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ABSTRACT
Design-Space Exploration (DSE) looks for a suitable candidate solution to a problem, with respect to a set
of criteria, by searching through a space of possible solution designs. Domain-Specific Modelling (DSM)
allows language engineers to create Domain-Specific Languages (DSLs) for a particular domain, allowing
non-technical domain experts to use the DSL to model a system, analyse, optimise or transform the model,
generate code or documentation, etc. This paper presents a framework to enable DSE for DSM, so that
non-technical domain experts can define DSE input using DSL syntax, and obtain DSL instances as a result
of execution the DSE. The contribution of our framework is twofold: (1) automatic generation of a family
of related DSLs (to describe structural constraints as well as constraints on simulation results) for modelling
a DSE problem at the DSL level from a given DSL definition, and (2) generic support for executing a DSE
algorithm, which searches the design space and generates suitable DSL instances. The framework can be
applied to any explicitly defined DSL with an explicitly defined semantic domain. We evaluate this claim
by applying our framework to a user-defined Simulink library. The approach is explained using a DSL for
modelling electronic filters.

Keywords: Design-Space Exploration, Domain-Specific Modelling

1 INTRODUCTION
Design-Space Exploration (DSE) and optimization look for a suitable candidate solution, with respect to a
set of quality criteria, by searching through a design space. Different approaches to design-space exploration
are currently in common use in different engineering disciplines. Examples include mathematical optimiza-
tion techniques such as Mixed Integer Linear Programming (Zeng and Natale 2010), Constraint-Satisfaction
techniques (Sen, Baudry, and Vangheluwe 2010, Jackson, Kang, Dahlweid, Seifert, and Santen 2010) and
Search-Based Optimization techniques (Burton, Paige, Rose, Kolovos, Poulding, and Smith 2012, Williams,
Poulding, Rose, Paige, and Polack 2011). These techniques require complex constraints, algorithms, goal-
functions, search methods, etc. as input.

Model-Driven Engineering (MDE) (Schmidt 2006) uses abstraction to bridge the cognitive gap between the
problem space and the solution space in complex system problems in general and in software engineering
problems in particular. To bridge this gap, MDE uses models to describe complex systems at multiple levels
of abstraction, using appropriate modelling formalisms. Model transformations (Sendall and Kozaczynski
2003) can be defined to translate models, optimise or analyse them, keep models consistent, generate code
or documentation, etc. In MDE, Domain-Specific Modelling (DSM) (Kelly and Tolvanen 2008) allows a
language engineer to create their own Domain-Specific Modelling Languages (DSLs) according to the needs
of domain experts, who often lack programming skills. Such a DSL represents the set of valid instance
models, i.e., the design space, of its domain. A DSL allows non-technical domain experts to precisely
express systems in their domain, which can be optimised, analysed, used for code generation, etc.
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Figure 1: Overview of the two automated steps of the approach, represented as arrows.

Because DSLs represent a design space, a natural step is to search this design space according to some
given quality criteria. The goal is, from a given set of domain-specific concepts as specified in the DSL, to
generate a model that is deemed suitable according to the DSE input (i.e., constraints, goal function, etc.).
Following the principles of DSM, domain experts should be able to express the necessary DSE input (i.e.,
constraints) in a domain-specific way, such that DSE becomes part of the tool kit of non-technical users.
This paper presents a generic framework that provides DSM with DSE support. The contribution of this
paper is twofold, as illustrated in Figure 1:

• we provide a means to automatically derive a set of DSLs from a given DSL, which can be used to
model all constraints to a DSE problem for that DSL. This includes static or structural constraints,
as well as constraints on the behaviour, i.e., simulation results of the model candidates;

• we provide an automatic mapping to and from a DSE backbone, so that suitable instance models can
be generated.

