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ABSTRACT
With the advent of Software-Intensive and Cyber-Physical
Systems, hybrid formalisms can be used to intuitively model
the interactions of different models in different formalisms.
Hybrid formalisms combine discrete (time/event) model con-
structs with continuous-time model constructs. These hy-
brid formalisms usually require a dedicated simulator. In this
work we explicitly model the interfaces involved in the se-
mantic adaptation of different formalisms and implement the
execution using the Functional Mock-up Interface standard
for co-simulation. The interfaces and co-simulation units are
automatically generated using transformations. On the one
hand, this allows tool builders to reuse the existing simulation
tools without the need to create a new simulation kernel for
the hybrid formalism. On the other hand, our approach sup-
ports the generation of different bus architectures to address
different constraints, such as the use of hardware in the loop,
the API of the legacy simulator, bus or processor load per-
formance, and real-time constraints. We apply our approach
to the modelling and (co-)simulation of an automotive power
window.
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Semantic Adaptation, Heterogeneous Modelling

ACM Classification Keywords
I.6.1 SIMULATION AND MODELING (e.g. Model Devel-
opment). : Miscellaneous

INTRODUCTION
Model-based design (MBD) has become the de facto standard
for the development of software-intensive and cyber-physical
systems. MBD enables investigating a system at higher lev-
els of abstraction using executable models. When design-
ing complex engineered systems, different models have to
be studied in concert [9]. Combining different modelling
paradigms is primarily done for appropriateness [8]: certain
behaviours, for example the laws of physics, are intuitively
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represented in a continuous-time formalism, while respond-
ing to events are more naturally described using a discrete-
event formalism. Hybrid formalisms combine continuous-
time and discrete time/event model constructs in a single
model. Hybrid formalisms can thus be used to intuitively
model these interactions.

Simulation of a hybrid formalism is often done using a ded-
icated simulator. However, when the simulators of the in-
dividual formalisms are readily available, co-simulation can
be used. Co-simulation simulates a coupled problem by or-
chestrating different simulators with data-flow between them.
The Functional Mock-up Interface (FMI) [1] is one such tech-
nique to orchestrate the different simulators. FMI is a stan-
dard that defines the interface for the simulation by coupled
simulators (a simulator is a model combined with its simula-
tion kernel), by model exchange or by co-simulation, using
so-called Functional Mock-up Units (FMUs).

A challenge in using co-simulation with these heterogeneous
formalisms is how to meaningfully combine them. Seman-
tic aspects of the heterogeneous languages have to be adapted
to talk to each other using the predetermined FMI API. A
key point of this approach is that we should be able to com-
pose heterogeneous models without modifying the underly-
ing simulators. In this paper we combine discrete-event and
continuous-time models using FMI co-simulation. We gener-
ate the appropriate orchestration and adaptation mechanism
using model transformations. This allows tool builders to
reuse existing simulation tools without the need to create a
dedicated simulation kernel for each hybrid formalism. We
introduce a number of composition architectures, from which
the tool builder can choose from to achieve optimal results in
terms of extra-functional requirements.

The rest of this paper is structured as follows: Sec-
tion “The Functional Mock-up Interface” introduces FMI
co-simulation. Section “Motivating Example” introduces
our motivating example, the power window model. Sec-
tion “Semantic Adaptation using FMI” discusses how hetero-
geneous models can be semantic adapted in the context of
co-simulation. Section “Approach”, generates the semantic
adaptation for co-simulation using model transformations. In
Section “Discussion” we discuss the generalities of this ap-
proach. Related work is described in Section “Related Work”
and we conclude in Section “Conclusions”.

THE FUNCTIONAL MOCK-UP INTERFACE
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The functional mockup interface1 is a standard for co-
simulation and model exchange. The initial standard was de-
veloped within the context of the MODELISAR project. We
introduce the co-simulation standard where a model and its
simulator are exported together.

FMU 1

Model 1

Kernel 1

FMU 2

Model 2

Kernel 2

Master

Figure 1. The FMI master-slave architecture.

