
Concrete Syntax: A Multi-Paradigm Modelling
Approach

Yentl Van Tendeloo
University of Antwerp

Antwerp, Belgium
Yentl.VanTendeloo@uantwerpen.be

Simon Van Mierlo
University of Antwerp

Antwerp, Belgium
Simon.VanMierlo@uantwerpen.be

Bart Meyers
University of Antwerp

Antwerp, Belgium
Flanders Make vzw

Belgium
Bart.Meyers@uantwerpen.be

Hans Vangheluwe
University of Antwerp

Antwerp, Belgium
Hans.Vangheluwe@uantwerpen.be

Flanders Make vzw
Belgium

McGill University
Montréal, Canada
hv@cs.mcgill.ca

Abstract
Domain-Specific Modelling Languages (DSLs) allow domain
experts to create models using abstractions they are most
familiar with. A DSL’s syntax is specified in two parts: the
abstract syntax defines the language’s concepts and their al-
lowed combinations, and the concrete syntax defines how
those concepts are presented to the user (typically using a
graphical or textual notation). However important concrete
syntax is for the usability of the language, current modelling
tools offer limited possibilities for defining the mapping be-
tween abstract and concrete syntax. Most often, the language
designer is restricted to defining a single icon representation
of each concept, which is then rendered to the user in a (fixed)
graphical interface. This paper presents a framework that
explicitly models the bi-directional mapping between the ab-
stract and concrete syntax, thereby making these restrictions
easy to overcome. It is more flexible and allows, amongst
others, for a model to be represented in multiple front-ends,
using multiple representation formats, and multiple mappings.
Our approach is evaluated with an implementation in our pro-
totype tool, the Modelverse, and by applying it on an example
language.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SLE’17, October 23–24, 2017, Vancouver, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5525-4/17/10. . . $15.00
https://doi.org/10.1145/3136014.3136017

CCS Concepts • Software and its engineering → Domain
specific languages; Integrated and visual development envi-
ronments; • Computing methodologies → Model develop-
ment and analysis;

Keywords Concrete Syntax, Abstract Syntax, Visual, Plot-
ting, Simulation, Model Transformation

ACM Reference Format:
Yentl Van Tendeloo, Simon Van Mierlo, Bart Meyers, and Hans
Vangheluwe. 2017. Concrete Syntax: A Multi-Paradigm Modelling
Approach. In Proceedings of 2017 ACM SIGPLAN International
Conference on Software Language Engineering (SLE’17). ACM,
New York, NY, USA, 12 pages.
https://doi.org/10.1145/3136014.3136017

1 Introduction
Domain-Specific Modelling Languages (DSLs) are defined
by their abstract and concrete syntax [13, 24]. The abstract
syntax defines the concepts of the language, which can be
instantiated and used as the building blocks of models. For
example, the abstract syntax of UML Class Diagrams defines
concepts such as Class, Association, and Attributes. The con-
crete syntax defines the visualization, or rendering, of these
abstract syntax concepts. For example, the concrete syntax of
UML Class Diagrams defines the mapping of a Class instance
to a rectangle with the name of the class on top and a list of
all attributes below it. Significant restrictions exist in current
tools for the definition of concrete syntax, thereby restrict-
ing the language engineer, who is responsible for creating
languages that are intuitive to use for domain experts.

Code-based solutions (i.e., tool plugins) are now often
used to implement advanced concrete syntax functionality.
While feasible, the creation of plugins is not always for the
faint-hearted [18], as it relies on tool details (e.g., API) and

https://doi.org/10.1145/3136014.3136017
https://doi.org/10.1145/3136014.3136017

SLE’17, October 23–24, 2017, Vancouver, Canada Yentl Van Tendeloo et al.

advanced functionality becomes non-intuitive to express. Ad-
ditionally, creating the concrete syntax is part of the job of
the language engineer, who is not necessarily an expert in
tool plugin creation. To address these problems, we present a
different angle of attack, where we apply the Multi-Paradigm
Modelling (MPM) [27] approach to concrete syntax. MPM
facilitates the analysis, transformation, simulation, optimi-
sation, documentation, evolution, integration, platform inde-
pendence, and code synthesis of artefacts. Explicit modelling
of complex systems includes the explicit modelling of mod-
elling languages; in MPM, they often become part of the
software development cycle (cfr. domain-specific languages).
This means that abstract syntax, semantics, and concrete syn-
tax need to be modelled explicitly. We identify several limi-
tations in the concrete syntax of state-of-the-art approaches,
which can now only be done by creating (coded, language-
specific) plugins. All these limitations become easy to solve
using our MPM-based approach, without the need for plugins.

We identify five common limitations: (1) A single front-
end (or visualization tool) is provided, which is largely aware
of the concepts of (meta-)modelling. Existing visualization
libraries therefore require a lot of additional code, as these
(meta-)modelling concepts need to be introduced. (2) A sin-
gle representation is used for all languages, such as one
consisting of rectangles and lines, often arranged in a graph-
like manner. While these can be used as primitives for many
types of visualization, some models are ideally expressed
using a plot, or completely different modes of perceptual-
ization. Note the use of the term perceptualization, as we
do not wish to limit ourselves to visual representations of
models, but want to include, for example, text and sound
as well. (3) A single mapping to the representation is used,
such as to UML Object Diagrams, which can be used for all
(graph-based) models, but is seldom the most appropriate.
Even when a domain-specific concrete syntax is defined, it
is often restricted to only one such mapping. (4) No extra
concrete syntax operations are available, such as domain-
specific lay-outing [7], which aids users in understanding the
model. As these algorithms are domain-specific, they must
be part of the specification of the domain-specific language.
(5) A one-to-many mapping between abstract syntax and the
visualized model is used, as an icon definition is used. While
this often suffices, many-to-many mappings offer additional
possibilities to the language engineer.

The remainder of this paper is organised as follows. Sec-
tion 2 presents an example domain-specific language, motivat-
ing the need for a flexible concrete syntax. Section 3 presents
our framework, describing the different phases. Section 4
presents the flexibility that we achieve with our approach,
linking back to the motivating example. Section 5 evaluates
our approach using a prototype implementation. Section 6
discusses identified shortcomings and further extensions of
our approach. Section 7 presents related work. Section 8 con-
cludes the paper.

ICBlockBlock

Addition Multiplication Derivation

Negation Inversion Integration

Constant

value : Float

Probe
name : String

Delay

Link
InitialCondition

Figure 1. Causal Block Diagrams metamodel.

2 Motivating Example
To show the need for more flexibility in concrete syntax defini-
tions, we use the Causal Block Diagrams (CBD) language [2]
as a running example. While this language can be created
and used in current tools, its concrete syntax can not easily
be implemented as we would like. For an optimal interaction
between the modeller and the model, several extensions to
concrete syntax are proposed next. The previously mentioned
restrictions are now elaborated on in the context of this moti-
vating example: the CBD language. Note that our contribution
lies in the explicitly modelled framework for concrete syntax,
and not in the extensions offered for this specific domain
specific language.