We first explain our generic approach using a running example of a DSL for modelling electronic filters
(called EF), for which we will try to automatically find models that are low-pass filters. Our framework
is applicable to any DSL that is explicitly defined, and has an explicitly defined semantic domain. We
illustrate the validity of this claim by applying the framework to Simulink. In this paper, we provide an
elegant solution for the subclass of DSLs that have a simulation trace as semantic domain (in our example,
a Bode magnitude plot).

2 RUNNING EXAMPLE
A DSL is defined by a language engineer, and describes the set of valid instance models, i.e., the design
space, of its domain. A DSL definition consists of an abstract syntax model (representing the structure of its
instance models, in the form of a metamodel), concrete syntax model (representing the visual representation
of the instance models, in the form of a concrete syntax model), and model of the semantics or semantic
mapping (representing a translation to a well-known semantic domain, analogous to a compiler, in the form
of a model transformation).

2.1 Electronic Filters
The running example is a visual DSL called EF, representing an electronic filter composed of resistors, in-
ductors and capacitors. An example is shown in Figure 2 on the left. The surrounding rountangle represents
the filter, and has three ports located left (the input port), right (the output port) and bottom (the mass port).
The filter connects the input port to the output port and mass port through a topology of resistors, capacitors
and inductors. It is assumed that the input connects an electric source to the system, but it may as well be an
output signal of an entire circuit. The mass port leads directly to a ground. The filter behaviour is measured
by inspecting the potential difference at the output port and mass port.

The goal of EF is to model filters, intended to diminish or enhance certain frequencies from a signal. To
inspect the filter behaviour of a given filter topology, a Bode magnitude plot shows the gain (in decibels) of
each frequency (in Hertz), measured between the output port and mass port. The Bode magnitude plot of
the example is shown on the right of Figure 2. It shows how the example filter filters frequencies around
500 Hz. For our DSL, the Bode magnitude plot is the semantic domain.
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Figure 2: Instance of EF (left) and the Bode magnitude plot (right).
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Figure 3: Metamodel of EF (left), and of its semantic domain BodeMag using the Plot template (right).

2.2 The EF DSL definition
The abstract syntax of EF is modelled as a metamodel consisting of classes, associations, attributes and
inheritance links, as shown in Figure 3 on the left. A Filter can have multiple Components, which can be a
Resistor (with value attribute for its resistance in ohm), Capacitor (with value attribute for its capacitance
in farad) or Inductor (with value attribute for its inductance in henry). The Component class cannot be
instantiated as it is an abstract class, denoted by italic font. A filter has exactly one InputPort, OutputPort,
MassPort. Only one Component can be connected to an InputPort and OutputPort, but more than one
Components can be connected to the mass. The instance model of Figure 2 is a valid EF instance as it
conforms to the metamodel.

The concrete syntax is modelled as a concrete syntax model, in which an icon or link type is defined for each
language construct in the metamodel. The concrete syntax model is not shown due to space constraints. As
previously stated, and as can be seen in the instance model of Figure 2, a Filter is displayed as a rountangle.
Resistors, Capacitors and Inductors are displayed using the ANSI standard notation, and their value is
displayed above. Ports are displayed as boxes with an associated letter inside. compLink instances are
displayed as lines, with a “-” on one side, and a “+” on the other side, to denote direction of the electric flow.
inputLink, outputLink and massLink instances are plain lines. components, input, output and mass instances
are based on the position of icons: if a Component is inside a Filter, it is part of the Filter components.
Similarly, an InputPort, OutputPort, MassPort is connected to a Filter if it is on the edge of the filter icon.
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Figure 4: The conceptual filter and transformation phases of the DSE process.

