
BPMN2BPEL using MoTMoT

Olaf Muliawan, Bart Meyers, Dirk Janssens
Universiteit Antwerpen
Antwerpen, Belgium

{olaf.muliawan, dirk.janssens}@ua.ac.be, bart.meyers@student.ua.ac.be

June 29, 2009

Abstract

The case of transforming BPMN to BPEL (and back) presents some
interesting challenges. Due to the lack of a meta-model for both for-
malisms, we have implemented our own using MDR. Despite the limited
timeframe we were able to implement structured and quasi-structured pro-
cess models quite rapidly. The structure of the patterns to be converted is
very suitable for graph transformation techniques, in our case MoTMoT,
based on Story Driven Modeling (SDM). Furthermore, on the one hand,
the emphasis on specific transformation guidelines provides a basis for
graph transformations with control flows. On the other hand, the differ-
ent rules presented by the folding algorithm (transform sequence pattern,
transform while pattern, ...) are best scheduled non-deterministically.
Knowing this, modeling such a transformation elegantly turns out to be
quite complex: new language features are useful to successfully model this
in SDM. We explain how we use higher order transformations (HOTs) to
translate these new language features into original SDM constructs in a
platform independent manner.

1 Introduction
The context of this paper is a tool contest of the GraBaTs 2009 workshop. The
main goal within this contest is to showcase a graph-based transformation tool
using a common reference case study: a transformation from BPMN to BPEL.

1.1 The case study
BPMN and BPEL are two industrial-standard formalisms to represent business
processes. The two standards are complementary to each other, while at the
same time sharing many characteristics. For this reason the proposed case
is very interesting and relevant to the industry: providing BPMN to BPEL
transformations [1]. However Chun et al. highlighted the problems of mapping
BPMN to BPEL [4].

1

Providing round-trip engineering of BPMN and BPEL remains a challenge,
even more so in the light of maintaining human readable code. Especially in
the case of BPEL the generated code can be challenging to browse through and
comprehend. This is due to the fundamental difference in notation: BPMN is
modeled in acyclic graph patterns, while BPEL has operational semantics. For
this reason we limit ourselves to (quasi-)structured BPMN models for which an
exact mapping to BPEL is available, we elaborate more on this in Section 2.

1.2 The transformation tool
We chose MoTMoT [5] as transformation tool. This is a tool that transforms
UML models of controlled graph transformations into executable Java code that
conforms to the Java Metadata Interface (JMI), an API standard for accessing
model repositories. It has been designed to illustrate how several model trans-
formation problems of the Fujaba CITE tool can be solved.

1. MoTMoT is based on a UML compliant implementation of Story Dia-
grams. Story Diagrams support all constructs that have emerged from
decades of research in controlled graph transformation. Therefore, MoT-
MoT’s language may be considered to be expressive. Moreover, the UML
1.5 profile based implementation of this language enables industrial soft-
ware engineers to specify graph transformations in their modeling tool of
preference. Due to the maturity of industrial UML tools, features such
as transformation views are available without any investment from the
MoTMoT developers;

2. MoTMoT can be applied on OMG’s MDA compliant inputs. On the one
hand, models residing in a MOF repository can be transformed directly.
On the other hand, file integration is supported by relying on the XMI
standard;

3. MoTMoT is extensible. New language features can be added without
investing time into modifications of the MoTMoT core. This has been
shown with the implementation of features such as negative application
conditions and non-determistic scheduling of rules (see Section 3).

For the purpose of this case study MoTMoT is going to be an asset in developing:

1. A standard mechanism of developing meta-models, conforming to MOF,
stored in XMI and parsed by MDR. The developer can set up meta-models
using UML drawing tools: each meta-model conforms to the JMI-MOF
UML profile. Automatic generation of JMI interfaces is possible through
MDR. This means the development of the case study is not dependent
on a fixed meta-model: any adjustments in the meta-model are easily
implemented. So, the approach of incremental development is possible
through frequent updates and expansions of the meta-model until the
final stage when the meta-model is fully constructed.

2

2. A flexible control flow mechanism that enables the transformation of dif-
ferent sorts of subpatterns to advance in a staged manner. A fine-grained
control flow is possible using new language features, explained in Subsec-
tion 3.