The standard introduces an API to which the components,
the functional mock-up units (FMU), in a FMI co-simulation
must comply. A co-simulation model is a collection of con-
nected FMUs, as shown in Figure 1. The FMUs are called
slaves and consist of C-code that calls the solver of the con-
tained simulator. Each slave has a description XML that de-
scribes the input and output variables of the slave. The XML
file also contains constraints on the available functionality of
the slave as well as the dependency relations between the out-
put and the input ports of a slave FMU. We introduce some
of the essential functions of the co-simulation API that al-
lows communication between a master and FMU slaves dur-
ing step-wise simulation:

• fmi2DoStep: The DoStep function advances the time in
the co-simulation slave. The call has three arguments: (a)
currentCommunicationPoint, is the current clock time of
the master, (b) communicationStepSize, is the step size the
solver has to compute, and (c) noSetFMUStatePriorToCur-
rentPoint, is a Boolean value that states whether the mas-
ter will never call fmi2SetFMUState for a communication
point prior than the currentCommunicationPoint. When
the call returns fmi2OK, the step was computed success-
fully. If the slave returns FMI2Discard, the slave com-
puted only part of the communication step successfully.
If possible, the master algorithm should retry the commu-
nication step with a smaller size (This is done using the
fmi2SetFMUState). When the slave is unable to compute
the step, fmi2Error is returned.
• fmi2GetStatus and fmi2GetXXXStatus: This function al-

lows the master algorithm to query the status of the slave.
The ’XXX’ is replaced by the data type of the status value.
The information to retrieve is specified using the statuskind
argument. For example, the fmi2LastSuccessfulTime infor-
mation returns the last successful time of a slave algorithm
after a fmi2DoStep with the return value fmi2Discard. The
master algorithm can use this information to call the solver
with a smaller time step.
• fmi2GetXXX and fmi2SetXXX: These functions allow the

master algorithm to set and get variable values in the slave.
The ’XXX’ is replaced by the data type of the variable (for

1Functional Mockup Interface: http://www.fmi-standard.org

example, fmi2GetBoolean, allows the master to retrieve a
Boolean value).
• fmi2GetFMUState and fmi2SetFMUState: These functions

allow the master to save and restore the full state of a slave.
It allows the master to rollback a communication step. The
implementation of these functions are not mandatory in the
slave. The rationale for the optional rollback implementa-
tion is to address legacy systems. An FMU can wrap a
legacy simulator that does not allow any save and restore
operations.

The master algorithm orchestrates the co-simulation. The
FMI standard does not impose any restrictions on the mas-
ter algorithm.

MOTIVATING EXAMPLE
We use a power window case study to illustrate our work. The
power window system is an automobile window that can be
opened and closed by pressing a button or switch, as opposed
to using a hand-turned crank handle. An increasing set of
functions is being added to increase the comfort, safety and
security of vehicle passengers. The power window system
has all the essential complexity of a hybrid system [9, 11].
The power window system consists of an electromechanical
part, the physical window, gears and motors, and a controller
that receives commands from the user to raise or lower the
window. When an object is present while closing the window,
the motor should reverse the direction of the window and stop
after one second.

Figure 2 shows a hybrid model of the power window sys-
tem. The electromechanical components of the window are
expressed using causal-block diagrams (CBD). CBDs are
a general-purpose formalism used for modelling of causal,
continuous-time systems. CBDs are commonly used in tools
such as MathWorks Simulink R©. CBDs use two basic en-
tities: blocks and links. Blocks represent (signal) transfer
functions, such as arithmetic operators, integrators or rela-
tional operators, or simply in- and outputs. Blocks can also
have a notion of memory, so that e.g., an integrator operator is
available. Links are used to represent the time-varying signals
shared between connected blocks. The simulation of CBDs
on digital computers requires a discrete-time approximation.

In Figure 2 three input signals are shown on the left and one
output signal on the right. A power window controller block
converts this input to a useful signal for a motor, and its phys-
ical acceleration. The window position is obtained by inte-
grating the acceleration of the motor twice. However, when
moving the window, friction can arise that depends on the
velocity of the window.