As previously stated, the semantics of EF is a mapping to a Bode magnitude plot. The language of Bode
magnitude plots can also be considered a DSL, called BodeMag, with its own abstract syntax, concrete
syntax and semantics. In this case, we consider the semantics irrelevant, as we are interested in displaying
instances of BodeMag. As plotting is a quite common semantic domain, we define BodeMag by inheriting
from the Plot template, which includes visualisations on several platforms. The abstract syntax of BodeMag,
including the Plot template, is shown in Figure 3 on the right. The Plot template is a generic metamodel for
representing plots. It consists of a Figure (with a filename) that can have multiple abstract Plots (with their
plot parameters defined), that in turn has multiple plot Points with x and y values. The domain-specific part
of the BodeMag metamodel is shaded, and only includes a Plot subclass BodeMagnitudePlot that predefines
the plot parameters, and a Point subclass MagnitudePlotPoint. The concrete syntax of BodeMag is its plot
representation, which is defined for the Plot template for reusability. An instance of BodeMag can be seen
in Figure 2 on the right, which displays all points on the plot and uses interpolation to form a line. The
Plot template supports a data file representation for storing the exact data points. Theoretically, the semantic
mapping is a transformation that transforms an instance of the EF DSL to an instance of the BodeMag DSL,
as shown in Figure 2. In practice, the mapping is realised by transforming the EF instance to a SPICE net
list, and running SPICE (Meares and Hymowitz 1988). This yields a file containing (frequency, magnitude)
pairs which can be easily transformed to a BodeMag instance.

This description of EF can be seen as a typical way of using DSM, and serves as the starting point of
our approach. Specifically, our approach is applicable to any DSL definition with an explicitly modelled
semantic domain. Note that it is not mandatory to use the Plot template in the semantic domain of a DSL.
However, additional support for the Plot template is provided by our approach.

The running example is modelled in AToMPM (Syriani, Vangheluwe, Mannadiar, Hansen, Mierlo, and
Ergin 2013), a tool that supports DSM, i.e., metamodelling and model transformation. AToMPM can be
considered a generic DSM tool, and we intend our approach to be applicable for other DSM tools as well.

3 APPROACH
In this section, the framework is explained. First, we show how the framework is used for the running
example. This involves the use of a family of derived DSLs for modelling DSE constraints, and executing
the DSE to obtain suitable models. Next, we explain how this family of derived DSLs can be generated (left
part of Figure 1). Finally, we explain how a DSE tool is plugged into our framework, and how it can be used
(right part of Figure 1).

3.1 Design-Space Exploration in Domain-Specific Modelling
The goal is to use DSE to generate “suitable” instance models of EF. These are models that are (a) valid
and useful filter models, and (b) are a low-pass filter. The DSL definition itself, more specifically the DSL
metamodel, represents the set of valid models, so in principle instances can be generated. Typically, the set of
valid models that conform to the metamodel is infinite. However, since we use SAT (Boolean satisfiability)
as DSE method, the design space needs to be bounded, i.e., finite. This subsection explains the DSE process,
as shown in Figure 4.
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Figure 5: A bounding model in EFBnd (left), three static constraints in DSLSC (centre), and a behavioural
constraints model in DSLBC (right).

Bounding model. Specifying the boundaries of the design space is the first step, in order to apply the
bounding phase as shown in Figure 4. Our approach allows users to specify a maximum number of instances
for each class in the DSL’s metamodel. For EF, a bounding model is shown in Figure 5 on the left, specified
in the bounding DSL EFBnd which will be defined in Section 3.2. For each class in the metamodel, the
bounding model has exactly one instance, that states what the minimum and maximum number of instances
of that class can be (stated in the icon’s top left corner). In this example, we are looking for models of
a single filter, with zero to three components, of which at least one resistor. Note the generic component
representation, which is an abstract class in the metamodel. Furthermore, a list of possible values must be
assigned to attribute value. In this case, we assume that we can make use of resistors of 10 Ω and 100 Ω,
capacitors of 3 µF, 33 µF or 330 µF, and inductors of 30 mH or 320 mH.

Note that these bounding constraints could have been created using a programming language or a constraint
language such as OCL. Writing such constraints often requires good knowledge of programming or logic,
which contradicts the intent of DSM. In contrast, note how in our framework the bounding model reuses
the DSL syntax. This is key to our approach, as this allows non-technical domain experts to create such a
bounding model.