We give an overview of the case study in Section 2. Section 3 will explain the
relevance and application of higher order transformations within this case study.
In Section 4, details on the implementation are provided. Finally, we finish with
a conclusion in Section 5.

2 Case study overview
The case presents BPMN to BPEL transformations. The two formalisms do not
have MOF-compliant meta-models. BPMN does not even have a formal XML
Schema specification. While BPEL has such a schema, a MOF meta-model is
lacking. We have based our meta-models on the case study description. These
are the highlights regarding the implementation of our case in MoTMoT:

• The use of platform-independent language extensions. To implement the
case study we need new language features. These language features are
not implemented in MoTMoT itself, but are implemented as so-called
higher order transformations (HOTs). HOTs can translate instances of
these features into core MoTMoT elements;

• We implemented the folding algorithm as accurately as possible. This en-
abled us to support both structured and quasi-structured BPMN models.
To transform acyclic graph BPMN models an intermediate formal rep-
resentation is necessary to ensure soundness and safeness. Due to time
constraints we do not support acyclic graph structures. In our implemen-
tation, we assume that all the input models are sound and safe. However,
we can easily derive formal Petrinets from BPMN models to derive sound-
ness and safeness properties;

• Flexible meta-model development: extra BPMN elements are easily in-
serted during development of the transformation;

• We managed to follow an incremental development approach. This is
possible because the different BPMN structures can be seen as rules that
can be added independently of each other;

• Because the transformation model is UML compliant, we were able to use
the versatile award-winning NoMagic MagicDraw as editing tool.

3 Higher order transformations
MoTMoT reads in a MOF-compliant model in XMI format into MDR. Within
MDR the model is manipulated and in this case the transformation from BPMN
to BPEL is performed. The model is then exported in XMI format.

3

HOTs can be used to implement new language features into a transforma-
tion language. In this case, HOTs take a transformation model conforming to
the extended transformation language as input model, and transform it to a
transformation model conforming to the core language, while preserving the
semantics. This is possible if the metamodel of the transformation model is
available. This is the case for the language of MoTMoT, as it is defined as a
UML profile. The HOT transforms instances of new language features to their
equivalent representation using only core elements.

In previous case studies, we already identified the usefulness of following
features and implemented them as HOTs [3]:

• Negative application conditions (NACs): There are patterns where we
explicitly look for the absence of an element or a subpattern within a
particular subgraph. The use of NACs provides the answer: matching
the pattern including the elements flagged for a NAC results in a negative
match. Positive matches whereupon the check of the flagged elements fails
are passed through;

• Non-deterministic scheduling of graph transformation rules: There are
times when the use of a strict imperative control flow is cumbersome and
constraining. This is often the case where rules are equivalent to each
other and the order of execution is not relevant. Non-deterministic rule
scheduling enables us to model a more clear and concise transformation
for this case study. We elaborate more on this in the next Section.

4 Implementation of the case study

4.1 Overview
The BPMN and BPEL models are provided in XML format. However, MoTMoT
cannot parse these models immediately. For this reason we have to introduce
translations into a representation of these models in MDR.

When outlining the transformation implementing this case study, these steps
are followed:

• Input translation: For the BPMN model as input, we provided a transla-
tion from XML into a MOF-compliant model in XMI. We have parsed the
XML through a DOM parser and using analysis of the XML tree generated
the corresponding elements in MOF format;

• The MoTMoT transformation from BPMN to BPEL is performed;

• Output translation: Generation of the XML code is done through the use
of a DOM parser and an XML writer in BPEL format.

4

well-structured 2 BPEL

{motmot.transprimitiveND=SEQUENCE, FLOW, SWITCH, WHILE, REPEAT, REPEATWHILE}

quasi-structured 2 well-structured

{motmot.transprimitiveND=quasi FLOW in, quasi FLOW out, quasi SWITCH}

create BPEL container

{motmot.transprimitive=createcontainer}

transform trivial BPD

{motmot.transprimitive=trivial2BPEL}

<<link>>

reconstruct BPEL structure
BPMN was not
well-structured!