The power window controller is modelled using a Statecharts
variant. Statecharts represents modal behaviour and consists
of states (circles), with one initial state, and transitions with
events (conditions for the transition to fire, shown before the
slash), and actions (actions that are executed after firing the
transition, shown after the slash). This variant is hybrid; it
does not purely contain events. Rather, it is possible to spec-
ify conditions and actions using simple arithmetic operators
and external variables.
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Figure 2. Hybrid model of the power window in AToM3.

Four states are present in the model: (a) going up, (b) going
down, (c) neutral and, (d) emergency. The specified events in
the controller model are described over the continuous values
of the input ports of the embedded controller model. For ex-
ample, if the up button is pressed, the controller reacts by
going from the neutral to the going up state. If the force
acting on the window becomes bigger than 100 Newton, the
controller changes to the emergency state. The event on this
transition is specified using force >! 100, where >! means
crossing the threshold value of 100 from below. The con-
troller also contains a timed transition to change from the
emergency to the neutral state: after(1), meaning that this
transition is fired after staying for 1 second in the emergency
state. The actions specify the signal values of the output port.

To co-simulate our hybrid model, we have access to two ded-
icated, legacy simulation tools. Our first simulation tool is
able to simulate Causal-Block Diagrams. This tool is also
FMI compliant, meaning that our tool is capable of generation
an FMU from a CBD model [12]. Our second tool, SCC, is a
Statechart compiler capable of generating stand-alone Python
code from a Statechart specification [6]. The SCC tool is not
FMI compliant. The Statechart compiler accepts a Statechart
specification in the DES format. DES is a textual format to
describe states, transitions and events.

SEMANTIC ADAPTATION USING FMI
The power window case study is co-simulated with two dif-
ferent tools: (a) a CBD simulator and, (b) a Statechart sim-
ulator. Because our Statechart tool only accepts pure events,
we need to translate the incoming data from the CBD to the
Statechart and vice versa. This adaptation between two dif-
ferent heterogeneous formalisms is an essential part of what
is referred to as semantic adaptation.

Semantic adaptation focuses on adapting time, control and
data between different heterogeneous models. Time is
adapted because the clocks of different models have to be
synchronised as clocks might run at different clock speeds,
or like in our case, a timed formalism (CBD) has to be co-
simulated with an untimed formalism (Statecharts). Control
adaptation takes care of the scheduling of a computation step
in the simulator, i.e., when is the doStep-function of a simu-
lator called. Data adaptation is used to transform data values
between different heterogeneous models, e.g., signal values
to events.

More in detail, to simulate the power window case study
using FMI co-simulation, the following adaptations are re-
quired:

• Our Statechart simulation kernel can only simulate ’pure’
Statechart models. The hybrid control model needs to be
transformed into a version containing only events instead
of expressions over the input ports of the hybrid model.
• The expressions are extracted that are used as events in

the controller. These expressions relate to the continuous-
time behaviour of the CBD model which influences the
behaviour of the discrete-event controller. Consequently,
the State Event Locator, part of the semantic adaptation,
has to take care of the adaptation of data and control by
using state event detection and location. Firstly, this re-
quires that the semantic adaptation detects when a thresh-
old of one of the event expressions is exceeded (crosses
the threshold from below, above or both). Secondly in cer-
tain cases, the time at which the threshold is crossed has
to be located within a certain precision bound. The litera-
ture describes different numerical algorithms to detect the
crossing of a threshold, for example the bisect method or
regula falsi method [9]. Common for these algorithms is
that the integration step of the proceeding model should be
repeated multiple times with a smaller time-step. This re-
quires, in our case, that the CBD FMU must allow for the
state to be saved and restored using the fmi2GetFMUState
and fmi2SetFMUState functions and are able to handle dif-
ferent time steps.
• When the control model has executed, pure events are

outputted. Similar to the state-event locator, a Trans-
ducer transforms the events coming from the ’pure’ control
model to a signal value that can be understood by the CBD
simulator.
• The hybrid control model also contains transitions that rely

on the advancement of time, for example the after(1)
transition. Because the Statechart formalism does not
have a notion of time, semantic adaptation should convert
clock-based event transitions to ’pure’ event-based control
model.
• Finally, the separate simulators should also adhere to the

API of the FMI standard. This is done using a wrapper that
calls the equivalent function(s) of the simulator when a call
to the wrapper is done.