2.1 Causal Block Diagrams
The CBD language is a simple yet realistic language, often
used to model complex mathematical equations. The language
consists of a set of blocks which can have inputs and outputs.
Connections between these blocks carry a signal, which the
blocks manipulate. The types of blocks include simple blocks,
such as addition blocks, but also more advanced blocks, such
as integration blocks. The CBD metamodel, shown in Fig-
ure 1, lists all possible blocks and their configuration.

An example instance of the language, with an often used
concrete syntax, is shown in Figure 2. The example models a
mass suspended by a vertical spring. We consider two forces:
the gravitational force and the restoring force of the spring.
The set of equations is shown in Equation 1.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐹spring = 𝑘 · 𝑦
𝐹gravity = 𝑚 · 𝑔
𝐹net = 𝐹gravity − 𝐹spring

𝑎 = 𝐹net

𝑚
𝑑𝑣
𝑑𝑡 = 𝑎
𝑑𝑦
𝑑𝑡 = 𝑣

(1)

The semantic domain of CBDs is a trace language whose
instances contain the values incoming in the various probe
blocks, paired with the simulation time at which the value
was recorded. An appropriate perceptualization of a real value
changing over time is a plot, as shown in Figure 3. From this
figure, the evolution of the value throughout time becomes
immediately obvious. In our case, there are two plots: for the
velocity of the mass (𝑣) and the current position (𝑦).

Concrete Syntax: A Multi-Paradigm Modelling Approach SLE’17, October 23–24, 2017, Vancouver, Canada

y0

v0

k X

m X ∫ ∫1
x

g X +- v y

Figure 2. Example Causal Block Diagrams model of a mass
suspended on a vertical spring.

0 5 10 15 20
t (s)

10

0

10

v
 (

cm
/s

)

Spring Velocity

0 5 10 15 20
t (s)

0

10

20

y
 (

cm
)

Spring Extension

Figure 3. Plotted trace of the CBD model in Figure 2, with
𝑘 = 1, 𝑚 = 1kg , 𝑦0 = 20cm , 𝑣0 = 1 cm

𝑠 , and 𝑔 = 10 cm
𝑠2 .

2.2 Existing Limitations
As previously introduced, many limitations currently exist in
the perceptualization and rendering of models. For each of
these limitations, we present a potential requirement of the
CBD concrete syntax, and how current tools fail to adequately
address them. In our related work section, we further discuss
specific tools and the techniques they use.

2.2.1 Multiple GUIs
When modelling CBDs, different users might have different
preferences in how they interact with their model. Some users
prefer an online browser-based application, requiring no in-
stallation nor local code execution, while other users prefer
an offline application which executes locally. Nonetheless,
the model should be visualized in (almost) the same way,
similar to how it is shown in Figure 2. As these users want to
collaborate, they should share the same back-end, while their
front-ends are different.

Although many (meta-)modelling tools explicitly make the
distinction between a back-end and front-end, or expose a
modelling API, the distinction between front-end and back-
end is often not as expected. Most of the time, the front-
ends still need to be aware of most meta-modelling concepts,
as they receive the abstract syntax model, the metamodel,

(0; 20.0)

(0.1; 20.1)(0.2; 20.1)
(0.3; 20.0)

(0.4; 19.8)

(0.5; 19.5)

y
(0; 1.0)

(0.1; 0.0)

(0.2; -1.01)
(0.3; -2.02)

(0.4; -3.02)

(0.5; -4.0)

v

Figure 4. Graphical representation of the trace in Figure 3.

y0

v0

k ∏

g ∏ ∑ v y
-x

m ∏x-1 1
s

1
s

Figure 5. Same model as in Figure 2, but with other icons.

and a concrete syntax definition. Changes to the model are
then performed in the front-end, and only the abstract syntax
changes are propagated to the back-end. Multiple front-ends
therefore duplicate this modelling code, while it should only
be concerned with the binding to the platform (e.g., TkInter).

2.2.2 Multiple Perceptualization Formats
Visualizing CBDs is completely different from visualizing
their semantics. The semantics of a CBD, expressed as a
trace of its signals, is ideally shown as a plot, instead of a
graph-like structure. A possible rendering of a trace with the
same perceptualization format as the CBD model is shown
in Figure 4. Clearly, the trace is better visualized as a plot,
previously shown in Figure 3: the plot immediately shows the
oscillating behaviour, which cannot easily be derived from
the set of tuples. Similarly, some modellers prefer text over a
graphical representation [16], though all representations have
their limitations [10].

While different front-ends exist today, most are restricted to
a graph-like or text-only representation of the models. Other
perceptualizations, such as plotting or sonification, reason
about different concepts, such as datapoints (for plots) or
music notes (for sonification), instead of graphical primitives.

2.2.3 Multiple Mappings
The ideal visualization of a CBD model depends on the do-
main expert looking at it, even when the visualization is rela-
tively similar (e.g., both block-based). Some elements might
have a different icon attached to them, depending on the
background of the user. For example, users with a Simulink®

background are familiar with the symbols 1/𝑠 for an integra-
tor, and Σ for an addition block. Other users might prefer
the symbols

∫︀
and +, respectively. A visualization with an

alternative set of icons is shown in Figure 5.

SLE’17, October 23–24, 2017, Vancouver, Canada Yentl Van Tendeloo et al.

k

g

my0
v0

X

X

+

X

∫
-

1
x

v

∫

y

Figure 6. Circle lay-out version of the model in Figure 2.

Even though many tools nowadays support the definition
of custom icons for a language, there is often only one pos-
sible visualization attached to it. As such, when a different
visualization is required, the complete model, including ab-
stract syntax, must be copied. While some tools allow for
workarounds, such as defining both icons and only show-
ing one, depending on a configuration option, this is not an
elegant solution.

2.2.4 Lay-Outing
The ideal lay-out of CBD elements is closely related to its
dataflow. If the flow goes left-to-right, with the exception
of feedback loops (e.g., Figure 2), the semantics is easier to
interpret than if the position seems random, as in a circle lay-
out [17] (e.g., Figure 6).. The flow of the data, and therefore
the ideal lay-out, is specific to CBDs, as it depends on the
topological sort of the dependency tree [2]. This is specific
to CBDs and should therefore not be hard-coded in either the
back-end or front-end: it should be defined and maintained
by the language engineer.

While current tools often implement generic lay-out algo-
rithms, such as circle and spring lay-out, they have no support
for lay-out algorithms provided by the language itself (i.e.,
domain-specific lay-out algorithms). Lay-outing can be gen-
eralized as a “post-processing operation” on the rendered
model, where the visualized model is reordered. There is thus
a need to define algorithms on the rendered model, which
should ideally be included in the concrete syntax model.

