructs can be found, the actual transformation can start with the iterative

Transform classes to tables state, shown in Figure 6.3. In this pattern, for a class c in

pkg, a table newTable is created (with rdbms_Table as motmot.metatype). The tables and

classes are both modeled as UML Classes (see Figures 5.1 and 5.2), so special care must

be taken that newly created tables are not transformed as well. This is expressed by the

NAC, which is very similar of the previous one, stating that c can not be an instance of RDB.

This time, sdm_metatype is outside the�NAC� package, and there are two associations

that connect the NAC to the rest of the pattern. After each class has been transformed,

the attributes are transformed in the Transform attributes to columns state. This is

the nondeterministic state referencing two patterns, Datafields to columns and Object

fields to foreign keys.

The pattern Datafields to columns is rather large, so in order to present it in this thesis

it is split up into two views1, the match view (shown in Figure 6.4) and the create view

1Using views fits very well into the larger context of Model Driven Engineering. Making views does not alter the
transformation model in any way, as there is still only one Datafields to columns pattern. In fact, all diagrams
shown in this thesis are just views. An actual model is a tree containing the elements.
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Figure 6.3: This pattern transforms classes to tables

(shown in Figure 6.5). In the match view, it is shown that an attribute datafield matches,

if the following holds:

• it does not have the class_nonpersistent stereotype (the upper NAC). Non-persistent

attributes do not become persistent columns. Note that in this case, a NAC on the

association between datafield and class_nonpersistent would have the same

meaning;

• its type type resides in the package javaPkg (i.e. java.*), as this means that the

attribute is of a "simple" type, and must indeed be transformed to a column, not to a

foreign key;

• its class classWithDataField is not an RDB instance (the middle NAC, again, similar

to the one shown in Figure 6.2);

• its class has an according table tableWithDataField2, created in the Transform

classes to tables pattern;

• the column is not already created (the bottom NAC).3

For an attribute that confirms to the conditions above, the new column newColumn is

created as shown in Figure 6.5. This includes creating a UML Class for the column with an
2Note that tableWithDataField is matched by name in the constraint. With traceability mechanisms, this

could be expressed much more elegantly by using for example a traceability link between tableWithDataField

and classWithDataField, created in the Transform classes to tables pattern.
3This too could be expressed more elegantly with a NAC on a traceability link.
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attribute representing the type of the column, as well as the UML Association between the

column and the table.

Figure 6.4: The match view of the pattern that transforms datafields

The Object fields to foreign keys pattern is very similar and is therefore not shown.

It also uses three NACs, similar to those of the match view of Figure 6.4. A new UmlClass

must be created, but this time two associations must be created: one from the table where

the foreign key is part of, and one to the table it references (i.e. the type of the foreign key)

(see Figure 5.2). Once all attributes are transformed, the transformation is finished.

To summarize, negative application conditions are very useful in numerous occasions. A

pink package with a �NAC� stereotype is visually very recognizable and makes a clear
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Figure 6.5: The create view of the pattern that transforms datafields
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distinction between the subgraph that must be matched and the subgraph(s) that must not

be matched. Because of their usefulness, negative application conditions are implemented

in many transformation tools, such as AGG (Täntzer06), VIATRA (Csertán02) and GReAT

(Balasubramanian06). Progres (Schürr09b) and Fujaba (Nickel00) support NACs that are

only applicable on one element instead of entire subgraphs (see also (Zündorf02)). How-

ever, NACs have not yet been implemented in a tool-independent way.

6.2 The negative application conditions implementation

In this section we present the implementation of negative application conditions. Similar to

the nondeterministic scheduling implementation, a higher order transformation will be used

that transforms the transformation models written in the extended language to transforma-

tion models written in the language that is well-known to MoTMoT. The first thing to do is

once again to find an equivalent of the NAC construct that has the same behavior, but is

written in the Core profile of SDM (without the�NAC� stereotype), or ND-SDM.

6.2.1 The MoTMoT equivalent

NACs are conditions that must not be met. In the MoTMoT equivalent, a NAC can therefore

become a boolean constraint (i.e. a motmot.constraint) on the pattern. More in detail, the

constraint will contain a call to a newly created Story Diagram containing the NAC, which

returns a boolean. This returned value will be negated, thus making sure that calls that

return true will fail the match.