The semantic adaptation between different heterogeneous
models can result in different architectures, of which four are
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shown in Figure 3. The optimal architecture has to be chosen
depending on (but not limited to) the following constraints of
the co-simulation:

Legacy API: The legacy API of a simulation tool has a
large influence on the possibilities of a co-simulation. The
legacy tool complies to the parts of the FMI standard for
which its API is defined. For example, if a simulation tool
does not have any roll-back facilities (i.e., getState and set-
State counterparts), a simple wrapper around this legacy
tool will not support roll-back mechanisms.

Real-world components: In a normal co-simulation setup
the master is responsible for the global virtual time of the
simulation. However, introducing real-world components
in our co-simulation setup might restrict simulation strate-
gies. For example, if a mechanical component is intro-
duced, the global clock has to abide to the wall clock time
(real time).

Performance requirements: Often, extra-functional re-
quirements are present that depend on the architecture.
These might be limiting the number of communica-
tions between the master and slaves, or an opposing
requirement, minimising the use of memory.

Re-usability: When the FMI architecture will be used in dif-
ferent implementation phases, it is often desirable that the
architecture is highly modular, so that different simulators
can be easily plugged in.

The four architectures presented in Figure 3 each address dif-
ferent architectural constraints, which are discussed in the re-
mainder of this section. In each architecture, master is shown
along with the FMUs, for which the ports are shown. The port
shape is triangular for signal values, and circular for event
values. The logical data flow is shown as arrows between
FMU ports. We call this the “logical” data flow, because the
actual data flow is only between the FMU and the master.

Adaptation in master (Figure 3 (a)): The master algorithm
implements the state-event detection and location algorithms
as well as the data adaptations. This has the advantage that
when an event, with not enough precision is located, the mas-
ter can discard the current time-step, restore the state of the
CBD FMU and use a smaller time-step. Because the master
is responsible for control of the slaves, the master decides,
based on the outcome of the adaptation algorithm, whether
control is given to the Statechart slave. The master is also re-
sponsible for the global time. The master can keep a global
clock and post a new event on the clock so that the State-
chart FMU is called when the after(1) timer has expired.
The other advantage is that the wrappers for both the simu-
lation kernels are mostly straightforward. The disadvantage
of this approach is that the master algorithm is not reusable
and complicated, illustrated by the communication arrows be-
tween FMUs that go from signal ports to event ports and vice
versa.

Wrapping the embedded model (Figure 3 (b)): The embed-
ded model is wrapped completely by the semantic adaptation.
The master algorithm only uses signals and is unaware that
there is a need for semantic adaptation of the continuous-time
signals to events. The master calls the FMU of the embedded

model for each new step in the CBD model. If an event is
detected, but without enough precision, the wrapper returns
the fmi2Discard status. When the master queries the slave for
the last successful time step, the event location mechanism re-
turns the new time step. The master reacts to this by restarting
the computation of the CBD model. This procedure iterates
until the time step is accepted by the embedded model. The
wrapper also needs to keep track of time and request a com-
putation from the master algorithm when a timer expires. The
procedure is similar to the event location. The proposed ap-
proach results in a lot of communication overhead between
the master and the different slaves. From a re-usability point
of view, the wrapper of the embedded model is not generic
and needs to be regenerated. However, the master algorithm
is straightforward and reusable and mechanical components
can be plugged in instead of the plant or environment.

