SCCD: SCXML Extended with Class Diagrams

Simon Van Mierlo, Yentl Van
Tendeloo, Bart Meyers
University of Antwerp
Middelheimlaan 1, 2020
Antwerp, Belgium
firstname.lastname @uantwerpen.be

ABSTRACT

In this paper we introduce the SCCD (a Statecharts and
Class Diagrams hybrid) formalism and its SCCDXML rep-
resentation, an extension of SCXML. SCCD facilitates the
specification of complex timed, reactive, interactive discrete-
event systems (e.g., complex user interfaces), as we demon-
strate using a representative example. We present a SCCD
compiler that supports (a) semantic variation points for dif-
ferent Statecharts variants (e.g., Rhapsody, Statemate, etc.),
(b) code generation for different platforms (e.g., Tkinter,
browser, etc.), and (c) code generation for different fami-
lies of runtimes (e.g., event-based platforms, game loops,
etc.). Furthermore, we discuss the history and future work
of SCCD to reveal our research agenda.

INTRODUCTION

Statecharts [3] were developed to aid the specification of
complex, timed, interactive discrete-event systems. Never-
theless, the exclusive use of Statecharts does not scale to
the complex behaviour of software tools we want to model
today. From a programming point of view, object-oriented
modelling methodologies address software complexity, but
are not specifically designed for modelling timed, interactive
discrete-event systems [4].

To this end, we propose SCCD, a Statecharts and Class Di-
agrams hybrid, that combines the structural object-oriented
expressiveness of Class Diagrams with the behavioural
discrete-event characteristics of Statecharts. This results in
a language suitable for the modelling of complex graphical
user interfaces at a detailed level. In this paper, we present
the SCCD language and the SCCDXML notation, based on
SCXML, for the representation of SCCD models. Next, an
SCCD compiler and its options are discussed. We review the
limitations of the language and compiler, and outline future
work. Finally related work is explored before concluding the

paper.

Joeri Exelmans
University of Antwerp
Middelheimlaan 1, 2020
Antwerp, Belgium
joeri.exelmans @student.uantwerpen.be McGill University

Hans Vangheluwe
University of Antwerp
Middelheimlaan 1, 2020
Antwerp, Belgium

3480 University Street
Montréal, Québec, Canada
H3A OE9
hv@cs.mcgill.ca
Create Window ‘ Create Window
® ®
O
® 9
® ® ®
& s*
@

Figure 1. A screenshot of the running example. Black balls are moving,
yellow balls are selected, and red balls have been moved by the user.

RUNNING EXAMPLE

To demonstrate our language, we model a timed, reactive,
autonomous, dynamic-structure system, which is not easily
expressed using Statecharts (and, by extension, SCXML).
The system is a “bouncing balls” application, which has the
following requirements:

e The application consists of a number of windows. It starts
with exactly one window.

e Each window has a number of bouncing balls, and a button
that spawns a new window.

e A window can be closed. If no more windows remain, the
application exits.

e The user can spawn a new ball by right-clicking in a win-
dow. The ball starts moving in a random direction. Its
colour is black.

e The user can select a ball by left-clicking it. The ball then
changes its colour to yellow, and stops moving.

e The user can move a selected ball around by dragging it.

e When a user releases the ball he is dragging, its colour
changes to red, and its velocity is changed proportionally
to how fast the user is moving the mouse.

e When the user presses the “delete” button, all selected balls
in the current window are deleted.

A screenshot of the running application is shown in Figure 1.
The original SCXML language has no facilities for creating
and deleting communicating Statecharts instances at run-
time, which, for this example, is preferable. Each ball’s be-
haviour would then be controlled by a separate Statecharts
model, and each instance would be allowed to communicate
with others. For example, a window contains multiple balls,

and that relation should be expressed explicitly, to allow for
communication from the parent to its children and vice versa.

THE SCCD LANGUAGE

The SCCD language extends Statecharts with the concept
of a class, which models structure, and associates with each
class a definition of its behaviour (as a Statecharts model).
A concrete syntax for the language extends SCXML, and is
appropriately called SCCDXML. We first present the new
features of our language, and then we discuss the manage-
ment of objects at runtime by a dedicated object manager.

Language Features

This section introduces the new features of the SCCD lan-
guage and demonstrates them with our running example in
the SCCDXML concrete syntax. We assume the reader is
familiar with standard SCXML notation and do not repeat its
definition, only highlighting the new features of the language.