<<failure>>

<<success>>

<<nextPriority>>

Figure 1: BPMN2BPEL flow

4.2 Meta-models for BPMN and BPEL
We extend the meta-models of BPMN and BPEL for two reasons:

• We introduced an additional meta-element in the BPMN meta-model,
called CompositeTask, which inherits from Task. A CompositeTask repre-
sents a folded subgraph and can be used in subsequent foldings by other
patterns;

• We introduced a mechanism for traceability. All used meta-elements in-
herit from a class called GenericNode which has traceability links to other
GenericNodes. This means that traceability links between the BPMN
elements and their corresponding BPEL representation are possible.

4.3 Main flow
In MoTMoT, Story Driven Modeling (SDM) implements graph transformations
in an imperative control flow [2]. The following steps can be identified in the
MoTMoT transformation (see Figure 1):

1. The first step is the creation of the BPEL container. This container will
be the top node of the BPEL tree;

5

2. The next step is the application of the different patterns in the folding
algorithm for well-structured and quasi-structured BPMN models:

(a) On the one hand, the 6 well-structured BPMN patterns to BPEL are
considered. There is no particular order in these rules. Consequently,
scheduling them explicitly would be a case of overspecification. This
would clutter the transformation flow. In other words, they should
be scheduled non-deterministically. What we want to model is the
following: “Keep evaluating these patterns until none of them match
anymore”. Note that when using the folding algorithm, for exam-
ple, at some point the sequence pattern might mismatch, but after
matching the flow pattern the sequence pattern might match once
again for the folded graph. Therefore these rules are best scheduled
non-deter-ministically. Note that sequence, flow and switch are links
to control flows where each has a different set of rules to match. On
the other hand while, repeatwhile and repeat ;

(b) The quasi-structured BPMN patterns are also scheduled non-deter-
ministically, but they have a lower priority than the previous 6 pat-
terns. This is denoted by the <<nextPriority>> transition. This
means that a quasi-structured pattern can only be evaluated if all
well-structured patterns fail to match. Consequently, for example, if
a quasi-switch pattern matches, the next pattern that matches will
be a switch well-structured pattern;

3. In the third step we transform BPMN containing only a trivial BPD. How-
ever, if the algorithm was not able to completely fold the BPMN model,
this pattern will fail. Using such a condition highlights the usefulness of
explicit rule scheduling support;

4. In the last step, the BPEL tree is reconstructed from the different pattern
applications in the algorithm. Reconstruction is done using the traceabil-
ity links created during the folding algorithm.

4.4 A pattern
The control flow determines which graph transformation patterns are matched.
Each of these patterns is called a story pattern in SDM. We highlight one of
these story patterns, more specifically in the case of creating sequence BPEL
elements. We summarize the creation of sequence in Figure 2:

1. We try to fold a series of BPMN tasks into a single composite task. All
tasks which form a series between two non-task elements are part of a
single BPEL sequence. The matching algorithm is incremental: a sequence
appends an activity one by one until no matches are found. In step 1,
in Figure 2, ct1 and t2 match the sequence pattern. It turns out that
ct1 is a pre-existing CompositeTask with a sequence attached through a

6

1 ct
1

t
2in out

sequence

a
1

a
n

...

BPMN

BPEL

2 ct
1

t
2

BPMN

ct

3

sequence

a
1

a
n

...

BPMN

BPEL

a
t2

in out

ct
1

t
2

ct

in out

Figure 2: Overview of sequence transformation flow

traceability link (these links are denoted by dashed lines). As opposed to
ct1, t2 is not attached to any BPEL construct with a traceability link;

2. The actual folding is done by creating a new CompositeTask ct and reas-
signing the incoming and outgoing BPMN SequenceFlows.;

3. In this step we create a new BPEL SimpleActivity representing t2. Because
in this case there already was an existing sequence, the new element is
added to it. Traceability links are created between t2 and at2. This is
important for reconstructing the BPEL structure: after all, t2 might also
be a CompositeTask representing another BPEL construct such as flow,
....