2.2.5 Many-to-many Mapping and Parsing
While we have previously allowed for multiple mappings,
thereby allowing for a single element to be visualized in multi-
ple ways, the modeller might have additional preferences. For
example, CBDs are sometimes visualized with a conjoined
addition/subtraction block (e.g., in Ptolemy/Kepler [1]): a
single block has an addition and subtraction port, where all
signals are summed, but the signals on the subtraction port

y0

v0

m ∫ ∫X

÷

k
X

÷

g
v y

+

-
X

÷

Figure 7. Alternative representation of the model in Figure 2,
now using a more complex mapping.

are negated first. This is syntactic sugar for a single addition
block, with negation blocks for each input on the subtraction
port, as shown in Figure 7. Whichever representation is used
depends on the domain expert, though we want the abstract
syntax to be identical, independent of the used representation.

While this problem seems highly related to the multiple
mappings problem, it is fundamentally different: the con-
joined addition/subtraction block is a single concrete syntax
element with multiple abstract syntax elements underlying it.
Indeed, each connection to the subtraction port has a (hidden)
negator block in the abstract syntax. While it is possible to
change the abstract syntax, this would create problems for
the other operations, where the negation block is explicitly
present. The problem is therefore the restriction of many tools
to a one-to-many mapping: a single abstract syntax element is
rendered by several concrete syntax elements, independently
of other abstract syntax elements. A possible workaround is
the introduction of an intermediate language, which expands
or collapses the addition/subtraction block, though such an in-
termediate language causes additional consistency problems.

3 Explicitly Modelling Concrete Syntax
We now present our multi-paradigm modelling approach to
concrete syntax, where we explicitly model all aspects.

Our approach makes a clear distinction between the re-
sponsibilities of the back-end and front-end. The back-end
is responsible for all (meta-)modelling related concepts, in-
cluding how models are perceptualized and comprehended.
The front-end is responsible only for how this perceptible
model is rendered using a specific platform, such as TkInter.
Instead of transferring the abstract syntax of the model (using
domain-specific concepts, such as Constant), the back-end
transforms this model to the MMRender language (which uses
perceptualization concepts, such as Ellipse).

Our approach is centered around four activities, as shown
in Figure 8: Perceptualization, Rendering, Recognition, and
Comprehension. Our approach is independent of how these
activities are implemented (e.g., in code, using model trans-
formations, or manually).

Concrete Syntax: A Multi-Paradigm Modelling Approach SLE’17, October 23–24, 2017, Vancouver, Canada

MMAS MMRender

MAS MRender

MMCL

comprehend

perceptualize

BACK-END

<<AS operations>>

FRONT-END

Add
Block

Add
ConnectionMMRender

MRender
transfer render

recognize

implements

platform

Figure 8. Overview of the approach.

In the remainder of this section, we elaborate on each step
of our approach, where we link to a minimal example in
the context of CBDs, shown in Figure 9. We start at the top
left in the figure, with M𝐴𝑆 . M𝐴𝑆 is first (1) perceptualized,
resulting in an MRender. For example, instances of the Constant
class are translated to a Group containing an Ellipse and
Text instance. This MRender is (2) transferred to the front-end
in some way, which is independent of our approach. In the
example, a JSON serialization of the source model is shown.
The front-end has a copy of MRender, which is (3) rendered for
that specific platform. For example, all instances of Ellipse
are iterated over, and a create oval TkInter function is
invoked. The TkInter front-end listens to user events (e.g.,
mouse clicks), thereby (4) altering the rendered model. For
example, the text entry “1” is altered to “2”. Such changes
are (5) recognized (e.g., via callbacks), resulting to changes
on MRender. For example, the Text instance has its attribute
text updated to “2”. Changes are (2) transferred to the back-
end again, this can be incremental or overwrite the complete
model. Finally, the new MRender is (6) comprehended, thereby
changing M𝐴𝑆 . For example, the changed text results in an
update to the value of the constant block. Each of these steps
is further elaborated on next.

3.1 Perceptualization
The first step to our approach is perceptualization, where a
model in a domain-specific language MM𝐴𝑆 is mapped to a
perceptualization language MMRender. This defines how the
model is presented to the user. For each language that we
want to visualize, it is important to define a perceptualization
activity, which is the concrete syntax definition.

This activity needs to map to an MMRender, which defines
the mode of presentation to the user. MMRender defines the plat-
form primitives that can be used, such as Ellipse, Rectangle,
and Line. In our example we focus on graphical languages, as
this is easiest to present on paper, and therefore our MMRender

is defined as in Figure 10. Note that this MMRender is not yet
linked to any specific platform, such as TkInter or Scalable
Vector Graphics (SVG). The used concepts are generic to
many graphical visualization libraries.

Our approach is not restricted to any specific MMRender,
although we demonstrate our approach using a metamodel
for graphical visualization. It is straightforward to come up
with different MMRender specifications, such as one for plots
(e.g., for signal traces), text (e.g., for action language), or
even sound (e.g., for music sheets [19]). We envision a small
library of different kinds of MMRender to capture all neces-
sary perceptualizations. Of course, a front-end should also be
defined which can render models in that language.

Traceability can be constructed between M𝐴𝑆 and MRender,
to be used for incremental perceptualization, where we only
perceptualize elements in M𝐴𝑆 that have no associated ele-
ments in MRender yet. This is the reason for the loop in Figure 8,
where perceptualization takes in both M𝐴𝑆 and the current
MRender. It remains up to the language engineer whether or
not to use incremental perceptualization.

In our example, we transform the single CBD instance of
Constant to instances of Group, Ellipse, and Text, conforming
to the MMRender metamodel in Figure 10. This defines how
constant blocks are to be presented to the user: as a group of
an ellipse and some text. We defined this activity using model
transformations. An example model transformation rule is
shown in Figure 11, which creates a Group, Ellipse, and Text
instance for each Constant element that not yet has an asso-
ciated group. The values of their attributes are hidden due to
space restrictions, but are mostly trivial (e.g., the colour of the
ellipse and value of the text). In a model transformation rule,
the Left-Hand Side (LHS) pattern is matched in the model,
and is replaced by the Right-Hand Side (RHS), unless the
Negative Application Condition (NAC, shown in the dashed
rectangle) also matches. The (purple) numerical annotations
link elements in the LHS to elements in the RHS.

3.2 Model Transfer
As there is an explicit difference between the back-end and the
front-end, there needs to be a way to transfer the models. We
want this to be as general as possible, as both the back-end and
front-end could be physically distributed and implemented
in different programming languages. In our example, the
model is serialized using JSON, and transferred over network
sockets. Nonetheless, our approach is independent of the
implementation details of model transfer, and we therefore do
not elaborate on this aspect. It is only important that an exact
copy of MRender is present on both the back-end and front-end;
this can be achieved in many different ways.

Note that, thanks to our approach, only models in the
MMRender language must be transferred, potentially allowing
for additional optimizations in the serialization.

3.3 Rendering
When the MRender arrives at the front-end, it needs to be pre-
sented to the user. This is done by mapping the concepts of
MRender to the platform operations responsible for the pre-
sentation. As such, the front-end’s interface is described in

SLE’17, October 23–24, 2017, Vancouver, Canada Yentl Van Tendeloo et al.