Figures 6.6 to 6.9 present the equivalent of the Transform classes to tables pattern

of Figure 6.3. In Figure 6.6, the NAC is removed. Instead, a constraint is added to the state

of the Story Diagram. Figure 6.7 shows the relevant part of the Story Diagram. It says

that the return value of the call to a method Transform_classes_to_tables_2 must be

false. The implementation of this method is modeled by the Story Diagram of Figure 6.8.

This Story Diagram simply returns whether or not the pattern of the Transform classes

to tables_2 state matches. This pattern is shown in Figure 6.9, and it consists of the NAC

subgraph and the elements that were connected to it (the so-called context elements).

These context elements are now bound, because they have already been matched in the

class transformation pattern. Note that all bound elements are passed as parameters in

the method call in Figure 6.7.
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Figure 6.6: The class transformation pattern of the MoTMoT equivalent

Figure 6.7: The Story Diagram of the flattened UML to RDB transformation

Figure 6.8: The Story Diagram of the NAC
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Figure 6.9: The Story Pattern of the NAC

If more than one NAC is used in the same pattern, the constraint is composed of the

logical conjunction of the different negated method calls. This results in a tag of the form

motmot.constraint=!condition1 && !condition2 && !condition3. Alternatively, if one

wants to model the different NACs in disjunction, one has to put all NACs of the pattern in

one package. In this way the NAC will only match if all NACs match. This means that the

pattern can match as long as not all NACs match. The constraint would simply be of the

form motmot.constraint=!condition1. This was also noticed by Habel et al. (Habel95).

6.2.2 The negative application conditions HOT

In the NAC HOT, occurences of NACs are transformed to their equivalents, similar to the

HOT for nondeterministic scheduling. In order to do this, the NAC HOT has to perform the

following tasks:

• create a boolean method for the NAC;

• create a method call in the constraint of the patterns’ state (similar to the constraint in

Figure 6.7);

• create a Story Diagram (similar to the Story Diagram of Figure 6.8) that represents

the implementation of the NAC method. This is the Story Diagram that is entered

when the NAC method is called;

• separate the subgraph in the�NAC� package from its pattern (resulting in patterns

similar to the patterns Figure 6.6 and 6.9). This is done by performing the following:
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– create a new pattern for the NAC. Since patterns and NACs are both represented

by packages, this is simply done by removing the�NAC� stereotype from the

�NAC� package;

– copy all the context nodes from the original pattern to the NAC pattern, includ-

ing their associations with elements from the NAC pattern, their tags and their

stereotypes, and add a�bound� stereotype;

– remove all dangling associations from the original pattern.

Figure 6.10 shows the Story Diagram of the HOT. First, some metadata is matched and

bound in the match metadata and match java profile metadata states. Then, an ID

that will give each NAC equivalent a unique name is initialized. Next, each NAC is visited

iteratively by the pattern of the for each NAC �loop� state. The �NAC� stereotype is

immediately removed from the matched package. For each NAC, the ID is incremented,

making it unique for this NAC4. Next, in the copy each context element state, each con-

text element is copied as a bound element into the NAC pattern. For each context element,

the associations with the NAC are also moved to the NAC package, and the stereotypes

and tags are copied as well.5

Then, the transformation class is looked up in the find main class state. In the add

method state, a method representing the NAC is created in this class. In the create nac

flow state, the Story Diagram that will represent the implementation of the NAC method is

created. Next, it is checked if there was already a constraint on the state referencing the

pattern in question. If no tag is found, a constraint tag is created in the add constraint

tag state. Then, the method call is added to the constraint value, preceeded with logical

AND ("&&") if necessary. In the add params state, each bound element of the NAC pattern

is looked up and added to the method declaration, and in the add param in constraint

tag state they are appended to the call string of the constraint. When all parameters are

added, the parameter list of the method call is closed by simply appending ")".

It turns out that NACs can be easily implemented with a HOT. The higher order transfor-

mations for both nondeterministic scheduling and NACs clearly show that many language

extensions can be implemented using this technique. Our experience shows that once the

first language extension has been implemented using HOTs, the implementations of the

following HOTs come quite easy, as many insights can be taken along to new implementa-

tions.