Top-level Elements

The top-level element is a diagram. It has an input/output in-
terface to communicate with its environment, it can optionally
import library classes, and it holds a number of class defini-
tions. One of these classes is the default, and is instantiated
when the application is launched.

Listing 1. The top-level ‘diagram’ element.

Listing 2. The ‘Ball’ class.

<class name="Ball”>

<relationships>...</relationships>

<inport name="ball_input”/>

<constructor>
<parameter name=""canvas” />
<parameter name="x" />
<parameter name="y" />
<super class="UIWidget” />
<body>...</body>

</constructor>

<destructor>
<body>self.canvas.delete(self)</body>

</destructor>

<method name="move” >
<parameter name="position” />
<body>...</body>

</method>

<scxml initial="bouncing” >
<state id="bouncing”>...</state>
<state id="dragging”>...</state>
<state id=""selected”>... </state>
<state id="deleted” />

</scxml>

</class>

<?xml version="1.0" 7>
<diagram>
<top>
from ui_widget import UIWidget
</top>
<inport name="input” />
<class name="MainApp” default="true”’>...</class>
<class name="Window” >...</class>
<class name="Button”>...</class>
<class name="Ball”>...</class>
</diagram>

Listing 1 shows the top-level diagram of the example appli-
cation. It imports a library class that is used to draw the
graphical elements on the screen, one input port called “in-
put” which receives events when the user interacts with the
UI (for example, pressing a key), and four classes, explained
in the following subsections.

Classes

Classes are the main addition of the SCCD language. They
model both structure and behaviour—structure in the form of
attributes and relations with other classes, behaviour in the
form of methods, which access and change the values of at-
tributes of the class, and an SCXML model, which consti-
tutes the “modal” part of the system, modelling the control
flow of the class’s behaviour. At runtime, a class can be in-
stantiated, which creates an object. Objects are initialized
according to the class’s constructor, and can be deleted, in-
voking the class’s destructor. The relationships modelled be-
tween classes are instantiated at runtime in the form of links.
They serve as communication channels, over which objects
can send and receive events.

Listing 2 shows the definition of the ‘Ball’ class. It defines
a number of relations (discussed in the next subsection), a
constructor and destructor, a method that moves the ball to
a new position, and an SCXML model that consists of four
states. It can optionally also define private input ports and
output ports. In this case, the ball defines a private input port,
that allows the environment to send events that are only meant
for a particular ball. For example, when the user left-clicks
on a ball to select it, that event should only be sent to that
specific instance.

Relationships
Classes can have relationships with other classes. There are
two types of relationships: associations and inheritance.

An association is defined between a source class and a target
class, and has a name. It allows instances of the source class
to send events to instances of the target class by referenc-
ing the association name. An association has a multiplicity,
defined as a minimal cardinality c,,;, € N and a maximal
cardinality ¢4 € N5 U {inf}. They control how many in-
stances of the target class have to be minimally associated to
each instance of the source class, and how many instances of
the target class can be maximally associated to each instance
of the source class, respectively. Each time an association is
created, it results in a link between the source and target ob-
ject. This link gets a unique identifier, allowing the source
object to reference the target, for example to send events.

An inheritance relation results in the source of the relation
to inherit all attributes and methods from the target of the
relation. Specialisation of modal behaviour (i.e., (parts of) the
SCXML model of the superclass) is currently not supported.

Listing 3. Relationships of the ‘Ball’ class.

<class name="Window” >

<relationships>

<association name="parent” class="MainApp” min="1"" max
=17 />

<association name="buttons” class="Button” />
<association name="balls” class="Ball” />
<inheritance class="UIWidget” />

</relationships>

</class>

Listing 3 shows the relationships of the ‘Window’ class. It
has an association to its parent, the main application. Exactly
one instance of that link has to exist between each “Window’
instance and the main application. It is additionally associ-
ated to a number of buttons and balls, and inherits from the
library class ‘UIWidget’, allowing it to be drawn on screen.

Events

Events in SCCD are strings. They are accompanied by a
number of parameter values: the sender is obliged to send
the correct number of values, and the receiver declares the
parameters when catching the event. Each parameter has a
name, that can be used as a local variable in the action asso-
ciated with the transition that catches the event.