MRENDERMAS

MRENDERMAS

:Constant

value = 1

[
{"type": "Group",
 "x": 30,
 "y": 0,
 "__asid": "__100",
 "__id": "__200",
},
{"type": "Text",
 "x": 3,
 "y": 2,
 "lineWidth": 1,
 "lineColour": "Black",
 "text": "1",
 "__asid": "__101",
 "__id": "__201",
},
...
]

:Group

x = 30
y = 0

:Text

x = 3
y = 2
lineWidth = 1
lineColour = "Black"
text = "1"

:Ellipse

x = 0
y = 0
lineWidth = 1
lineColour = "Black"
fillColour = "LightYellow"
width = 10
height = 10

:Group

x = 30
y = 0

:Text

x = 3
y = 2
lineWidth = 1
lineColour = "Black"
text = "1"

:Ellipse

x = 0
y = 0
lineWidth = 1
lineColour = "Black"
fillColour = "LightYellow"
width = 10
height = 10

1

2

:Group

x = 30
y = 0

:Text

x = 3
y = 2
lineWidth = 1
lineColour = "Black"
text = "2"

:Ellipse

x = 0
y = 0
lineWidth = 1
lineColour = "Black"
fillColour = "LightYellow"
width = 10
height = 10

[
{"type": "Group",
 "x": 30,
 "y": 0,
 "__asid": "__100",
 "__id": "__200",
},
{"type": "Text",
 "x": 3,
 "y": 2,
 "lineWidth": 1,
 "lineColour": "Black",
 "text": "2",
 "__asid": "__101",
 "__id": "__201",
},
...
]

:Group

x = 30
y = 0

:Text

x = 3
y = 2
lineWidth = 1
lineColour = "Black"
text = "2"

:Ellipse

x = 0
y = 0
lineWidth = 1
lineColour = "Black"
fillColour = "LightYellow"
width = 10
height = 10

:Constant

value = 2

(1) perceptualize (2) transfer
(3) render

(4) alter

(5) recognize
(6) comprehend (2) transfer

back-end front-endcommunication

Figure 9. Overview of the approach with an example for CBDs.

GraphicalElement

x : Natural
y : Natural

Group

contains

LineElement

lineWidth : Natural
lineColour : String

Shape

fillColour : String
width : Natural
height : Natural

Rectangle

Ellipse

SVG

data : String

Text

text : String

Figure

width : Natural
height : Natural

targetX : Natural
targetY : Natural
arrowhead : True

Line

Figure 10. 𝑀𝑀𝑟𝑒𝑛𝑑𝑒𝑟 for graphical visualization.

Ellipse

Text
4

5

6

7

Constant

Group

1

2

3

Group

Constant
1

2

3

Constant
1

Figure 11. Example rule for CBD perceptualization.

a platform-independent way using MMRender. It is thus im-
portant that the front-end and back-end agree on the same
MMRender. Rendering can be seen as a transformation from
concepts in MMRender to concepts in the platform.

While our approach explicitly represents both MRender and
MMRender in the front-end, this does not necessarily have to be
the case. For example, the front-end could just iterate over the

JSON serialization it gets in, directly invoking platform func-
tions. And even while the models are not explicitly present in
the front-end, the front-end still makes implicit use of these
models and the back-end ensures well-formedness.

In our example, the front-end maps concepts such as El-
lipse to the create oval TkInter function, also translating
the attributes to arguments for that function. The complex-
ity of the mapping on how close the concepts of MMRender

match those of the platform. For example, if a platform does
not support rectangles, elements of the Rectangle class have
to be mapped internally to four seperate lines (or whatever
operation the platform provides).

3.4 Altering
Some front-ends allow altering the rendered model in some
way. Straightforward examples are moving around elements,
changing their size, and so on. Such changes occur in the
platform, and are based on platform events (e.g., button press,
mouse move, mouse click), which need to be mapped to
model operations. As the detection of such events is highly
platform-dependent, and can be considered an implementa-
tion detail, we do not elaborate on this. For our approach, it
is only important that the rendered model can be altered, as
we are independent of how these changes actually occur.

Even though simple operations are common, altering the
model can happen in any way, for example through sketch in-
terpretation [3, 15], where sketches are recognized as changes
in the platform (e.g., a drawing of a circle is mapped to the
TkInter circle concept).

Concrete Syntax: A Multi-Paradigm Modelling Approach SLE’17, October 23–24, 2017, Vancouver, Canada

3.5 Recognition
When changes are made to the rendered model, these changes
have to be propagated to the MRender, as this is the common
exchange format between back-end and front-end. While this
mapping is often trivial, it depends on the match between
MMRender and the platform concepts. For example, for a trivial
mapping, moving a rectangle in the platform merely maps to
moving that same rectangle element in MRender. For a complex
mapping, however, the rectangle might be a set of lines in the
platform, where moving one of these lines affects the three
other lines as well.

Recognition does not attach semantics to the change. In-
deed, changing the value of the text merely alters the text
value, and the associated constant block still has the value 1.
As such, recognition is limited to syntactical changes.

In our example, the mapping is trivial: updating the text
value in the platform merely requires us to update the text
attribute of the Text instance in MRender.

3.6 Comprehension
Comprehension maps changes on MRender back to changes
on M𝐴𝑆 . As such, it attaches semantics to the change that
was made. Note that this operation often makes use of the
tracability information that was previously created during
perceptualization, as it needs to map between both formalisms.
Therefore, comprehension can make use of the original M𝐴𝑆 ,
being the reason for the loop in the overview figure.

Often, a front-end only allow syntactical changes that have
no influence on semantics. For example, moving an element
of a topological formalism changes the x and y attributes
in MRender, though it has no effect on the semantics of the
model. In many cases, therefore, comprehension is skipped
completely. Nonetheless, it is an essential activity in the con-
text of free-hand editors, where all changes are made purely
in concrete syntax.

The distinction between recognition and comprehension is
important. For example, recognition recognizes when a rec-
tangle is dragged to a different location (changing its x and y
attributes), and comprehension comprehends that this implies
containment (creating a Containment link). In contrast to per-
ceptualization, comprehension might fail if the user creates
a structure that cannot be comprehended (i.e., a parsing er-
ror). While we are sure that the modified MRender conforms to
MMRender, it does not necessarily represent a comprehensible
model (e.g., a circle has no meaning in CBDs without a text
value in it).

In our example, comprehension maps the text value of the
Text element back to the value of the Constant block. Note that
this is one of the only changes on concrete syntax that would
have any semantical effect. For example, altering the x and y
attributes of any of these elements would have no semantical
effect, as CBDs are a topological formalism. When the Text
element is deleted altogether, comprehension fails.

MMAS MMRender

MAS MRender

MMCL
BACK-END

<<AS operations>>

FRONT-END

Add
Block

Add
ConnectionMMRender

MRender
transfer render

recognize

implements

MMRender

MRender

transfer

render

recognize

implements

<<AS operations>>

platform1

platform2

comprehend

perceptualize

Figure 12. Approach with multiple GUI front-ends.