Adaptation in separate FMUs (Figure 3 (c)): Two addi-
tional FMUs, adhering to the FMI standard are created. The
first FMU, the State Event Locator (SEL), detects and locates
the events. Similar communication as in architecture (b) oc-
curs between the master and the slaves for locating events.
The SEL is also responsible for keeping the time of the em-
bedded model. Because of this, the SEL has to execute two
times per simulation step. One time to detect and locate
the events, and a second time, after executing the embedded
model, to activate and deactivate time-based events that are
enabled in the Statechart. The Transducer (TD) is respon-
sible for translating events to signal values. The wrappers
for both the Statechart simulation kernel and CBD simulation
kernel are reusable in all situations. The master algorithm is
straightforward and reusable, and each FMU can be replaced
with a different FMU or a real-world component.

Adaptation on the encapsulating model (Figure 3 (d)): The
encapsulating model is adapted with the State Event Location
and Transducer. When an event is located without enough
precision, the step is rejected by the slave. However, the
slave FMU can use the location mechanism internally to com-
pute the correct time step for the master and provide it when
queried for the last successful time. This results in less com-
munication on the bus. It is however less straightforward to
plug in different FMU’s or real-world components.

APPROACH
In this section we show how the different components of
the power window co-simulation are generated using model
transformations. We show the implementation of the mod-
ular architecture, as shown in Figure 3 (c). The generation
of the other architectures are similar but use slightly modified
model-to-text transformations. The domain-specific language
presented in this section is created using the MetaDepth
tool [3]. The model-to-text transformations are created with
the Epsilon Generation Language [13]. All models and trans-
formations are available for download2.
Overview
Figure 5 shows an overview of the process of creating an FMI
co-simulation from a hybrid formalism. The process model
2http://msdl.cs.mcgill.ca/people/joachim/fmi_
hybrid
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Figure 3. Four architectures for implementing the heterogeneous model.
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Figure 4. Execution of semantic adaptation models, from [7].

is expressed using the UML 2.0 Activities formalism [14].
Four distinct phases are present in the process model: (1) the
generation of the SEL and TD FMUs, (2) the generation of
the Statechart FMU, (3) the generation of the CBD FMUs
and, (4) the generation of Master algorithm. In the following
subsections we discuss the different phases.

We analysed the concept of semantic adaptation between dif-
ferent heterogeneous models to factor out the essentials of
the adaptation of time, control and data in a domain specific
language for modelling so-called interface models [7]. We
extended the DSL in [7] so that adaptations between actual
models, rather than domains, can be modelled in the DSL.
The DSL models adaptations between heterogeneous mod-
elling domains using a set of rules and executes these rules
in five different steps, as shown in Figure 4. The DSL also
contains relations between the different clocks in the hetero-
geneous models for the adaptation of time. The design choice
for the interface model is that it is an hierarchical compo-
sition: an embedded model is wrapped by an outer model.
This way, both directions of semantic adaptation are defined.
However, all rules are optional, so it does not restrict the user
to model non-hierarchical hybrid models. The five different
steps as shown in Figure 4 are as follows:

• Data-in: When an interface model receives control, data-
in rules are evaluated to update the buffers of the interface
model. Operation can be defined to transform the data.
• Control: Control rules define if the embedded model

should be executed at the current time. The control rules
can schedule an event on the global clock to receive control
at a later instant.

Figure 5. Activity Diagram model for generating the FMI code accord-
ing to option (c) of Figure 3.

• Data-update-in: If control is given to the embedded model,
data-update-in rules are executed to supply correct values
to the embedded model.
• Data-update-out: Once the embedded model has com-

pleted its update procedure, the output buffers of the in-
terface model are updated by the data-update-out rules.
• Data-out: Finally, the data-out rules are responsible for

producing the output of the interface model from the data
available in the output buffers, even if control was not given
to the embedded model.