Now, it is technically possible to generate all possible instances using DSE, as the design space is finite.
Then, the semantic mapping to SPICE can be executed and the results plotted for each generated instance,
and a domain expert can select suitable models based on the plots. However, the number of instances grows
quickly due to combinatorial explosion, so this typically leads to an infeasibly long total execution time of
the semantic mapping and evaluation effort by the domain expert. During execution of the DSE process,
our framework allows the domain expert to inspect how many DSL instances have been generated, and how
many still have to be transformed to the semantic domain (a process that takes significantly longer than
generating instances using DSE). Based on this, the domain expert can choose to abort the process and
decide that more constraints should be defined. As shown in Figure 4, the design space remains implicit
until static constraints are defined, which is the next step.

Static constraints model. Our framework allows the user to further constrain the design space using static
(i.e., structural) constraints as shown in Figure 4. Structural constraints specify constraints on the structure of
the models, i.e., how they should and should not be connected, that are more elaborate than the constraints
imposed by the metamodel. The DSE process is typically executed (i.e., the instances become explicitly
generated) after static constraints are defined. In our example, we look for static constraints that make sure
only sensible filter models are valid:

• there should be no loops in the filter;
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• if the outgoing signal of a component is connected to the output port, then the outgoing signal of the
component cannot be connected to a component that is also connected to an input port;

• there should be no “dangling components”: the output signal of a component should be connected,
i.e., to another component, the output port or the mass port;

• analogously, the input signal of a component should be connected, i.e., to another component or the
input port;

• a component cannot be connected to the mass port and the output port, as this will result in a potential
difference of 0;

• a capacitor cannot be directly connected to the output port.
The first static constraint is shown at the top left of the three static constraints in the centre Figure 5, and is
an instance of the static constraints DSL EFSC which will be defined in Section 3.2. A constraint contains
a pattern describing what should be or should not be matched in the model. In this case, the pattern is a
NACPattern (negative application condition) meaning that a well-formed model should not contain a pattern
instance. In particular, no component should be transitively (annotated with “*”) connected to itself, mean-
ing there should be no loops. Note how, once again, the familiar DSL syntax is used, enhanced with some
new language constructs. The second constraint is shown at the top right of the three static constraints of
Figure 5. It contains a pattern that should occur in the model for each pair of components (annotated with
the “∀” symbol at the component icons) that is connected to an output port, respectively an input port: they
should not be connected. Note that this pattern can be expressed, maybe more intuitively, as a NACPattern.
The third constraint is shown at the bottom centre of Figure 5. It contains a pattern that should occur in the
model for each component: it must be connected to another component, or to the output port, or to the mass
port.

Such static constraints dramatically decrease the design space. Taking the static constraints into account, it
should be feasible to generate all possible instances, simulate them and plot the results, and let a domain
expert select which plots (and consequently which model) he or she prefers. Nevertheless, our framework
supports behavioural constraints that enable automation of this selection process.

Behavioural constraints model. The final constraint we need to specify, is that we intend to find low-pass
filters. This constraint will be specified as a behavioural constraint. Behavioural constraints are constraints
that are not specified on the model structure, but on the model behaviour. In DSM, this behaviour is captured
by the semantic mapping to a semantic domain. Hence, behavioural constraints are specified on the semantic
mapping, as shown in Figure 4. This means that in our framework, evaluating behavioural constraints
requires the model to be explicitly generated. The semantic mapping will be applied to each generated
model and the behavioural constraints will be checked. Note that all models can be processed in parallel.