With the addition of a public input/output interface using
ports, as well as classes and associations, comes the need for
scoping events. In traditional SCXML models, an event is
sensed by the Statecharts model that generated it. SCCD
adds the ability to transmit events to class instances and to
output ports. In particular, the raise tag was extended with a
scope attribute, that can take on the following values:

e local: The event will only be visible for the sending in-
stance.

e broad: The event is broadcast to all instances.

e output: The event is sent to an output port and is only
valid in combination with the output attribute, which spec-
ifies the name of the output port.

e narrow: The event is narrow-cast to specific instances
only, and is only valid in combination with the target
attribute, which specifies the instance to send the event
to. For example, an instance of the ‘Window’ class can
narrow-cast an event by sending the event to a specific in-
stance of the ‘Ball’ class, identified by a unique link iden-
tifier.

e cd: The event is processed by the object manager. See the
next section for more details.

Listing 4. An example transition that narrow-casts an event.

<transition event="left—click” port="button_input” target=".">
<raise event="button_pressed” scope="narrow” target=""parent’
N
<parameter expr="self.event_name” />
</raise>
</transition>

Listing 4 presents a transition modelled on the ‘Button’ class.
It reacts to the user left-clicking the button (represented by
an event sent on the button_input port). The button reacts by

notifying its parent that it was clicked.

The Object Manager

At runtime, a central entity called the object manager is re-
sponsible for creating, deleting, and starting class instances,
as well as managing links (instances of associations) between
class instances. It also checks whether no cardinalities are
violated: when the user creates an association, it checks that
the maximal cardinality is not violated, and when the user
deletes an association, it check whether the minimal cardi-
nality is not violated. As mentioned previously, instances can
send events to the object manager using the “cd” scope. The
object manager can thus be seen as an ever-present, globally
accessible object instance, although it is implicitly defined in
the runtime, instead of as a SCCD class.

When the application is started, the object manager creates
an instance of the default class and starts its associated Stat-
echarts model. From then on, instances can send several
events to the object manager to control the set of currently
executing objects. The object manager accepts four events.
We list them below, including the parameters that have to be
sent as part of the event:

e create_instance(association_name, class_name, args*):
Creates a new instance, if it is allowed (i.e., no multiplicity
constraints would be violated). The newly created instance
is always associated to its creator (the instance that sent
the event). The first parameter is the name of the associ-
ation that should be instantiated to create a link between
the parent and its newly created child. The second param-
eter is the name of the class that needs to be instantiated.
This should be the class that is defined as the target of the
association, or one of its subclasses. Any subsequent pa-
rameters are interpreted as arguments to the constructor of
the new instance. If creation succeeds, a reply event is sent
to the requester with as argument the unique identifier of
the link created between the creator and the new object. If
creation failed, an error event is sent instead.

o delete_instance(/ink_ref): Deletes the instance(s) specified
by the link reference. The link reference is evaluated in the
context of the instance that sent the event and should result
in a set of link identifiers. The target objects of these links
are deleted, as well as any links for which these objects are
the source or target, as long as no multiplicity constraints
are violated. The object manager sends an event to the re-
quester when deletion was successful. Otherwise, the dele-
tion fails.

e start_instance(/ink_ref): Starts the execution of the State-
charts model of the instance(s) specified by the link refer-
ence.

e associate_instance(source_ref, association_name, tar-
get_ref): On creation of an instance, it is associated solely
with its creator (or with no instance at all in case of the
default instance). This event makes it possible to associate
instances with multiple other instances. The source and
target references are evaluated to two sets of instances,
and each instance in the first set is connected using the
specified association with the instances in the second set.

Listing S. Creating an instance of the ‘Ball’ class.

<state id="running”’ >

<transition event="right—click” port="window_input” target=

1)

../creating_ball”>

<raise scope="cd” e
<parameter expr=
<parameter expr=
<parameter expr=

vent=""create_instance” >
7balls’™ />

»’Ball”’ />
“self.canvas” />

Language 5

Platform {5

<parameter expr="self.clicked x” />
<parameter expr="self.clicked_y” />
</[raise>
< /transition>
</state>
< state id="creating_ball”>
<transition event="instance_created” target="../running” >
<parameter name="link_name” type="string”’/>
<raise event="start_instance” scope="cd”>
<parameter expr="link_name” />
</[raise>
</transition>
</state>

Listing 5 shows how the ‘Window’ class creates an instance
of the ‘Ball’ class as a result of the user right-clicking in-
side of that window. The instance raises the create_instance
event, using the cd scope. It specifies that a link of the ‘balls’
association has to be created to refer to the new instance, and
passes the appropriate constructor parameters to the ‘Ball’
class. It then waits for the event signalling that the instance
was successfully created.