4 Degrees of Flexibility
With our approach explained, we present how this approach
addresses the various restrictions of existing tools. For each
restriction, we explain how our approach is flexible enough
to support it, applied to our motivating example.

As we did not code our approach, many of these degrees
of flexibility are just the creation of a new model, in which
meta-modelling tools are specialized. The presented degrees
of flexibility can therefore be explained at a high level of
abstraction, without going into implementation details. This
would not be the case for a plugin-based approach, for exam-
ple, as we would have to rely on tool-specific API calls.

4.1 Multiple GUIs
The first restriction was related to having multiple front-ends,
possibly implemented in different implementation languages,
though all with similar semantics. We addressed this prob-
lem by presenting the MMRender model as the “interface” for
model rendering: all front-ends must accept the same set of
models. As long as the back-end and front-end agree on a
certain MMRender, specified in the back-end, all front-ends that
implement it are supported. In contrast to other tools, where
the front-end is offered some kind of fixed modelling API on
abstract syntax, our front-end only receives a serialized model,
in a known format, which it must render as-is: all processing
has already been done. The back-end is completely indepen-
dent of the front-end and, subsequently, the platform used for
rendering. This is shown in Figure 12, where the same MRender

and MMRender is used for two different front-ends, rendering
the same representation of the model.

For CBDs, we implemented a front-end in Python/TkInter
and JavaScript/SVG. Both are similar in use and visualiza-
tion, though their underlying mapping to the platform drasti-
cally differs. There is still much freedom left in the front-end,
specifically for elements not defined in MMRender, such as the
supported operations (e.g., zooming, scaling) and interaction
with the user (e.g., mouse-driven, keyboard-driven).

SLE’17, October 23–24, 2017, Vancouver, Canada Yentl Van Tendeloo et al.

MMAS

MMCL
BACK-END

<<AS operations>>

FRONT-END

Add
Block

Add
Connection

MRenderMAS MRender
transfer render

recognize

implements

MRender

render

recognize

implements

MRender
transfer

MMRender
Graph MMRender

Graph

Graph Graph

Plot Plot

PlotPlotMMRender MMRender

(t0; v0)

(t1; v1)

(t2; v2)

platform1

platform2

comprehend

perceptualize

com
prehend

perceptualize

Figure 13. Approach with multiple MMRender models.

4.2 Multiple Perceptualization Formats
As our approach explicitly models MMRender, it is possible to
have several variants of it, each defining a different format.
Each front-end merely needs to ensure that its MMRender is
comprehended by the back-end, and can from then on vi-
sualize models in that language. A different MMRender often
requires a different front-end, though this is not required.
For example, a TkInter front-end can visualize a text-only
MMRender as a TkInter text widget.

Figure 13 shows this in the context of our CBD example,
where we have two rendering formats: one for graphical mod-
els (MMGraph

Render), and one for plots (MMPlot
Render). Each MMRender

has its own front-end. Both front-ends are connected to the
same back-end and share the same models and API to these
models. Through this API, a graphical front-end receives a
model conforming to MMGraph

Render, and the plotting front-end
receives a model conforming to MMPlot

Render.

4.3 Multiple Perceptualizations
Since the mapping from MM𝐴𝑆 to MMRender is explicitly
modelled, it is possible to change it, or have multiple. Any
mapping is fine, as long as it generates a valid instance of
MMRender, and can therefore be rendered. These mappings can
target different versions of MMRender, as was already shown
in the previous point, but can also go to the same MMRender.

Figure 14 shows this in the context of our CBD example,
where we have two mappings to the same MMRender. One
defines the integration block icon as a rectangle with 1/𝑠 in it
(MMV1

Render), whereas the other defines it using a triangle and
the

∫︀
symbol in it (MMV2

Render). Both mappings are equally
correct and can be used interchangeably: all changes on one
representation are automatically mimicked on the other repre-
sentations, as they share the same M𝐴𝑆 .

4.4 Lay-outing
Lay-outing is an additional operation executed after perceptu-
alization, as we need to operate on the current visualization.

MMAS MMRender

MMCL
BACK-END

<<AS operations>>

FRONT-END

Add
Block

Add
ConnectionMMRender

MAS
transfer render

recognize

implements

MRender

render

recognize

MRender
transfer

V1

V2 V2

MRender
V1 MRender

platformcomprehend

perceptualize

comprehend

perceptualize

Figure 14. Approach with multiple mappers to the same
MMRender. The same tool is used for both models, though
different instances.

Therefore, it is often shifted to the front-end completely. In
our approach, the perceptualized model is available in the
back-end, where the lay-outing can happen using, for exam-
ple, model transformations. This not only makes it possible
to share the same lay-out algorithms between front-ends, but
also allows domain-specific lay-outing algorithms. For prac-
tical reasons, the lay-out algorithm, and any other pre- or
post-processing operations, are implemented as part of the
perceptualization phase.

For our CBD example, we can implement a new domain-
specific lay-out algorithm as part of the perceptualization.
When new elements are added, users can add them wherever
they want, but they will automatically be placed at the ideal
location in the CBD model. With lay-outing happening at the
back-end, all users sharing the same perceptualized model
will also see the lay-out propagated.

4.5 Many-to-Many Perceptualization
As our mapping for the perceptualization and comprehension
is any kind of operation, we can use any executable language
to define it in. In contrast to icon definitions, we can map
multiple abstract syntax elements to multiple concrete syntax
elements, as the mapping itself is generic. This can be used
during perceptualization to create complex rules that cannot
be expressed with the usual icon definitions: multiple abstract
syntax elements are condensed into a single icon. Thanks to
the use of traceability links in our approach, from MRender to
M𝐴𝑆 , it is also possible to incrementally update the concrete
syntax, by linking previously rendered elements.

For our CBD example, we are able to utilize model trans-
formations to map elements from the source language (M𝐴𝑆)
to elements in the target language(MRender). In general, model
transformation language are not limited to a one-to-many
mapping, in contrast to most icon definition languages.

Concrete Syntax: A Multi-Paradigm Modelling Approach SLE’17, October 23–24, 2017, Vancouver, Canada

5 Evaluation
We now evaluate our framework based on an implementation
in our prototype tool: the Modelverse1 [25, 26].

5.1 Research Questions
We distill our motivating example into five research questions:

1. R1: Can new front-ends be implemented fast?
2. R2: Can models be perceptualized in different ways?
3. R3: Can multiple perceptualizations be defined?
4. R4: Can domain-specific lay-outing be defined?
5. R5: Can many-to-many perceptualizations be defined?