The general approach of our framework allows the user to specify behavioural constraints in a similar way
as static constraints. For the EF DSL, one is able to specify a pattern that states that each Point with x value
between 1 and 100 should have a y value between -0.2 and 0, and so on. In case the semantic domain derives
from the Plot template however, the framework allows the domain expert to re-use the specific concrete
syntax of the Plot template as shown in Figure 5 on the right. This model is an instance of EFBC, which
will be defined in Section 3.2. The “low-pass filter” constraint is specified on a plot, by adding rectangular
regions that denote the valid regions for the plot. In particular, three rectangular regions are specified, that
cover the entire frequency domain. For each region, the exact boundaries are displayed on top. Again,
notice the intentional syntactic similarity to the plot in Figure 2. The behavioural constraints present the
final filtering phase on the design space. All models that are found, are indeed low-pass filters. Note that the
example of Figure 2 is not a low-pass filter according to the behavioural constraints presented here.

EF experiment. In our experiment for finding a low-pass filter, we found 2198 instances after applying
the bounding constraints and static constraints. Out of these 2198 instances, 63 were valid low-pass filters
according to the behavioural constraint of Figure 5.
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Figure 6: Generated metamodels of the family of DSLs: EFBnd (left), EFSC (bottom), and EFBC (top).

3.2 Language Generation
In this subsection it is explained how the three constraint DSLs are generated automatically from a given
DSL definition, as introduced by the left part of Figure 1. Abstract syntax, concrete syntax and semantics
must be generated for each DSL. Abstract and concrete syntax will be explained in this subsection whereas
semantics, in the form of a semantic mapping to a DSE backbone, will be explained in the next subsection.
The language generation approach is based on the ProMoBox approach (Meyers, Deshayes, Lucio, Syriani,
Vangheluwe, and Wimmer 2014, Meyers, Wimmer, Vangheluwe, and Denil 2013, Deshayes, Meyers, Mens,
and Vangheluwe 2014), a framework for generating property languages from a given DSL definition.

For the running example, the metamodel of each derived DSL is shown in Figure 6. The generated meta-
model of each derived DSL consists of a DSL-independent template (the unshaded constructs), and DSL-
dependent constructs (shaded) that have been changed. Because metamodels and concrete syntax models
are models too, the generation is implemented as a model transformation in our framework. The remainder
of this section presents the details of the generation process.

Bounding Language (DSLBnd). The following steps describe the automatic generation of the DSLBnd
1

metamodel, starting from a copy of the given DSL metamodel (Figure 3 on the left):
1. all classes subclass a new abstract BoundedElement class, that has min_instances and max_instances

attributes;
2. all abstract classes become concrete;
3. all classes become singletons;
4. all associations are removed;
5. all attribute values with a type that represents an infinite domain (e.g., float, string, but not Boolean)

become lists.
1With DSLBnd we refer to the bounding DSL for an unspecified given DSL; EFBnd is one example of a DSLBnd
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Using these steps, the EFBnd metamodel (top left of Figure 6) is generated from the EF metamodel (left of
Figure 3).

The concrete syntax of EFBnd is generated by augmenting the representation of attribute values with a
green field to denote the min_instances and max_instances values. Note how the bounding model shown in
Figure 5 is an instance of EFBnd .

Structural Constraint Language (DSLSC). To automatically generate the DSLSC metamodel, starting from
a copy of the given DSL metamodel, these steps must be followed:

1. all abstract classes become concrete. This allows e.g., Component to be used in a constraint;
2. all lower multiplicities of associations become 0. This allows for partial patterns;
3. all attribute types become conditions, i.e., expressions returning true or false;
4. all transitions are enriched with a NAC (which should be set to true if a transition should not occur)

and transitive Boolean attribute;
5. the SCTemplate is added. This template consists of a number of pattern types that can be nested,

and that can contain elements;
6. all DSL classes become subclasses of ConstraintElement.

Applying these steps to the EF metamodel (left of Figure 3) results in the EFSC metamodel (bottom of
Figure 6).

Similar to the DSLBnd , concrete syntax is altered so that icons for patterns are added, and a visualisation of
NAC (“NOT” annotation for links and a cross for objects), transitive (by a “*” annotation) and a quantifier
(by a “∀” or “∃” annotation) is added. Note how the model shown in Figure 5 on the left is an instance of
EFSC.

