
Generating Domain-Specific Property Languages with
ProMoBox: application to interactive systems
Bart Meyers

Modeling, Simulation and
Design Lab (MSDL),
University of Antwerp

Antwerp, Belgium
firstname.lastname@uantwerp.be

Romuald Deshayes, Tom
Mens

Département d’Informatique,
Université de Mons

Mons, Belgiumy
firstname.lastname@umons.ac.be

Hans Vangheluwe
Modeling, Simulation and

Design Lab (MSDL),
University of Antwerp /

McGill University
Antwerp, Belgium / Montréal,

Canada
firstname.lastname@uantwerp.be

ABSTRACT
Domain-Specific Modeling allows domain experts with lim-
ited technical background to precisely model applications by
using domain concepts. These domain-specific models can
be simulated, optimized, transformed into other formalisms,
and from these models executable code and documentation
can be generated. Because of their syntactic simplicity they
are suitable for analysis, which is nonetheless often neglected
in current approaches. Especially in Human-Computer In-
teraction, verifying whether the model satisfies its require-
ments (specified as so-called properties) is essential. The
ProMoBox approach presents a highly automated solution for
the specification and verification of such properties. It pro-
vides a framework for model checking of temporal properties,
where all visible artifacts (system designs, properties, simu-
lation traces, etc.) are specified in the domain-specific way.

THE ProMoBox APPROACH
Domain-specific modeling (DSM) helps designing systems
at a higher level of abstraction. By providing languages,
“DSMLs” (defined by a metamodel), that are closer to the
problem domain than to the solution domain, low-level tech-
nical details can be hidden. An essential activity in DSM
is the specification and verification of properties to increase
the quality of the designed systems [3]. Providing support
for these tasks is therefore necessary to provide a holistic
DSM experience to domain engineers. Unfortunately, this has
been mostly neglected by DSM approaches. At best, support
is limited to translating models to formal representations on
which properties are specified and evaluated with logic-based
formalisms [6], such as Linear Temporal Logic (LTL). This
contradicts the DSM philosophy as domain experts desiring
to specify and verify domain-specific properties are not famil-
iar with such formalisms. We propose the ProMoBox frame-

Paste the appropriate copyright statement here. ACM now supports three different
copyright statements:
• ACM copyright: ACM holds the copyright on the work. This is the historical ap-
proach.
• License: The author(s) retain copyright, but ACM receives an exclusive publication
license.
• Open Access: The author(s) wish to pay for the work to be open access. The addi-
tional fee must be paid to ACM.
This text field is large enough to hold the appropriate release statement assuming it is
single spaced.
Every submission will be assigned their own unique DOI string to be included here.

Figure 1. The ProMoBox approach applied to GISMO.

work to shift property specification and verification tasks up
to the DSM level. The scope, assumptions and limitations of
this approach are presented in [5].

We applied ProMoBox to GISMO [1], a DSML for executable
modeling of gestural interaction applications [2]. The Pro-
MoBox approach for GISMO is illustrated in Fig. 1. The Pro-
MoBox framework consists of (i) generic languages for mod-
eling all artifacts that are needed for specifying and verifying
properties, (ii) a fully automated method to specialize and in-
tegrate these generic languages in a given DSML, and (iii)
a verification backbone based on model checking that is di-
rectly pluggable to DSM environments such as AToMPM [7].
Properties in ProMoBox are translated to LTL and a Promela
model is generated that includes a translation of the system,
its environment and its rule-based operational semantics. The
Promela model is checked with the SPIN model checker [4]
and if a counter-example is found it is translated back to the
DSM level.

The ProMoBox framework [5] relies on a family of fully auto-
matically generated modeling languages based on the DSML
metamodel. These languages are required to modularly sup-
port specification and verification of model properties. The
design language (GIS MOD in Fig. 1) allows DSM engineers
to design the static structure of the system. The runtime lan-



Figure 2. A bow model in state ArrowReady (highlighted) conform to
GIS MOR.

Figure 3. Property: when you fire the bow, there is no arrow left.

guage (GIS MOR) enables modelers to define a state of the
system, e.g., an initial state as input of a simulation, or a par-
ticular “snapshot” during runtime (as shown in Fig. 2). The
input language (GIS MOI) lets the DSM engineer model the
behavior of the system environment, e.g., by modeling an in-
put scenario as an ordered sequence of events containing one
or more input elements. The output language (GIS MOO) can
be used to represent execution traces (expressed as ordered
sequences of states and transitions) of a simulation or to show
verification results in the form of a counter-example. Output
models can also be created manually as part of an oracle for
a test case. The property language (GIS MOP) can be used
to express properties based on modal temporal logic, includ-
ing structural logic and quantification. A property is shown
in Fig. 3.