5.2 Results
R1: Lightweight Front-ends We have implemented two
separate front-ends, for two different platforms: TkInter and
Matplotlib, both using Python. The Matplotlib front-end only
visualizes the model and does not offer any manipulation op-
erations. The TkInter front-end includes basic concrete syntax
operations, such as moving around elements, and basic ab-
stract syntax operations, such as modifying attributes. Each
front-end was implemented by a different developer, familiar
with the platform. Each individual front-end took less than
one day to implement up to the point where they could vi-
sualize the models, exactly as received from the back-end.
Each front-end has a small code base: approximately 250
lines of Python code for the front-end with Matplotlib, and
350 lines for the front-end with TkInter. For both front-ends,
no (meta-)modelling information had to be coded, except
for the implementation of MMRender. This can be considered
fast for front-end development, which usually takes a sig-
nificant amount of time. In our case, perceptualization was
only defined once in the back-end, instead of once for each
front-end.

R2: Different Perceptualizations Using the two previously
implemented front-ends, we have also shown the feasibility
of different perceptualizations. The first front-end provides
a plot-based perceptualization of a trace model. In this per-
ceptualization, the model is visualized as a graph, and all
operations, such as zooming, are provided natively by the
Matplotlib platform. The second front-end provides a graphi-
cal perceptualization of the original CBD and resulting trace
model. In this perceptualization, we rely on the TkInter visu-
alization primitives. The trace model can therefore be percep-
tualized in two significantly different ways.

R3: Multiple Similar Perceptualizations Using the previ-
ously implemented graphical front-end, with TkInter, we have
implemented two different perceptualizations as model trans-
formations. This front-end therefore has a drop-down menu
for the model to show, and a drop-down menu for the avail-
able perceptualizations. Both are automatically populated by

1https://msdl.uantwerpen.be/git/yentl/modelverse

querying the back-end. The same model can therefore be
visualized with two slightly different transformations.

R4: Domain-Specific Layouting We have implemented a
simple lay-out algorithm in the perceptualization transfor-
mation. Combined with the two different perceptualization
transformations, we were able not only to alter the icons of
the different concrete syntax elements, but also to change
their relative position. As such, when switching from one
perceptualization to the other, the model not only changes its
icons, but the position of these icons changes as well.

R5: Many-to-many Perceptualization As our approach is
based on generic activities, it stands to reason that we can
support many-to-many perceptualization. A simple many-to-
many perceptualization was implemented, as presented be-
fore in the motivating example. After the usual icon mapping,
mapping an addition block to a rectangle with the addition
symbol in it, additional model transformation rules are added
to search for a negation block that is connected to the addi-
tion block. When such a pattern is found, the concrete syntax
representation of the negation block is removed, and the con-
nection is redrawn to the negated input port of the addition
block. As such, a one-to-many mapping between M𝐴𝑆 and
MRender is shown to be possible.

5.3 Threats to Validity
For construct validity, our primary threat is the measures
used for R1. We used two measures: the time needed to de-
velop the tool, and the number of lines of code. Development
time highly depends on the skill of the developer and the fa-
miliarity with the used libraries. To minimize the time needed
to get familiar with the libraries, developers were familiar
with the library they had to use up to the level that they had
no technical problems. The number of lines of code is not too
reliable to determine the difficulty of writing the front-end.
The codebase of the two front-ends mostly consists of linear
code and does not include non-trivial algorithms. For exam-
ple, out of the 250 lines of code for the plotting front-end,
50 lines are dedicated to the translation of terminology (e.g.,
“solid” line types in MMRender to “-” in Matplotlib).

For external validity, our primary threat is the application
to only a single language (CBDs), with a single back-end
(the Modelverse), and only a single implementation language
(Python). Nonetheless, we believe that each of these is repre-
sentative, and our approach does not depend on any of these
in particular.

For reliability, we note that we depend on the familiarity of
the researchers with the used tools. As we have used our own
prototype tools, we knew all details relevant to the application
of our approach. Lack of documentation about these tools
might hinder other researchers from implementing the same
functionality in this tool. Another threat to reliability is the
small amount of experiments that were conducted.

SLE’17, October 23–24, 2017, Vancouver, Canada Yentl Van Tendeloo et al.

6 Discussion
We briefly present three directions in which our work is cur-
rently still limited, but can be further extended: performance,
GUI interaction and concrete syntax definitions.

6.1 Performance
Performance has not been discussed up to now, as it is not one
of the concerns that we want to tackle. Nonetheless, concrete
syntax can only be deemed usable if it is also sufficiently
efficient to use: model perceptualization and comprehension
require a relatively low latency, as otherwise the interface
does not seem responsive, leading to user frustration. Model
transformations are the crucial factor in our approach: bench-
marking our approach would actually be benchmarking the
underlying model transformation engine. Many model trans-
formation optimizations have been discussed in the literature,
such as incrementality [22], distributed queries [21], or scope
discovery [11]. Our approach itself is independent of the
underlying model transformation algorithm.

6.2 GUI Interaction
Up to now, the behaviour of the front-end was considered as a
black box. While we did term its operations as rendering and
recognition, nothing is said about how this happens. Many
differences are possible here as well, which can ideally be
domain-specific. For example, what operations does a mod-
eller have to do to delete an element? Must an element be left
clicked and then the delete key pressed, or is there a button
to do this? Depending on the domain, any of these modes of
interaction might be more natural to the user.

The behaviour of the GUI, and in particular its interac-
tion with the user, should ideally also be explicitly modelled,
similar to the concrete syntax. This timed, reactive, and possi-
bly concurrent behaviour is best described by a specialized
formalism, such as SCCD [23].

6.3 Concrete Syntax Definition
While our proposed framework offers a lot of flexibility to
language engineers, defining a concrete syntax mapping is not
as easy as an icon definition. To increase usability, we propose
an additional language, the MM𝐶𝑆 , which is a language for
concrete syntax definitions. A concrete syntax definition is
a DSL for the definition of concrete syntax. An example
is an icon definition language. Instances in this language,
termed M𝐶𝑆 , can be used to generate the perceptualization
and comprehension model transformation. So while we use
the full-blown infrastructure, it becomes possible to use a
similar workflow as before, if so desired. This is shown in
Figure 15, where we show that both model transformations
are generated from M𝐶𝑆 . MM𝐶𝑆 is also tightly related to both
MM𝐴𝑆 and MMRender, as it uses concepts from both. Again,
we are not restricted to a single MM𝐶𝑆 , as it is possible

MMAS MMRender

MMCL

MAS
comprehend

perceptualize
MRender

V1

MMCS

MCS

Figure 15. Concrete Syntax definition to automatically gen-
erate the perceptualization and comprehension operations.

to define and use several, all of which define DSLs for the
domain of concrete syntax definitions.

7 Related Work
Most (visual) modelling environments support customizing
the concrete syntax of modelling languages. We consider
a number of representative examples and explore to which
extent they support the features listed in the previous sections.
Without exception, these tools hardcode MMRender, meaning
that even when they offer some degrees of flexibility, it is
constrained to a specific type of perceptualization.