Behavioural Constraint Language (DSLBC). As stated before, we leverage the use of the Plot template for
defining the DSLBC. Our framework has a dedicated BCPlotTemplate for the Plot template, which replaces
the Plot template in the DSLBC metamodel. The BCPlotTemplate includes a Shape class representing con-
straints on the Plot, which can be Rectangle or Line. Replacing the template of the BodeMag metamodel
(right of Figure 3) results in the EFBC metamodel (top right of Figure 6).

It is important to note that a language engineer can develop its own templates for the derived DSLs, effec-
tively changing the expressiveness of newly generated languages. A hard condition for developing custom
templates is that they can be mapped to the DSE backbone, which is explained in the next section.

3.3 Generic DSE Backbone
The complete transformation chain for executing DSE for the EF case is shown in Figure 7. This represents
the process for the domain expert (right of Figure 1). Shaded artefacts are manually created, unshaded are
provided by the framework or by another tool. The EF metamodel and semantic mapping must be created
by the language engineer (annotated with “LE”), as explained in Section 2. While the languages DSLBnd ,
DSLSC and DSLBC are generated automatically (see Section 3.2), instances of DSLBnd , DSLSC and DSLBC are
created by the domain expert (annotated with “DE”). Our approach maximises automation, as the remainder
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1 one sig Filter { input : one InputPort, components : set Component, output : one OutputPort, mass : one MassPort }
2 some abstract sig Resistor extends Component {}
3 ...
4 fact srcMult_input { all tgt : InputPort | one src : Filter { tgt in src.input } }
5 ...
6 sig Resistor_10_, Resistor_100_extends Resistor {}
7 sig Capacitor_3_, Capacitor_33_, Capacitor_330_extends Capacitor {}
8 sig Inductor_30_, Inductor_320_extends Inductor {}
9 fact nACPattern153 { all component152 : Component { component152 !in component152.̂ compLink } }

10 fact atomicPattern195 { all component199 : Component | all component198 : Component {
11 (component198 != component199) && (one inputPort203 : InputPort | one outputPort201 : OutputPort {
12 ((component198 in outputPort201.outputLink) && (component199 in inputPort203.inputLink))
13 } ) => (component199 !in component198.compLink) } }
14 ...
15 run {} for 3 Component, 4 Capacitor, 4 Inductor, 4 Resistor

Listing 1: The generated Alloy model for the EF example.

of the process is automatic. Also, all artefacts that need to be created are at the most appropriate level of
abstraction.

We use Alloy (Jackson, Schechter, and Shlyakhter 2000) as a DSE backbone, a model finder (Alloy Analyzer
in Figure 7) based on SAT. Alloy is suitable for our approach, as it can be used to generate structures that
satisfy the constraints specified in the Alloy model. It implements a relational logic, inspired by Z and mod-
elling languages. To use Alloy as DSE backbone, we implemented two transformations: AToMPM2Alloy
and Alloy2AToMPM.

AToMPM2Alloy. AToMPM2Alloy is a transformation from metamodel, DSLBnd model and DSLSC model
to an Alloy model. We illustrate AToMPM2Alloy by showing its result for the running example in Listing 1.
The EF metamodel is transformed to signatures (sig constructs) as shown on line 1-2, and attributes and
associations are transformed to relations in the sig body, with the appropriate multiplicity. As shown on
line 4, source multiplicities of associations are transformed to constraints, i.e., (facts). The DSLBnd model
is transformed to (1) multiplicity markings where possible (e.g., one sig on line 1, some sig on line 2), (2)
upper limits in the run statement at line 15, or (3) for attribute value bounds, signatures extending metamodel
class signatures to model instances with each possible attribute value as shown on line 6-8. The DSLSC model
is transformed to fact constructs (line 9-13), which reflect the hierarchical structure of the static constraint.
The first static constraint of Figure 5 is shown on line 9 (notice the transitivity operator ^). The second static
constraint of Figure 5 is shown on line 10-13, which represents a precondition (line 11-12), and the actual
constraint following => on line 13. Although we think Alloy has an intuitive syntax, we feel that it is not
easy for a non-technical expert to use the Alloy language, and that it is preferable to specify constraints in a
language that is familiar to them (i.e., the Static Constraints DSL).