Generation of SEL and TD FMUs
The DSL model for the power window in Figure 2 that is gen-
erated by the toDSL transformation is shown in Listing 1. In
the hybrid formalism, the crossing events, after events and
actions on transitions represent the interface between the het-
erogeneous formalisms. For each transition in the hybrid for-
malism, we create a data-in rule to detect the event. In case
of multiple orthogonal components in the hybrid Statechart,
the orthogonal components are first flattened by generating all
possible state combinations. For the hybrid model in Figure 2
six data-in rules are created from the original hybrid model,
plus an additional one that produces a NULL-event if none of
the data-in rules was applicable. The rule order in the DSL
is important and defines which event is detected based on the
input ports. These rules consists of a condition (depending on
a signal value or on a timer value), and an action under which
the condition is applied (producing some event and adding it
to the interface model’s buffer).
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Listing 1. Semantic Adaptation model
IB {
IMPLEMENTS "CBD_SC_InterfaceBlock_parsed"
TIMED CLOCK ibClock
EXTERNAL MODEL cbd ("CBDSim" WITH TIMED

CLOCK cbdClock)
INTERNAL MODEL sc ("SCSim" WITH UNTIMED

CLOCK scClock)
PINS:

IN ["up" "down" "force"]
OUT ["motor"]

RULES:
IN

"force" >! ("100") -> TOSTORE("in_event0");
"up" >! ("0.5") -> TOSTORE("in_event1");
"up" <! ("0.5") -> TOSTORE("in_event2");
"down" >! ("0.5") -> TOSTORE("in_event3");
"down" <! ("0.5") -> TOSTORE("in_event4");
AFTER ("1") -> TOSTORE("in_event5");
ALWAYS -> TOSTORE(null);

CONTROL
STORETRIGGERED FROMSTORE != null

UPDATEIN
ALWAYS -> FORWARD FROMSTORE TO SUCCESSORS;

UPDATEOUT
ON DATA: "out_event0" -> TOSTORE(("1"));
ON DATA: "out_event1" -> TOSTORE(("-1"));
ON DATA: "out_event2" -> TOSTORE(("0"));

OUT
ALWAYS -> FORWARD FROMSTORE TO SUCCESSORS;

TAG RELATION cbdClock = ibClock
}

Listing 2. Data rules in the SEL
...
if (fi->b[_em_has_run] == fmi2False){
// SET THE NEW TIME OF SEL
fi->currentTime = commStepSize + currentCommPoint;
//RULE1:
if (__crosses_below(fi->r[_prev_force],

fi->r[_force], 100))
fi->s[_out] = _events_out[_in_event0];
//RULE2:
...

The DATA-IN rule section of the interface model in Listing 1
represents the State Event Locator and is transformed to an if-
else ladder structure in C-code, as shown in Listing 2. As al-
ready stated, in this architecture, the State Event Locator has
to be executed two times every time step because of the after-
events. The first execution detects and locates the events,
and the second execution starts and stops the timers needed
to trigger time-based events in the Statechart. Therefore, a
Boolean value em has run has to be set by the master af-
ter the execution of the embedded model and reset after the
execution of the global time step.

Similar code for the Transducer is generated by a model-to-
text transformation generates based on the DATA-UPDATE-
OUT rules. Because there are no further rules in the DATA-
OUT section, a zero-order hold semantics is created for the
output of the Transducer.
Generation of the Statechart
The transformation toSC generates a DES model from the hy-
brid model containing pure events. A DES model is a textual
representation of a Statechart. The transformation is similar

to the generation of the interface model. The DES file for-
mat can be read by the SCC compiler to create a standalone
Python simulator from this specification.

To execute this Python simulator in a FMU context, a wrap-
per is required. This wrapper is different depending on the
hybrid model, as the defined inputs and outputs of the FMU
are taken into account. Once written for this Python simula-
tor, the wrapper can be generated, as all necessary informa-
tion can be extracted from the hybrid model. This wrapper is
also shown in the architectures presented in Figure 3.
Generation of the CBD FMUs
To generate both FMUs for the CBD models, we export the
CBDs to the format of the CBD legacy tool and generate the
FMUs using the FMI-compliant tool [12]. This legacy CBD
tool does not support rolling back a time step, as the setState
and getState FMI functions are not available.
Generation of Master algorithm
The master algorithm is responsible for orchestrating the co-
simulation by communicating with the slaves in the correct
order. The model transformation creates all necessary code to
instantiate, initialise, run, advance time, get and set values of
the different FMUs and finalise the co-simulation. The tem-
plate code we used to create the model-to-text transformation
is based on the master algorithm of the FMU SDK created by
QTronic3.