AToMPM [20] is a graphical meta-modelling environment,
implemented in Javascript/SVG. It allows language engineers
to develop their languages’ abstract syntax using a class-
diagram language. For the concrete syntax, an icon definition
language is provided. The language engineer has to create an
icon for each class, and a link for each association. A class’
icon and an association’s link define the graphical appearance
of the instances of that class or association; it can consist of
several graphical primitives such as rectangles, circles, and
lines. The graphical primitives have a number of attributes,
such as colour, size, font (for text), etc. The value of these
concrete syntax attributes can depend on the value of abstract
syntax attributes: this can be defined in a mapper. Conversely,
changes on the concrete syntax (e.g., dragging an icon) can
be parsed, which results in changes to the value of the ab-
stract syntax attributes. AToMPM is restricted to one-to-many
perceptualization. Multiple concrete syntaxes can be defined
for the same abstract syntax definition; the front-end allows
to switch between different renderings of the same abstract
syntax model. Due to AToMPM’s client-server architecture,
an alternative front-end could be developed using a different
platform. Layout algorithms are not supported.

AToM3 [6], the predecessor of AToMPM, is implemented
in Python/Tkinter. Model storage and visualization are tightly
coupled. Similar to AToMPM, visualization is defined using
an icon editor, though only one concrete syntax definition is
supported for each language, as they are tightly interwoven.
No comprehension from concrete to abstract syntax is sup-
ported and perceptualization is limited to displaying the value
of an attribute in a text field. The language engineer can, how-
ever, code actions that are triggered by events, such as editing

Concrete Syntax: A Multi-Paradigm Modelling Approach SLE’17, October 23–24, 2017, Vancouver, Canada

an object, moving it, selecting it, etc. These scripts can access
both the abstract syntax and concrete syntax (Python) objects,
though they are not governed by well-formedness rules: in-
valid configurations can be reached. Some layout algorithms
are provided, such as circle layout and spring layout, though
all of them are generic; domain-specific layout algorithms
are not supported. For AToM3, a multi-view component was
previously introduced [5], though this was mostly focused on
the abstract syntax and associated semantics.

MetaEdit+ [12] is a commercial domain-specific meta-
modelling environment. To define the abstract syntax of a
language, a metamodel is created in the feature-rich GOPPRR
(Graph-Object-Property-Port-Role-Relationship) language. A
symbol editor allows to customize the concrete syntax of the
language; again, each class is given a graphical representa-
tion. Mapping is limited to text elements: their value can be
computed based on the abstract syntax of the model. Addi-
tionally, graphical elements can be shown or hidden based on
a condition on the abstract syntax of the model. MetaEdit+
does not allow implementing custom layout algorithms. No
comprehension is supported: the concrete syntax of the model
cannot influence its abstract syntax. While MetaEdit+ is a
commercial, proprietary tool, it does implement a SOAP API
with which external tools can query and modify the models
stored in the tool. No access is given to the graphical info
of the models. Therefore, it is impossible to implement a
minimal user interface with MetaEdit+ as a back-end, unless
perceptualization is implemented from scratch.

A number of frameworks exist that allow language engi-
neers to create graphical user interfaces in Eclipse EMF2.
GMF3 allows the generation of a modelling tool from a con-
crete syntax definition, a perceptualization and a tool defini-
tion, which are all explicitly modelled. Users can generate
an editor as an Eclipse plug-in or as a Rich Client Platform
(RCP) application. Reusing existing libraries, however, is not
as straightforward. Sirius builds on GMF and aims to ease the
development of modelling tools, while primarily focusing on
multi-view modelling [14]. Multiple concrete syntaxes for the
same abstract syntax are supported, for example by providing
multiple viewpoints depending on the level of abstraction.
Papyrus [9] is a tool for modelling UML or SysML diagrams.
Focusing on such standards, the tool allows users to specify
tailored concrete syntax for their UML profile. All these EMF
approaches are based on the generation of a modelling tool.

In the domain of textual languages, abstract syntax and
concrete syntax are usually defined together by means of
a grammar. In this context, comprehension is equivalent to
parsing. Any (general-purpose) text editor can be used as a
front-end for free-hand editing. A parser is used to determine
the text’s conformance to the language. Nowadays, smart
text editors are used to parse the text dynamically during

2https://www.eclipse.org/emf
3https://www.eclipse.org/modeling/gmp

editing, thereby supporting syntax highlighting, error detec-
tion, auto-completion, etc. Xtext is a framework that sup-
ports implementing textual DSLs and such smart editors [8].
A DSL is defined by an Xtext grammar, from which it is
possible to parse an EMF-based abstract syntax tree by us-
ing a generated ANTLR parser. A textual environment can
be generated, which includes syntax highlighting, error vi-
sualization, content-assist, folding, jump-to-declaration and
reverse-reference lookup across multiple files. Xtext supports
multiple front-end frameworks, such as Eclipse, IntelliJ, and
web browser support, but the user is not expected to define
support for his own framework. Xtext is defined for textual
languages exclusively, unlike our approach.

Textual concrete syntax definition for DSLs is also sup-
ported in MetaDepth, based on ANTLR [4]. In MetaDepth,
concrete syntax and abstract syntax definition are separated,
unlike typical approaches for textual syntax. There is no dedi-
cated support for a user interface; instead, an external general-
purpose text editor must be used.

Similar to our approach is Monto [18], which addresses
the problem of extending existing integrated development
environments. But whereas their approach sticks to the same
approach as before, and tries to make plugins easier to de-
fine, our approach takes a radically different approach by
modelling all aspects explicitly. In our approach, plugins dis-
appear, and effectively become just new models in the tool,
which are used to augment the behaviour of the tool.

The overview of our approach bears similarity to the meg-
amodel on parsing and unparsing [28], where 12 classes of
artefacts were identified, along with a set of transformations
between them. This overview is mostly oriented towards tex-
tual languages. In contrast, our approach covers different
types of perceptualization: textual or graphical perceptual-
ization is handled similarly in our approach. Related to this,
our approach is capable of handling other perceptualization
strategies as well, such as sonification, as long as there is an
MMRender and supporting front-end.

8 Conclusion
We have shown several restrictions in current approaches to
concrete syntax, and in particular graphical concrete syntax.
In this paper, we identified five restrictions with regard to their
(graphical) concrete syntax, which we address by presenting
a Multi-Paradigm Modelling (MPM) approach. With our ap-
proach, the to-be-rendered model is represented in abstract
syntax as well, making it possible to do the perceptualization
with model transformations. The generated model is trans-
ferred to a compatible front-end, which merely renders the
result. Changes to the rendered model can be recognized and
comprehended to update the abstract syntax model.

We have shown the various degrees of flexibility offered
by this approach, and described our implementation in the
Modelverse. The implementation was discussed, as well as its

https://www.eclipse.org/emf
https://www.eclipse.org/modeling/gmp

SLE’17, October 23–24, 2017, Vancouver, Canada Yentl Van Tendeloo et al.

performance considerations and possible extensions such as
a front-end interaction model and concrete syntax definition
languages.