4This ID is used in the method name, hence the "_2" in the name of the Transform_classes_to_tables_2

method of the example above. Apparently, it was the second NAC that was transformed.
5Alternatively, copying an element can be done with the copy operator (Van Gorp08b). The associations, tags

and stereotypes will then be copied automatically.
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Figure 6.10: The Story Diagram of the NAC HOT
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CHAPTER 7

Conclusion

7.1 Related work

This thesis covers the two possible ways of handling rule scheduling: implicit and explicit.

Blostein et al. mention a third one: event-driven graph rewriting (Blostein96). As explicit

rule scheduling (or ordered graph rewriting) has an internally-imposed ordering of rules,

event-driven graph rewriting has an externally-imposed ordering. The order is determined

by interactions with the system, either by another program or a user. As said, AToM3

allows users during transformation execution to manually choose the subgraph to which

the current pattern is applied. This is however not a case of an event-driven graph rewriting

system, as it is the subgraph that is externally chosen, while the rule is still chosen by

AToM3.

In GReAT (Balasubramanian02), rules can be scheduled explicitly using sequences and

conditionals. Rules can also be connected in parallel, in which case the order of rule

execution is nondeterministic (Balasubramanian06). GReAT does not offer a construct

for priorities. However, GReAT relies on its own scheduling language, thus crippling the

capabilities for portability of transformation models and transformation language features.

On the other hand, its pattern specification language is UML compliant.
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Syriani and Vangheluwe rely on DEVS (Bernard00) instead of relying on Activity Dia-

grams as a standard language for controlling the application of rewrite rules (Syriani07).

Their MoTif implementation of DEVS in AToM3 offers excellent syntax to allow both implicit

and explicit rule scheduling.

7.2 Future work

In the ND-SDM implementation in Chapter 4, we proposed a solution using higher order

transformations (HOTs) that involved transforming the ND-SDM constructs to equivalents

written in the imperative language known to MoTMoT. The current realization of nonde-

terministic scheduling aims at true nondeterminism by using random numbers. In some

cases however, the order of the rules is irrelevant. More specifically, one may not care

if the same order is used at all times. In these cases, the random number generator is

nothing but a performance bottleneck. Therefore, the implementation can be extended with

another, much simpler higher order transformation that imposes a particular order on the

rules instead of guaranteeing randomness.

Alternatively, one could execute the rules in parallel. It seems intuitive to rely on UML Fork

and Join elements to model the parallel nature of a transformation system explicitly. How-

ever, no SDM tool (Fujaba (Nickel00), MOFLON (Amelunxen06) or MoTMoT (Schippers04))

generates any code aimed at parallel execution, such as thread creation and thread syn-

chronization. Therefore, a higher order transformation approach does not seem to be ap-

plicable. Instead, one would have to extend the core of a particular SDM tool. On the other

hand, the use of standard UML elements does apply.

The technique of using higher order transformations to extend a language can be applied

to many language extensions. The main idea is to come up with an equivalent expressed

in the existing language. This has already been illustrated by the implementation of NACs

in Chapter 6. As stated before in Section 6.1, NACs can also be applied to other types of

elements besides parts of a pattern. These other types of NACs can also be implemented

using HOTs. First, a NAC can be applied to a state. The equivalent would then be the same

state without the�NAC� stereotype, but with the�success� and�failure� transitions

swapped. Second, a NAC can be applied to an attribute of a node in a pattern. The

equivalent would then use a motmot.constraint tag. Third, a NAC can be applied to an

association between nodes. The equivalent would then be the same pattern, but with the

�NAC� association removed, and an extra pattern will be introduced with a NAC on its
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state containing the two (now bound) nodes of either end of the�NAC� association. Note

that in this way, previously implemented extensions are used in the implementation of a new

extension.

Many other extensions can be implemented by HOTs. In Fujaba for example, multi ob-

jects are available. When a multi object is added to a pattern, the side-effects of this pattern

must be executed for each occurrence of the multi object. Maybe clauses are also avail-

able in Fujaba. It is especially interesting in tools supporting so-called injective matching,

like Fujaba. This means that different nodes in the pattern must match different objects in

the input graph. MoTMoT is however not injective. An Optional graph element is another

feature in Fujaba. With an optional node in a pattern, an exceptional possibility can be

modeled in the same pattern as the expected scenario. For example, a stack push on a

non-empty ánd on an empty stack can be modeled concisely in one pattern (Zündorf02).