Maintaining five DSMLs instead of one unacceptably in-
creases the maintenance cost. Therefore, a fully automated
method specializes and integrates these languages to any
given DSML, thus minimizing the effort of the language en-
gineer. This is realized by manually annotating the DSML
metamodel entities (classes, associations and attributes) with
the necessary UML-like stereotypes. This annotated meta-
model (GISMO’ in Fig. 1) contains all information needed to
generate the five sublanguages, by merging a tailored version
of the metamodel with a fixed template containing generic
language constructs.

For fifteen properties, we verified whether the model shown
in Fig. 2 satisfies them. The above properties are transformed
to LTL, and are inserted in Promela code consisting of the

system shown in Fig. 2 with initial state, the environment
and rule-based model of the DSML’s semantics as shown in
step 1 of Fig. 1. In step 2, SPIN verifies whether the sys-
tem satisfies the formula, returning “True” if it does. If there
is a counter-example, steps 3 to 5 are followed: the counter-
example trace is played back by SPIN, and a readable trace
is printed (step 3), this trace is converted automatically to
the counter-example output model (step 4), and this counter-
example can be played out state by state by showing a runtime
model for each state (step 5).

Because of these counter-examples, we were able to find and
fix an error in our bow model of Fig. 2. In another instance,
we were able to find and correct an error in one of the se-
mantics model’s rules. The performance in terms of time and
memory consumption is good: evaluation never takes more
than a second on an average laptop, and never requires more
than 100 MB of memory.

The limitations of the framework are related to the mapping
to Promela as explained in [5]. In its current state, Pro-
MoBox does not allow dynamic structure models. Because
of the nature of Promela, boundedness is ensured in the trans-
lation. Other constraints can be circumvented by abstracting
the metamodel to make it suitable for model checking.

REFERENCES
1. R. Deshayes. 2013. A domain-specific modeling approach for

gestural interaction. In Visual Languages and Human-Centric
Computing (VL/HCC). 181–182. DOI:
http://dx.doi.org/10.1109/VLHCC.2013.6645275

2. Romuald Deshayes, Bart Meyers, Tom Mens, and Hans
Vangheluwe. 2014. ProMoBox in Practice : A Case Study on
the GISMO Domain-Specific Modelling Language. In
Proceedings of the 8th Workshop on Multi-Paradigm Modeling,
MPM@MODELS 2014. 21–30.
http://ceur-ws.org/Vol-1237/paper3.pdf

3. Robert France and Bernhard Rumpe. 2007. Model-driven
Development of Complex Software: A Research Roadmap. In
2007 Future of Software Engineering (FOSE ’07). IEEE
Computer Society, Washington, DC, USA, 37–54. DOI:
http://dx.doi.org/10.1109/FOSE.2007.14

4. Gerard J. Holzmann. 1997. The Model Checker SPIN. IEEE
Trans. Softw. Eng. 23, 5 (May 1997), 279–295. DOI:
http://dx.doi.org/10.1109/32.588521

5. Bart Meyers, Romuald Deshayes, Levi Lucio, Eugene Syriani,
Hans Vangheluwe, and Manuel Wimmer. 2014. ProMoBox: A
Framework for Generating Domain-Specific Property
Languages. In Software Language Engineering. Lecture Notes
in Computer Science, Vol. 8706. Springer International
Publishing, 1–20. DOI:
http://dx.doi.org/10.1007/978-3-319-11245-9_1

6. Matteo Risoldi. 2010. A methodology for the development of
complex domain-specific languages. Ph.D. Dissertation.
University of Geneva.
http://archive-ouverte.unige.ch/unige:11842

7. Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar,
Conner Hansen, Simon Van Mierlo, and Hüseyin Ergin. 2013.
AToMPM: A Web-based Modeling Environment. In MoDELS
Demonstrations. 21–25.

http://dx.doi.org/10.1109/VLHCC.2013.6645275
http://ceur-ws.org/Vol-1237/paper3.pdf
http://dx.doi.org/10.1109/FOSE.2007.14
http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.1007/978-3-319-11245-9_1
http://archive-ouverte.unige.ch/unige:11842

	The ProMoBox approach
	REFERENCES 