Based on the ports between the different models, data ex-
change variables and reference values need to be created. The
data exchange variables are arrays of pointers to pass data
values of one FMU to another FMU via the master. The ref-
erence values are used to locate the correct buffer for the
variable in the FMU. Because our legacy tool creates the
two CBD FMUs, we have no control over the placement of
the variables in the memory of the FMU. Therefore, we use
the created modeldescription XML files to create the correct
value reference variables in the master algorithm.

The master is also responsible for the adaptation of control
in this architecture. The master can hand out control by call-
ing the FMU with the doStep method. As already described
in Section Semantic Adaptation using FMI, the return status
from the doStep function is used to accept or reject a step.
Finally, in the power window interface specification control
has to be adapted so that the Statechart is only activated when
the State Event Locator located an event: the return value of
the State Event Locator is not NULL. A part of the generated
code for the control adaptation is shown in Listing 3.
Results
Finally, the created FMUs and master algorithm are simulated
together. Our experiment simulates the hybrid model for 10
virtual seconds. The environment model simulates a user that
presses the up button for six seconds, releases the button for
one second and then pushes the button again. However, at
four seconds, an object is detected between the window and
the frame. Figure 6 shows the the results of our co-simulation.
The upper three plots show the values of the environmental
model. The lowest plot shows the position of the window
(i.e., the result of the simulation).
3QTronic website: http://www.qtronic.de/en/fmusdk.html
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Listing 3. Master algorithm excerpt
...
/* CONTROL */
if (val_out_SEL_TO_SC[0] != NULL){
fmu_sc.setString(c_sc, vr_in_SEL_TO_SC, 1,

val_out_SEL_TO_SC);
flag = fmu_sc.doStep(c_sc, currentTime, STEP_SIZE,

fmi2True);
if (flag != fmi2OK){

/* Exception Handling */
}
fmu_sc.getString(c_sc, vr_out_SC_TO_SEL, 1,

val_out_SC_TO_SEL);
fmu_sc.getString(c_sc, vr_out_SC_TO_TD, 1,

val_out_SC_TO_TD);
...
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Figure 6. Results of the FMI co-simulation of the powerwindow

As expected the window starts going up immediately when
the simulation starts. At four seconds the object is detected
and the window goes down for one second. The window stops
completely until the up button is re-pressed at seven seconds.

DISCUSSION
In our hybrid model, there are no feedback loops between
the CBD model before the Statechart and after the Statechart.
However, in reality, the force on the window is not only de-
pendent on the object between the window and the frame but
also on the position of the window. This creates a feedback
loop from the plant model (after the Statechart) to the en-
vironment model (before the Statechart). When a feedback
loop is present, we split the CBD model in two separate mod-
els at a block that does not have direct feed-through seman-
tics. Valid locations for splitting up the model are integrator,
derivative and delay blocks: they only depend on the compu-
tation of the previous time step. However, this implies that
the output of the plant CBD model must be available before
running the environment model. The master orchestrates this
situation by saving the state of the plant model, extracting the
delayed value and rolling back the state of the plant FMU be-
fore starting the time step. More information can be found
in [16].
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Figure 7. State-event location within the CBD formalism

Semantic adaptation is not strictly enforceable by creating in-
terface blocks in the FMI co-simulation ( FMU or master).
In certain formalisms it is possible to use the language of the
formalism to implement the required adaptations. For exam-
ple in the CBD language, state event location can be done by
adding a pattern of blocks to the signal where event detection
has to occur. Figure 7 shows such a CBD pattern to detect a
crossing from below of the threshold value 5. Furthermore,
when the execution semantics are explicitly modelled, as pro-
posed in [10], the event location and roll-back mechanisms
can be implemented in the model as well. This could make
semantic adaptation, in the case of event location with preci-
sion, trivial. However, more research on this topic is required,
and this does not address the reuse of legacy simulators.