Listing 6. Deleting an instance of the ‘Ball’ class.

<state id="running” >
<transition event="delete_ball” target=".">
<parameter name="link_name” type="string” />
<raise event="delete_instance” scope="cd”>
<parameter expr="link_name” />
</[raise>
</transition>
</state>

Listing 6, on the other hand, shows how an instance of the
‘Window’ class reacts to a ball requesting to be deleted (see
Listing 4). The ball sends the correct link reference, and the
window then instructs the object manager to delete that ball.
Currently, there is no support for objects deleting themselves,
it has to be performed by the object that created them.

THE SCCD COMPILER

The semantics of an SCCD model are loosely based on the
agent model, where each instance of a class can be seen as
an agent that communicates with other agents through its in-
put/output interface, and its autonomous behaviour controlled
by its Statecharts model. Our compiler generates appropri-
ate code that continuously executes the system by allowing
each agent to execute a step, which optionally generates out-
put that can be sensed by the other agents.

The compiler supports multiple programming languages, run-
time platforms, and options for the Statecharts semantics.
These are visually represented in Figure 2 and explained in
the following subsections.

Programming Languages

Compiler Options

Internal Event

Big Ste
'g Step Lifeline

Maximality
S

Take One

| Source-Parent |

|Queue| |Next Small Step|

Next Combo Step

Input Event
Lifeline

[First Small Step || | Whole |

|First Combo Stepl | Source-Child |

Figure 2. Feature diagram of the compiler options.

The compiler can currently generate code for three program-
ming languages: Javascript, Python, and C#. Supporting
multiple languages is a major advantage, as one can imag-
ine developing an application in SCCD and generating code
for multiple languages from the same model. The generated
code would exhibit identical behaviour for each implementa-
tion language, such as a web-based application (implemented
in HTML/Javascript) and a desktop application (implemented
in, for example, Python).

Runtime Platforms

SCCD has one semantic definition. There are, however,
many platforms on which the code generated from an SCCD
model can be run. The runtime platform provides essential
functions used by the runtime kernel, such as the queueing of
events and the scheduling of (timed) events. Three runtime
platforms are supported. A platform holds a list (or queue) of
events, and they differ in the way they handle events gener-
ated during execution. The kernel attempts to run the SCCD
model in real-time, meaning that the delay on timed transi-
tions is intepreted as an amount of seconds. Raising of events
and untimed transitions are executed as fast as possible. Fig-
ure 3 presents an overview of the three platforms, and how
they handle events.

The most basic platform, available in most programming lan-
guages, is based on threads. Currently, the platform runs one
thread, which manipulates a global event queue, made thread-
safe by locks. Input from the environment is handled by ob-
taining this lock, which the kernel releases after every step
of the execution algorithm. This allows external input to be
interleaved with internally raised events. Running an appli-
cation on this platform can interfere with other scheduling

Threads

- - - = m = e p = m === === === === == N

Statechart , ' ' '
event ' ' '

time
UI Event Loop
. __r__l___,_____,_____UIevent
Statechart | P
event . - . : : '
0] w1,
time
Game Loop
Statechart delayed . . T 777 !
event processing,
O N GO Ty .'ﬁ
I >
A event A A A A ti
processing ime

Figure 3. The three runtime platforms.

mechanisms, such as a Ul module, however.

To overcome this interference problem, the event loop plat-
form reuses the event queue managed by an existing Ul plat-
form, such as Tkinter. The UI platform provides functions for
managing time-outs (for timed events), as well as pushing and
popping items from the queue. This results in a seamless in-
tegration of both Statecharts events and external Ul events,
such as user clicks: the UI platform is now responsible for the
correct interleaving.

The game loop platform facilitates integration with game en-
gines (such as the open-source Unity' engine), where objects
are updated only at predefined points in time. In the “update”
function, the kernel is responsible for checking the current
time (as some time has passed since the last call to the “up-
date” function), and process all the events generated by ob-
jects. This means that events generated in between two of
these points are not processed immediately, but queued and
their processing delayed until the next processing time.