Alloy2AToMPM. The instances that are generated by the Alloy Analyzer are represented as xml-files. These
files contain all information of the Alloy model that represents the metamodel (i.e., which signatures ex-
ist and which relations they contain), which can be easily parsed and transformed back to AToMPM in a
metamodel-generic way. Note that the resulting DSL instance in AToMPM does not contain information
about icon location on the canvas, so all icons will have the same canvas coordinate. Layout algorithms can
assist the domain expert in arranging the icons.

Behavioural constraint checking. As shown in Figure 7, the framework implements a behavioural con-
straint checking transformation that takes the DSLBC model into account. In the general case, i.e., if the
Plot template is not used, behavioural constraint checking is done by checking for matches in the generated
semantic domain model of the patterns that are specified in the DSLBC model. For example, all points in
the BodeMagnitudePlot with x between 1 and 100 must have a y between 0 and -0.2. Pattern matching is a
built-in feature of AToMPM. If the Plot template is used, then the constraints are retrieved from the Rectan-
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Figure 8: The EF in Simulink, with the metamodel as library (left), a filter instance (centre left), the filter
transformed to a full circuit (centre right) and the Bode plot for that circuit (right).

gles and Lines on the Plot. Then, a Python script reads the date from the data files and checks each parsed
point against these constraints.

4 EVALUATION: APPLICATION TO SIMULINK
Our framework is applicable to any DSL that is explicitly defined, and has an explicitly defined semantic
domain. In this section, we illustrate the validity of this claim by applying the framework to Simulink.

Simulink DSL. Similar to our approach in AToMPM, we use a DSL as starting point. In the context of
Simulink, the DSL takes the form of (a) a Simulink library (i.e., the abstract and concrete syntax), and
(b) two simulation scripts to obtain the Bode magnitude plot points from a model using this library (i.e.,
the semantic mapping). Figure 8 shows the custom made Simulink library representing the DSL on the
left. Masks are specified for blocks, to obtain the correct interface (i.e., metamodel attributes) and concrete
syntax. In particular, Component, InputPort, OutputPort and MassPort are created by masking Subsystem
blocks. An instance using this library is shown at the centre left. The semantic mapping involves simulating
this model. In order to do so, it needs to be transformed to a model that includes a source, ground, voltage
centre etc. Transformation can be achieved with a Matlab script using commands add_block(), delete_block
(), add_line(), delete_line(). The result of this transformation (which can be expressed using a Matlab
script) is shown at the centre right. A second simulation script simulates the transformed model, and plots
the results. If a Simulink DSL is specified in this way, DSE support can be automatically generated using our
framework. This includes support for modelling a bounding model, static constraints model, and behavioural
constraints model, and DSE execution support resulting in a set of Simulink models.

Language generation. The library for DSLBnd and DSLSC is generated by our framework, and it turns out
that for the Simulink case, support for the DSLBC can be reused instead of generated. Our approach includes
a generic transformation from Simulink libraries to AToMPM (meta)models called Simulink2AToMPM. The
derived DSLs are generated in AToMPM as explained in Section 3.2 and are transformed back to Simulink
libraries using a generic transformation AToMPM2Simulink. With these generic transformation, no effort
is required from the language engineer to support DSE for any Simulink library. Simulink2AToMPM and
AToMPM2Simulink make use of the Simulink library (e.g., new_system(libname, ’Library’) for creating
a new library), and automatically reads/edits the masks using the Simulink.Mask class, according to Sec-
tion 3.22. The result is shown in Figure 9. Ports have disappeared in the bounding DSL. The added
attributes min_instances and max_instances in the DSLBnd , and NAC and quantifier in the DSLSC are vi-
sualised as block annotations. The top row of the DSLSC represents the generic SCTemplate. The derived
DSLs consist of classes only, as Simulink does not provide support for defining new signals (i.e., associ-
ations) or new connectivity rules. Nevertheless, the nac and transitive attribute for all associations in the
DSLSC are modelled using new blocks (top right) that can be used to annotate line segments. The DSLBC is
generic for all Simulink DSLs that have a semantic mapping to a plot. A DSLBC instance can be specified
by adding rectangles to an empty plot, either by using the command rectangle, or by graphically drawing