In certain cases, the legacy API has a mismatch between cer-
tain elements. For example, Feldman et al. report such a
problem where the simulator time is expressed using an inte-
ger value in milliseconds while the FMI standard uses a float-
ing point value for this purpose [5]. The user needs to decide
on such semantic adaptations.

In this paper we focus on a single instance of semantic adapta-
tion between a causal-block diagram and a Statechart. How-
ever, we believe that the presented technique is more gen-
eral and can be applied to a broad spectrum of hybrid for-
malisms. By explicitly modelling the required semantic adap-
tation we can create model-to-text transformations to opera-
tionalise other hybrid formalisms. Our language to model
semantic adaptation is rule-based and can be extended to in-
clude features needed for other adaptations.

RELATED WORK
Many hybrid simulation approaches already exist in academia
and industry. For example, the simulation of Stateflow R© and
Simulink R© by the MathWorks R©. In academia other hetero-
geneous modelling and simulation approaches are available.
Modhel’X[2] and Ptolemy[4] are component-oriented multi-
formalism approaches. They consider that the semantics of
a modelling language is given by its Model of Computation
(MoC). A MoC is a set of rules defining the relations be-
tween the elements of a model, the operational semantics.
The meta-model is similar for all languages but the seman-
tics are given by a corresponding MoC, thus defining differ-
ent behaviours. The heterogeneous models have a hierarchi-
cal organisation, each with their own MoC. At the boundaries
between the different MoCs combinations can occur. In the
Ptolemy approach this boundary is fixed and coded statically
in the kernel of the tool. ModHel’X on the other hand allows
the explicit specification of the boundary. The problems of
combining these different heterogeneous MoCs is similar to
the semantic adaptation we presented in this work, although
we address the adaptation at the formalism and model level
rather than only at MoC level.
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Feldman et al. present a technique to generate FMUs from
Rhapsody Statecharts [5]. Similar to our case study, they pro-
vide guidelines how to integrate these heterogeneous compo-
nents in an FMI co-simulation setup. By explicitly modelling
these interactions, our work is able to generate the needed
semantic adaptation for different circumstances.

Tripakis and Broman discuss how to create different FMUs
from heterogeneous modelling formalisms [15]. They for-
mally define how to encode an FMU and which adaptations
are required for certain classes of formalisms, for example
timed and untimed formalisms. This work is seen as compli-
mentary to our own. We provide a method to explicitly model
the interactions between heterogeneous modelling languages
and to automatically create FMU from these models. In this
work we do not enforce the wrapping of the semantic adap-
tation to the FMU but rather we allow different architectural
choices based on the problem at hand.

CONCLUSIONS
Meaningfully combining different heterogeneous modelling
languages is a huge challenge. Hybrid formalisms combine
modelling elements from different heterogeneous languages
to intuitively model certain systems. However, these new
languages typically require their own simulation kernel. In
this paper, we presented an approach to operationalise hybrid
modelling languages by reusing the available simulators of
the reused formalisms. Our approach uses the FMI standard
for co-simulation to orchestrate the different simulators. The
semantic adaptation between the heterogeneous formalisms
is explicitly modelled. Model-to-text transformations are re-
sponsible for the generation of the different artefacts needed
in the co-simulation. To achieve optimal results in terms of
extra-functional requirements, a choice of architectures are
available. We believe that our presented technique is useable
for a broad class of heterogeneous and hybrid modelling en-
vironments.

In the future we want to integrate more languages into our hy-
brid co-simulation tool to show that our approach is generic.
In this paper we hinted at the relation between different ar-
chitectures and the different extra-functional requirements of
a co-simulation. In the future, we want to investigate this rela-
tion and provide the users with guidelines to choose the most
appropriate architecture for the problem at hand.

REFERENCES
1. Blochwitz, T., Otter, M., Åkesson, J., Arnold, M.,
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