Semantics

The Statecharts language has been around for a long time.
In that time, its basic structures have almost not changed.
In its original definition [3], Harel left many of the seman-
tic choices undefined. Since then, many semantics have been
defined, such as the one used in Statemate [5]. More recently,
Esmaeilsabzali et al. [1] have performed a study of big-step
modelling languages, such as Statecharts, and defined a set
of semantic variation points, with which the different State-
charts execution semantics can be classified. Central to their
discussion is the notion of a “big step”. The execution of a
Statecharts model is a sequence of big steps. A big step is
a unit of interaction between a model and its environment. A
big step takes input from the environment (at the beginning

1https ://unity3d.com/

of the big step), and produces output to the environment (af-
ter the big step has taken place). Input cannot change during
the big step. A big step consists of 0 or more small steps. A
small step is an unordered set of 1 or more transition execu-
tions, but in our case, a small step always consists of exactly
one transition execution. Small steps are grouped in so-called
combo steps. A combo step is a maximal sequence of small
steps, such that it only contains transitions that are orthogonal
to each other.

The SCCD compiler allows to choose which semantics to use
based on a number of semantic variation points. This gives
modellers more control to fine-tune the application to their
needs. The semantic variation points are:

e Big Step Maximality specifies when a big step ends: ei-
ther after one combo step executed (Take One), or when no
more combo steps can be executed (Take Many).

¢ Internal Event Lifeline specifies when an internally raised
event becomes available: either in the next small step (im-
mediately), in the next combo step (which only makes
sense in combination with the Take Many option), or the
event is queued and treated as an external event (making it
available in the next big step).

e Input Event Lifeline specifies when an input event is
available during a big step: either throughout the first small
step, the first combo step, or throughout the whole big step.

e Priority specifies what to do when two transitions are en-
abled at the same time, where the source state of one of the
transitions is the ancestor of the source state of the other
transition. Either the transition of the ancestor gets prior-
ity (Source-Parent), or the transition of the (indirect) child
gets priority (Source-Child).

LIMITATIONS AND FUTURE WORK

In its current state, an SCCD with several hundreds of ob-
jects runs smoothly on all platforms. Nevertheless, no ex-
tensive optimisation is incorporated in compiling an SCCD
(although an optimised Statecharts compiler is used). It re-
mains to be investigated whether the performance is adequate
for an SCCD modelling a complete graphical user interface
for graphical modelling involving possibly tens of thousands
of objects, over multiple hierarchical levels. In the extreme
case, thousands of objects might broadcast events to all ob-
jects at the same time. Ultimately, such broadcast scope
might have to be restricted. In this sense, we intend to re-
fine our notion of scope, by further refining the crucial role of
the object manager.

The SCCD formalism supports specialisation for Class Di-
agrams (i.e., inheritance of attributes, methods and associ-
ations). However, no inheritance of the behaviour imple-
mented as a Statechart is implement as of today, which ideally
includes inheritance of a Statechart and inheritance of events.

Because SCCD aims for modelling large, complex systems,
we intend to add support for exceptions and exception han-
dling to SCCD. Currently, when an object wants to signal an
error, it has to send an error event. In the future, exceptions
can be modelled as a special kind of event, and exception han-
dling can be modelled as a dedicated SCCD. It remains to be

https://unity3d.com/

investigated what the possibilities are when handling excep-
tions: can the exception handler (re)set a Statechart’s current
state, or destroy objects and their Statechart instances, and
what are possible repercussions?

We also aim to introduce more object-oriented techniques to
SCCD. Currently, events are strings, but modelling them as
separate entities (such as classes) is useful, especially if a spe-
cialisation mechanism is implemented as mentioned above.
This would allow catching of events based on a supertype or
on specific subtypes. This would also allow for classes to de-
clare an interface, stating which types of events they accept
on their input ports, and which types of events they will send
on their output ports. When SCCD models are placed in a li-
brary, it then becomes easier to reuse them correctly, instead
of having to look at the internals of the models.

One major advantage of modelling using SCCD is its checks
on the structure of the object diagram, to ensure that it con-
forms to the class diagram. Currently, however, minimal car-
dinality constraints are not always enforced, as they are nec-
essarily violated in some period of time (the “initialisation
phase”) when an object is created. We plan to add a mech-
anism for classes to signal to the object manager when they
finished their initialisation, after which it is safe to check min-
imal cardinality constraints.