Future work is possible in many directions. First, a front-
end interaction model could be defined, which describes the
(domain-specific) behaviour of the front-end. Second, a con-
crete syntax definition language could be defined, which al-
lows the automated generation of the required operations.
Third, the link with textual languages, where the concepts
of parsing and unparsing are already well-known, could be
further explored.

Acknowledgments
This work was partly funded by PhD fellowships from the
Research Foundation - Flanders (FWO) and Agency for Inno-
vation by Science and Technology in Flanders (IWT). This
research was partially supported by Flanders Make vzw, the
strategic research centre for the manufacturing industry.

References
[1] Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram

Ludäscher, and Steve Mock. 2004. Kepler: an extensible system for de-
sign and execution of scientific workflows. In Scientific and Statistical
Database Management. 423–424.

[2] François E. Cellier. 1991. Continuous System Modeling (first ed.).
Springer-Verlag.

[3] Randall Davis. 2007. Magic Paper: Sketch-Understanding Research.
Computer (2007), 34–41.

[4] Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado. 2015. Model-
driven engineering with domain-specific meta-modelling languages.
Software and System Modeling 14, 1 (2015), 429–459.

[5] Juan de Lara, Esther Guerra, and Hans Vangheluwe. 2005. A multi-
view component modelling language for systems design: Checking
consistency and timing constraints. In Visual Modeling for Software
Intensive Systems. 27–34.

[6] Juan De Lara and Hans Vangheluwe. 2002. AToM3: A Tool for Multi-
formalism and Meta-modelling. In International Conference on Funda-
mental Approaches to Software Engineering. 174–188.

[7] Denis Dubé. 2006. Graph Layout for Domain-Specific Modeling. Mas-
ter’s thesis. McGill University.

[8] Moritz Eysholdt and Heiko Behrens. 2010. Xtext: implement your
language faster than the quick and dirty way. In Companion to the 25th
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (SPLASH/OOPSLA). 307–309.

[9] Sébastien Gérard. 2015. Once upon a Time, There Was Papyrus....
In Proceedings of the 3rd International Conference on Model-Driven
Engineering and Software Development. IS–7.

[10] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler,
and Steven Völkel. 2007. Text-Based Modeling. In Proceedings of the
4th International Workshop on Software Language Engineering.

[11] Māris Jukšs, Clark Verbrugge, Maged Elaasar, and Hans Vangheluwe.
2016. Scope in model transformations. Software & Systems Modeling
(2016), 1–26.

[12] Steven Kelly and Juha-Pekka Tolvanen. 2008. Domain-specific model-
ing: enabling full code generation. John Wiley & Sons.

[13] Anneke Kleppe. 2007. A language description is more than a meta-
model. In Fourth International Workshop on Software Language Engi-
neering.

[14] Frédéric Madiot and Marc Paganelli. 2015. Eclipse Sirius Demonstra-
tion. In Proceedings of the MoDELS 2015 Demo and Poster Session.
9–11.

[15] Matt Notowidigdo and Robert C. Miller. 2004. Off-line Sketch Inter-
pretation. In AAAI Fall Symposium on Making Pen-Based Interaction
Intelligent and Natural. 120–126.

[16] Marian Petre. 1995. Why looking isn’t always seeing: Readership skills
and graphical programming. Commun. ACM 38, 6 (1995), 33–44.

[17] Janet M. Six and Ioannis G. Tollis. 1999. Circular Drawings of Bi-
connected Graphs. In Algorithm Engineering and Experimentation.
57–73.

[18] Anthony Sloane, Matthew Roberts, Scott Buckley, and Shaun Mus-
cat. 2014. Monto: A Disintegrated Development Environment. In
Proceedings of the International Conference on Software Language
Engineering. 211–220.

[19] Vasco Sousa and Eugene Syriani. 2015. An Expeditious Approach
to Modeling IDE Interaction Design. In Joint Proceedings of the 3rd
International Workshop on the Globalization Of Modeling Languages
and the 9th International Workshop on Multi-Paradigm Modeling. 52–
61.

[20] Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner
Hansen, Simon Van Mierlo, and Hüseyin Ergin. 2013. AToMPM:
A Web-based Modeling Environment. In Joint Proceedings of MOD-
ELS’13 Invited Talks, Demonstration Session, Poster Session, and ACM
Student Research Competition. 21–25.

[21] Gábor Szárnyas, Benedek Izsó, István Ráth, Dénes Harmath, Gábor
Bergmann, and Dániel Varró. 2014. IncQuery-D: A distributed incre-
mental model query framework in the cloud. In Proceedings of the
International Conference on Model Driven Engineering Languages
and Systems (MoDELS). 653 – 669.

[22] Zoltán Ujhelyi, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth,
Benedek Izsó, István Ráth, Zoltán Szatmári, and Dániel Varró. 2015.
EMF-IncQuery: An integrated development environment for live model
queries. Science of Computer Programming 98, 1 (2015), 80–99.

[23] Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans,
and Hans Vangheluwe. 2016. SCCD: SCXML Extended with Class
Diagrams. In Proceedings of the Workshop on Engineering Interactive
Systems with SCXML. 2:1–2:6.

[24] Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, and Hans
Vangheluwe. 2017. Domain-Specific Modelling for Human-Computer
Interaction. In The Handbook of Formal Methods in Human-Computer
Interaction. 435–463.

[25] Yentl Van Tendeloo. 2015. Foundations of a Multi-Paradigm Mod-
elling Tool. In Proceedings of the ACM Student Research Competition
at MODELS 2015 co-located with the ACM/IEEE 18th International
Conference MODELS 2015. 52 – 57.

[26] Yentl Van Tendeloo and Hans Vangheluwe. 2017. The Modelverse: a
tool for multi-paradigm modelling and simulation. In Proceedings of
the Winter Simulation Conference. (accepted).

[27] Hans Vangheluwe, Juan de Lara, and Pieter J. Mosterman. 2002. An
Introduction to Multi-Paradigm Modelling and Simulation. In Proceed-
ings of the AIS’2002 Conference (AI, Simulation and Planning in High
Autonomy Systems). 9 – 20.

[28] Vadim Zaytsev and Anya Helene Bagge. 2014. Parsing in a broad
sense. In Proceedings of the International Conference on Model Driven
Engineering Languages and Systems (MoDELS). 50 – 67.

	Abstract
	1 Introduction
	2 Motivating Example
	2.1 Causal Block Diagrams
	2.2 Existing Limitations

	3 Explicitly Modelling Concrete Syntax
	3.1 Perceptualization
	3.2 Model Transfer
	3.3 Rendering
	3.4 Altering
	3.5 Recognition
	3.6 Comprehension

	4 Degrees of Flexibility
	4.1 Multiple GUIs
	4.2 Multiple Perceptualization Formats
	4.3 Multiple Perceptualizations
	4.4 Lay-outing
	4.5 Many-to-Many Perceptualization

	5 Evaluation
	5.1 Research Questions
	5.2 Results
	5.3 Threats to Validity

	6 Discussion
	6.1 Performance
	6.2 GUI Interaction
	6.3 Concrete Syntax Definition

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