All these features can be implemented using the technique explained in this thesis.

Extensions for reuse can be implemented using HOTs. For example, a hierarchy can be

established between patterns by adding inheritance to patterns. A pattern can inherit the

behavior from its parent pattern. This would be useful when for instance adding a parent

state for the rank patterns of the poker simulation, which are very similar (see Section 5.3.2),

or when adding a parent state for the attribute transformation patterns in the UML to RDB

transformation (see Section 6.1). In the equivalent of this feature, the elements of the parent

patterns would be added to their child patterns, replacing duplicate elements. It would be

useful if these parent patterns can be parameterized. Also, extensions for performance can

be created using HOTs. For example, by splitting large patterns, the search space can be

greatly reduced, as its size is exponential to the number of nodes in the pattern. This was

done manually in some of the patterns of the poker example.

A very interesting extension is a traceability mechanism. Although this is implemented

in many other tools, each tool has developed its own implementation. Therefore, it would

be very useful to develop a tool-independent implementation of traceability. This can not

be done using HOTs however, but the profile for generic containers and operations (as

proposed in Section 4.4.7) can be used.

This brings us to the overall objective in the long-term. An ultimate profile for SDM can

be developed, which can enable portability of models and especially language features.

It turns out that many transformation tools share the same features (for example: NACs,

traceability mechanisms, etc.). When this profile is implemented in these tools, tool builders

can reuse implementations of others instead of building yet another solution for the same
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problem. This ultimate profile can be divided into four profiles:

• a profile for the UML;

• a profile for a small selection of SDM operations usable as UML Stereotypes or

TagDefinitions;

• a profile for generic containers and operations;

• an optional profile for new language constructs.

The idea for the first two profiles has already been introduced in (Schippers04) respectively

(Van Gorp08b). They are used in MoTMoT. For true platform independence, a third profile is

necessary in order to have access to some "helper" features, as explained in Section 4.4.7.

Then, using the three previous profiles and higher order transformations, a fourth profile is

available that is continuously extended with useful language constructs by the SDM com-

munity. It is the choice of the tool developer to make none, some or all of these language

constructs available in his tool. Constructs of the fourth profile (like nondeterministic states

or NACs) can be automatically shared between UML implementations, because the profiles

ensure platform independence.

In order to implement traceability, the third profile can be used as follows. Generic nodes,

links or annotations are used as language constructs for traceability. In Story Patterns,

these nodes are typically used as UML Classes, links as UML Associations, and annota-

tions as Stereotypes or TagDefinitions. The name is then of the form traceabilityNode: GenericNode,

similar to how the UML profile is used in MoTMoT.1 With this implementation of traceability,

for example Triple Graph Grammars (Schürr95) and bi-directional transformations become

possible.

When traceability becomes available, some of the elements of the profile for SDM can be

eliminated and moved to the fourth profile, because they can now be implemented using

higher order transformations. This makes the profile for SDM even more concise, making

it more attractive to implement mappings to languages than Java. First, an equivalent of

the bound annotation can be created using traceability constructs. A traceability link can

be added between each bound element and its original. Second, loops on states and each

time transitions can also be implemented using a HOT. The equivalent uses traceability

annotations to mark the elements that have already matched, and a constraint is added to

the state saying that only elements that are not annotated can match.

1Such a GenericNode must roughly be able to reference elements, so a wrapper around a UML Classifier can
be used as its implementation.
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This implementation for loops has a very useful application in the immediate context

of this thesis. In a nondeterministic state with a �loop� stereotype, the enumerating

behavior of �loop� states can now be maintained (see footnote on page 26). A variant

can be built that uses the traceability constructs in the same way as described above. The

HOT implementing nondeterministic scheduling does not even have to be changed.

Extension SDM equivalent

NAC on state Swap�success� and�failure� transitions.

NAC on attribute Use motmot.constraint.

NAC on association Remove the NAC association from the pattern and add a
second pattern with a NAC on its state containing the two
(now bound) nodes on either end of the NAC association.