SCCD currently supports low-level modelling of Statechart
interaction. In this context, we observe specific patterns in the
design of complex user interfaces, for which dedicated sup-
port might decrease the complexity of SCCD models. One
example of such a pattern is the modelling of hierarchical
user interfaces, where resizing one window may trigger a rip-
ple effect for transitively all containing windows (i.e., par-
ents). Currently, such behaviour has to be implemented using
scattered transitions, which decreases maintainability. We in-
tend to identify typical patterns and address them individu-
ally, without overly complicating the SCCD formalism.

We aim to create a graphical representation and modelling
tool for SCCD based on the graphical notations of Class
Diagrams and Statecharts, to further increase usability of
the formalisms and readability of models. In this respect,
SCCDXML would serve not only as input for the compiler,
but also as the interchange format for the graphically created
models. Interestingly, creating such a modelling tool is very
much the intended use of SCCD, and ultimately this mod-
elling tool will be bootstrapped using an SCCD model.

RELATED WORK

In [4], Harel and Gery propose OO Statecharts, similar to
SCCD, to enable precise modelling of behaviour over time,
which allows full executability and automatic code synthe-
sis. In contrast to OO Statecharts, we focus on Ul mod-
elling, and SCCD is based on SCXML. In OO Statecharts,
class methods can be called by synchronous function calls,
whereas in SCCD no direct function calls are made. Instead,
an explicit mediator (the object manager) sends events only
and is responsible for the lifetime of objects. This allows
for asynchronous method calling, distributed implementation,
deadlock avoidance, and introspection. Nevertheless, for per-

formance reasons, we intend to support function calls over
events in specific cases.

In [2], Forbrig et al. support dynamic creation of parallel
subcomponents in SCXML. Their example is an email client
that can handle multiple emails at once. The problem the
authors address is similar to ours, but we explicitly use Class
Diagrams and objects as instances.

In the context of embedded real-time software systems, Selic
and Rumbaugh employ the UML, what later became known
as UML-RT [6]. Similar to our approach, UML-RT addresses
complex, event-driven, and, potentially, distributed systems.
The notation is entirely UML-compliant, as a UML profile is
used. So-called capsules roughly correspond to actors, sim-
ilar to objects, to which a UML State Machine is associ-
ated. Similar to our approach, ports and connectors are used
for communication between actors. However, the State Ma-
chines cannot be compositional. Rudimentary support for
inheritance of State Machines is supported in the sense that
the State Machine is inherited, but no further constraints are
defined according to the Liskov substitution principle. The
UML-RT approach comes without compiler, and strictly fol-
lows UML semantics only.

CONCLUSION

This paper presents SCCD, a combination of Statecharts
and Class Diagrams, for modelling the structure as well as
the behaviour of complex, timed, interactive discrete-event
systems. We present the formalism, its representation in SC-
CDXML (an extension of SCXML), and a versatile compiler
that supports multiple variation points, platforms and run-
times. In its current form, SCCD is suitable for the mod-
elling of, amongst others, a graphical modelling tool’s GUI.
We discussed the limitations of the approach, setting the stage
for future work.

REFERENCES

1. Esmaeilsabzali, S., Day, N. A., Atlee, J. M., and Niu, J.
Deconstructing the semantics of big-step modelling
languages. Requirements Engineering 15, 2 (2010),
235-265.

2. Forbrig, P., Dittmar, A., and Khn, M. Extending SCXML
by a feature for creating dynamic state instances. In 2nd
Workshop on Engineering Interactive Systems with
SCXML (2015).

3. Harel, D. Statecharts: A visual formalism for complex
systems. Sci. Comput. Program. 8, 3 (1987), 231-274.

4. Harel, D., and Gery, E. Executable object modeling with
statecharts. IEEE Computer 30,7 (1997), 31-42.

5. Harel, D., and Naamad, A. The STATEMATE semantics
of Statecharts. ACM Trans. Softw. Eng. Methodol. 5, 4
(Oct. 1996), 293-333.

6. Selic, B., and Rumbaugh, J. Using UML for modeling
complex real-time systems. Technical report, 1998.

	Introduction
	Running Example
	The SCCD Language
	Language Features
	Top-level Elements
	Classes
	Relationships
	Events

	The Object Manager

	The SCCD Compiler
	Programming Languages
	Runtime Platforms
	Semantics

	Limitations and Future Work
	Related Work
	Conclusion
	REFERENCES