7

<<bound>>

ct

{motmot.metatype=CompositeTask}

<<NAC>>

outgoingLink

{motmot.metatype=ControlLink}

<<bound>>

container

{motmot.metatype=BPELContainer}

an

{motmot.metatype=SimpleActivity}

<<create>>

at2

{motmot.metatype=SimpleActivity}

-name : String = at.getName()

<<create>>

newLink

{motmot.metatype=ControlLink}

sequence

{motmot.metatype=Sequence}

-name : String = ct.getName()

<<bound>>

ct1

{motmot.metatype=Task}

<<bound>>

t2

{motmot.metatype=Task}

<<create>>

-container

1

<<create>>

-parent

1

<<create>>

-target

1

-outgoingCl*

<<create>>

* -src

<<create>>

* -src

<<destroy>>

*-src

<<create>>

-container

1

<<create>>

-source

1

-parent1

Figure 3: Attaching a new activity to a BPEL sequence in SDM

The MoTMoT implementation of step 3 is shown in Figure 3. The Figure
shows the formal abstract syntax of the story pattern (as opposed to the concrete
synta in Figure 2). We made use of a NAC to match the last node of the
sequence (the SimpleActivity called an). The last node is the node with no
outgoing ControlLinks. Just like non-determinism, NACs are also implemented
using HOTs. While non-determinism is used at the control flow level (activity
diagrams), NACs are used at the story pattern level (class diagrams).

5 Conclusion
We explored the implementation of the BPMN2BPEL case using Higher Order
Transformations. This technique enabled us to conceptually envision the trans-
formation of the different BPMN elements in a declarative manner. Using the
MDR framework, we followed incremental development stages to model the case
study.

First, it was very easy to implement a designated traceability mechanism
using MoTMoT for this case study. The meta-model design using MOF is
quite flexible and extending the original BPMN and BPEL meta-models to
support traceability was easy. The same is true for the CompositeTask meta-

8

element. Second, combining non-deterministic rule scheduling with the standard
imperative paradigm of SDM we implemented hybrid rule scheduling in SDM.
Language features for non-deterministic rule scheduling and NACs turned out
to be very useful in this case study. We managed to create concise and clear
transformation models.

As future work, the following language features were identified as useful for
our transformation, but have not been implemented yet:

• OR feature: At the moment MoTMoT demands exact typing on objects.
However, sometimes story patterns are valid for a number of different
types. The OR feature would find patterns which match for any of the
types mentioned, and no longer be limited to one exact type. This prevents
duplication of patterns and allows for a more flexible matching mechanism.

• Multi-objects: In a matched pattern, every possible match of the multi-
object is matched separately and side effects are executed each time [6].

• Expanded closure: At the moment MoTMoT supports closure of elements
through associations. For example, a class can follow inheritance links to
its children subclasses, subsubclasses, etc. However, this closure is quite
limited in scope. An expanded closure would keep identifying identical
subpatterns until no other match is found. This is for example useful to
identify the subpattern representing two tasks in a sequence. The closure
would then continue to match until a non-task element is discovered. In
this manner a full sequence of tasks can be identified.

References
[1] Marlon Dumas. Case study: Bpmn to bpel model transformation, April

2009.

[2] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story Diagrams: A New
Graph RewriteLanguage Based on the Unified Modeling Language and Java.
In Proceedings of the 6th International Workshop on Theory and Application
of Graph Transformation (TAGT) , volume 1764 of LNCS, pages 296–309.
Springer Verlag, November 1998.

[3] Bart Meyers and Pieter Van Gorp. Towards a hybrid transformation lan-
guage: Implicit and explicit rule scheduling in story diagrams. In Sixth
International Fujaba Days (FDÕ08), 9 2008.

[4] Chun Ouyang, Marlon Dumas, Stephan Breutel, and Arthur H. M. ter Hofst-
ede. Translating standard process models to bpel. In Eric Dubois and Klaus
Pohl, editors, CAiSE, volume 4001 of Lecture Notes in Computer Science,
pages 417–432. Springer, 2006.

9

[5] Hans Schippers, Pieter Van Gorp, and Dirk Janssens. Leveraging UML pro-
files to generate plugins from visual model transformations. Software Evolu-
tion through Transformations (SETra). Satellite of the 2nd Intl. Conference
on Graph Transformation, 127(3):5–16, 2004.

[6] A. Zündorf. Rigorous object oriented software development. Habilitation
Thesis, University of Paderborn, 2001.

10