2Note that the generation of derived DSLs can be re-implemented for Simulink as a Matlab script, bypassing AToMPM.
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Figure 9: The generated Simulink libraries EFBnd (top left) and DSLSC (top right), and the EFBnd instance
(bottom left), a DSLSC instance (bottom centre), and a DSLBC instance (bottom right).

rectangles on the plot. In the latter case, a coordinate transformation must be executed to find the actual plot
coordinates of the rectangle. An instance model of each of these languages is shown in Figure 9.

5 RELATED WORK
Related work can be found in Search-Based Software Engineering (SBSE) and in Model-Driven DSE. SBSE
solves software engineering problems using Search-Based optimisation (SBO). An example of the use of
models and search can be found in (Kessentini, Wimmer, Sahraoui, and Boukadoum 2010). The authors
search for a model transformation to translate a sequence diagram into a coloured Petri net. Simulated
annealing as well as Particle Swarm Optimizations are used to search in the large design-space of such a
problem. The authors use this experience in (Kessentini, Langer, and Wimmer 2013) to create a framework
for using genetic algorithms with models. A generic encoding metamodel is proposed as well as the use
of model transformations for encoding and decoding the domain specific models. Another approach is
proposed in (Burton, Paige, Rose, Kolovos, Poulding, and Smith 2012). The authors introduce a MDE
solution to solving acquisition problems. Model transformations are used to create an initial population for
a genetic algorithm and to evaluate candidate solutions. Finally, evolutionary algorithms have been used
before to search for optimized models (Williams, Poulding, Rose, Paige, and Polack 2011). Our approach
does not require the user to create a transformation to another representation, as this is provided by our
framework.

6 CONCLUSION AND FUTURE WORK
We introduced a framework to automatically enable DSE for a any given DSL, effectively pulling up DSE
to the DSL level. We have implemented the framework in the DSM tool AToMPM. We have illustrated
the genericity of our approach by applying the framework to Simulink, thus allowing exploration of models
in Simulink with a minimal effort. This clearly complements the existing DSE in Simulink in the form of
parameter estimation support, as block topologies can be explored with our approach.
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Interesting future work includes firstly the support of an optimisation function to find the “best” candidate
among found models. For instance, in our example, such a soft constraint could be to minimise the number
of components used in a filter. Secondly assessing and improving performance. This is however largely
dependent of our DSE backbone, i.e., Alloy. Therefore, different DSE backbones need to be explored and
compared. In this respect, we have experimented with a mapping to Gecode3, and with a model transfor-
mation approach to control the design space exploration. Thirdly, although we have limited support for
assessing a lower bound on the remaining execution time, it would be interesting to further elaborate on this,
e.g., by estimating an upper bound. This would be an enabler for an iterative, phased DSE design process,
where the user gradually strengthens the constraints for the DSE depending on the feedback of the execution
time: maybe a bounding model and static constraints model is sufficient, or maybe some static constraints do
not need to be modelled to obtain a manageable number of suitable candidates? Fourthly, it is interesting to
investigate whether we can map the DSE to a smooth design space. This way, local optima can be exploited,
thus greatly improving performance compared to Alloy’s brute force search technique. In our opinion, it is
required to include search operations, e.g., by using transformation rules, and include domain knowledge
that entails a search plan. Related to this, interesting future work involves the use of behavioural constraints
during this controlled DSE.
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