Multi objects Use an additional�loop� state with a pattern containing
the multi object node and the nodes it is directly
connected to. Using an�each time� transition, the
side-effects are executed for each iteration (Zündorf02).

Maybe clauses Replace the pattern with a pattern for each possibility.
These possibilities can be analyzed from parsing the
maybe clause (Zündorf02).

Optional graph element Replace the pattern with a pattern for each possibility
(Zündorf02).

Inheritance Add the elements of the parent patterns to their child
patterns, and replace duplicate elements in the child
pattern.

Reduce search space Split large patterns.

Traceability Annotate the model with traceability elements from the
profile for generic containers and operations.

Bound nodes Add a traceability link between each bound element and
its original.

Loop states Mark the elements that match and add a constraint saying
that only elements that are not marked can match.

Table 7.1: Possible language extensions for SDM

All these extensions and a limited explanation of their equivalents are given in Table 7.1

as the summary of future work with higher order transformations. For some extensions,

the profile for generic containers and operations has to be developed first. The proposed

methodology of the four profiles will result in a tool-independent, highly modular and rich

transformation language, with lots of plug-in possibilities.

A note must be made by presenting this methodology. Implementing features using

higher order transformation comes with a performance cost. Performance is however very
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important in transformation tools (Mohagheghi07). After all, the eventual goal of MDE tools

is that they perform transformations on-the-fly between the different views of a system. In

this context, it is still useful to optimize a transformation tool at the cost of modularity and

portability.

7.3 Conclusion

In most transformation tools, transformation rules are scheduled either explicitly or implicitly.

As a consequence, the user of the tool is forced to make a permanent choice between

these scheduling paradigms. This means that in some occasions the user can’t use the

most intuitive scheduling mechanism.

The solution to this problem was given in this thesis as ND-SDM, a transformation lan-

guage that supports both implicit and explicit - thus hybrid - scheduling. ND-SDM is an

extension of SDM Story Diagrams, which already supports explicit rule scheduling. In other

words, ND-SDM adds implicit rule scheduling to SDM, including nondeterministic schedul-

ing, priorities and layers. It turned out that there is no clear-cut meaning of "nondeterministic

scheduling of some rules". Therefore, the many variants have been analyzed.

The implementation proposed in this thesis is characterized by the use of two techniques,

higher order transformations and prototypes. By using higher order transformations, SDM

can be extended, without touching the SDM tool itself. In addition, in the case of MoTMoT,

the implementation remains compliant to the UML profile, which is a major advantage of

MoTMoT. By using prototypes, variants of nondeterministic scheduling can be plugged in

without changing the implementation (i.e. the HOT), or even without knowing what a HOT

is. The new language of ND-SDM is backed up by three examples, illustrating its various

possibilities.

In addition, it is shown that higher order transformations can be used to implement many

other language extensions, such as negative application conditions. With this knowledge,

this thesis is an outset for a highly modular, tool-independent transformation language

based on Story Driven Modeling.
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APPENDIX A

Auxiliary diagrams

This chapter presents diagrams of the UML metamodel, based on the UML 1.4 specifica-

tion (OMG01), and Story Patterns and code scripts of the higher order transformations for

nondeterministic states and negative application conditions.

A.1 UML metamodel

Figure A.1: UML core backbone (OMG01)
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Figure A.2: UML core relationships (OMG01)

Figure A.3: UML core extension mechanisms (OMG01)

Figure A.4: UML data types (OMG01)
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Figure A.5: UML model management (OMG01)

Figure A.6: UML Activity Diagrams (OMG01)
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A.2 Story Patterns of the nondeterministic state HOT

Figure A.7: Look up SDM profile package, create prototype application condition package

Only this is bound at the very start of the HOT, so the first pattern has to use this variable.

The Model is looked up, which must have a package named sdm anywhere (denoted by the

�closure� transition) in its hierarchy. If this pattern is matched, a new package is created

into transformationModel.
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Figure A.8: Match SDM profile metadata

This pattern matches if sdm_profilePkg contains the given Stereotypes and Tag

Definitions. These are part of the MoTMoT implementation of SDM, and are, in the context

of this HOT, part of the input model’s metamodel (i.e. the metamodel of the transformation

model, in other words, the transformation language).
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Figure A.9: Match SDM profile metadata (cont.)

This pattern matches if sdm_profilePkg contains the given Stereotypes and Tag

Definitions. Some are part of the MoTMoT implementation of SDM,

sdm_transprimitiveND and sdm_nextPriority are the new language constructs.
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Figure A.10: Match Java profile metadata

Some Java language constructs are bound here. The reason why Java constructs are

needed and how this relates to tool-independence is explained in Section 4.4.7.

String protoDir = "/prototypes/";

String absProtoDir = System.getProperty("user.dir")+"/target/classes" + protoDir;

java.io.FilenameFilter filter = new java.io.FilenameFilter() {

public boolean accept(java.io.File dir, String name) {

return name.endsWith(".xml");

}

};

java.io.File[] files = new java.io.File(absProtoDir).listFiles(filter);

int nFiles = files.length;

int it = -1;

Figure A.11: List possible prototypes

The prototype files, which are .xml files residing in the prototypes directory, are listed in

an array. A counter it is initialized.
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it++;

Figure A.12: Increase counter

The counter is increased. This counter is used for iterating over each file, found in list

possible prototypes (Figure A.11).

Figure A.13: Add container

Each application condition will be stored in its own package, which is a subpackage of

protoPackage.
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String modelUrl = "/prototypes/" + pkg.getName();

String graphName = "AC";

org.netbeans.api.mdr.MDRepository repo

= org.netbeans.api.mdr.MDRManager.getDefault().getDefaultRepository();

java.net.URL model_url = SDMflattenerForNDmatching.class.getResource(modelUrl);

java.net.URL metamodel_url

= SDMflattenerForNDmatching.class.getResource("/M2_DiagramInterchangeModel.xml");

org.omg.uml.UmlPackage prototypeModel = null;

try {

prototypeModel = (org.omg.uml.UmlPackage)

be.ac.ua.motmot.lib.MotMotUtil.loadPrimitiveExtentFromXMI(

repo, model_url.toExternalForm(), model_url, metamodel_url,

"UML", Class.forName("org.omg.uml.UmlPackage"), pkg.refOutermostPackage());

} catch (Exception e) logger.error("reading prototype failed: " + e.getMessage();

java.util.Collection allGraphs

= prototypeModel.getActivityGraphs().getActivityGraph().refAllOfClass();

Iterator graphIt = null;

ActivityGraph ac = null;

boolean found = false;

boolean deleting = true;

while (deleting) {

deleting = false;

graphIt = allGraphs.iterator();

while (!deleting && graphIt.hasNext()) {

ActivityGraph aGraph = (ActivityGraph) graphIt.next();

if (aGraph.getName().startsWith(graphName)) {

ac = aGraph;

ac.setName(modelUrl + "_" + ac.getName());

found = true;

} else {

Namespace ns = aGraph.getNamespace();

while (ns.getNamespace() != null) ns = ns.getNamespace();

if (!aGraph.getName().startsWith("/prototypes/")

&& !ns.refMofId().equals(transformationModel.refMofId())) {

aGraph.refDelete();

deleting = true;

} } } }

Figure A.14: Read application condition

The application condition is read. First, a prototype model is loaded into the working

repository repo. Then, the application condition diagram is searched for. However, other

Activity Diagrams from the model (such as the actual prototype), must be removed from

repo. After all, the actual prototype must be read again for every nondeterministic state

that has to be transformed, as states and transitions are directly extracted from the

prototype diagram, rendering it unusable for a next transformation of a nondeterministic

state. If these diagrams are kept, name clashes occur.
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Figure A.15: Get application condition state

The only state of the application condition diagram is bound here.

Figure A.16: Get application condition stereotypes

A stereotype on the application condition state is moved to protoPackage, the package

that will contain the application condition.
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Figure A.17: Get application condition tag definitions

A tag definition of a tag on the application condition state is moved to protoPackage, the

package that will contain the application condition.

Figure A.18: Match a�nextPriority� transition and create a�success� loop

A�nextPriority� transition and a�success� transition is created as the first step to

transform a�nextPriority� transition chain (described in Figure 3.9). As shown in the

Story Diagram of Figure 4.13, there is an additional constraint on matching this pattern.
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Figure A.19: Check whether source has an incoming�nextPriority� transition

Figure A.20: Transform a�nextPriority� transition

This pattern transforms a�nextPriority� transition in a�success� and�failure�
transition as proposed in Figure 3.9. A new�success� transition is created with the

current state target as source, and the state with top priority as target. Also, the

�nextPriority� transition becomes a�failure� transition.

Figure A.21: Find the next�nextPriority� transition
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Figure A.22: Set a�failure� stereotype on the outgoing transition

According to Figure 3.9, the outgoing transition of a�nextPriority� transition chain must

have a�failure� stereotype.

int int_id = 0;

Figure A.23: Initialize ID

An ID is initialized. This ID will make sure that the names of the new states created during

the transformation are unique.

Figure A.24: Find the next Activity Diagram

An Activity Diagram ndGraph is looked up, and its state container is bound.
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Figure A.25: Check whether the graph is called

It is checked whether ndGraph is called. According to MoTMoT, this is done by a method,

annotated with a motmot.transformation tag with as value the package where the graph

resides.

Figure A.26: Find a nondeterministic state

A nondeterministic state is looked up in the state container ndContainer of ndGraph. A

nondeterministic state is simply a state with a motmot.transprimitiveND tag.

int_id++;

Figure A.27: Increment ID for each nondeterministic state
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boolean found = false;

Figure A.28: Initialize a variable denoting if the prototype is found

If the application condition of the prototype is matched, the prototype is found, and this

variable will be set to true.

Figure A.29: Find a previously loaded application condition

One of the previously read prototype application conditions is chosen by binding its

package pkg.

boolean nomatch = false;

Figure A.30: Initialize a variable denoting if the current prototype is invalid

If the application condition of the currently checked prototype is not matched, this variable

will be set to true.

Figure A.31: Iterate over each stereotype of the application condition
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Figure A.32: Match the stereotype of the application condition

nomatch = true;

Figure A.33: The current prototype is flagged invalid

boolean nomatch = false;

Figure A.34: Re-initialize a variable denoting if the current prototype is invalid

Figure A.35: Iterate over each tag definition of the application condition

Figure A.36: Match the tag definition of the application condition

found = true;

Figure A.37: The current prototype is found
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Figure A.38: Set the number of patterns

The actual number of Story Patterns or Story Diagrams is set in the code script of the set

number of patterns state. This could not be done in the prototype model itself, because

the actual number is of course unknown then. Note that the name of nopState is a unique

name, caused by the ID.

int it = 0;

Figure A.39: Initialize it as a counter that will give a unique ID to each package referenced
by the nondeterministic state

Figure A.40: Look up a package referenced by the nondeterministic state

it++ = 0;

Figure A.41: Increase it in order to have a different number for each referenced package
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Figure A.42: Create a state and its corresponding transitions

A state newState which will reference one of the packages, is created together with its

corresponding transitions. The aimed result is similar to one of the motmot.transprimitive

states in the middle of the diagram of Figure 4.10. The transitions are created with their

corresponding stereotypes or guards. it is used in the boolean expression of the guard

newGuard as the number for which this state is chosen by the choose state. For now,

newState only gets a name.
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Figure A.43: Check whether the currently bound package contains an Activity Diagram

The package referenceValue can contain a Story Diagram or a Story Pattern. In the case

of a Story Diagram, a method call must be added to the new state. Otherwise, a

motmot.transprimitive tag must be added.

Figure A.44: Create a motmot.transprimitive tag on the state
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Figure A.45: Create a method and a call

A method newOperation is added to the execution class mainClass. To mark the method

as a method that calls a Story Diagram, it is annotated with a�ModelTransformation�
stereotype and a motmot.transformation tag pointing to the package in which the Story

Diagram resides. The method will be named after the package. On top of that, a return

type is added as a boolean. The call to the method is created as Java code on newState,

which becomes a�link� state.
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Figure A.46: Add a parameter to the method and its call

A bound variable aVar is looked up, together with its metatype. aVar is then added as a

parameter with type metatype to both the method newOperation itself and the call in

newScript.
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Figure A.47: Close the method call parameter list

The method call Java code string is terminated with a right parenthesis after all the

necessary parameters have been added to the call.

Figure A.48: Remove a nondeterministic state

Figure A.49: Remove the package containing the prototype application conditions
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