
1

A Framework for Temporal Verification Support
in Domain-Specific Modelling

Bart Meyers, Hans Vangheluwe, Joachim Denil, Rick Salay

Abstract—In Domain-Specific Modelling (DSM) the general goal is to provide Domain-Specific Modelling Languages (DSMLs) for
domain users to model systems using concepts and notations they are familiar with, in their problem domain. Verifying whether a model
satisfies a set of requirements is considered to be an important challenge in DSM, but is nevertheless mostly neglected. We present a
solution in the form of ProMoBox , a framework that integrates the definition and verification of temporal properties in discrete-time
behavioural DSMLs, whose semantics can be described as a schedule of graph rewrite rules. Thanks to the expressiveness of graph
rewriting, this covers a very large class of problems. With ProMoBox , the domain user models not only the system with a DSML, but also
its properties, input model, run-time state and output trace. A DSML is thus comprised of five sublanguages, which share domain-specific
syntax, and are generated from a single metamodel. Generic transformations to and from a verification backbone ensure that both the
language engineer and the domain user are shielded from underlying notations and techniques. We explicitly model the ProMoBox
framework’s process in the paper. Furthermore, we evaluate ProMoBox to assert that it supports the specification and verification of
properties in a highly flexible and automated way.

F

• B. Meyers is with Flanders Make vzw, Leuven, Belgium.
E-mail: bart.meyers@flandersmake.be

• H. Vangheluwe and J. Denil are with the Department of Mathematics and
Computer Science, University of Antwerp, Antwerp, Belgium.
E-mail: firstname.lastname@uantwerpen.be

• H. Vangheluwe is with the School of Computer Science, McGill University,
Montréal, Canada.
E-mail: hv@cs.mcgill.ca

• R. Salay is with the Department of Computer Science, University of Toronto,
Toronto, Canada.
E-mail: rsalay@cs.toronto.edu

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

21 INTRODUCTION

In Domain-Specific Modelling (DSM) [28] the general goal
is to provide means for domain users to model systems in
their problem domain. Techniques such as metamodelling and
model transformation enable language engineers to create Domain-
Specific Modelling Languages (DSMLs) in collaboration with
domain experts. These DSMLs can be used by domain users.
Current DSM techniques allow domain users to model at the
domain level and simulate, optimise, and transform the model to
other formalisms, synthesise code, generate documentation, etc.

Verifying whether a model satisfies its requirements is an
important challenge in DSM [26], but is nevertheless mostly
neglected by current DSM approaches. Verification has been
achieved by translating models to formal representations. Logic-
based formulas in formalisms such as Linear Temporal Logic
(LTL) [68] and Computation Tree Logic (CTL) [24] are used to
represent the temporal properties that need to be verified [72]. These
temporal properties can be verified using e.g., model checking
techniques [14]. Currently, domain users need to have a profound
knowledge of some logic to express properties. This violates the
principles of DSM. Like design models, the level of abstraction
for specification and verification tasks needs to be lifted to the
domain level, as domain users should not be exposed to underlying
technologies. Consequently, there is a consensus that in DSM, it
is better to use a DSML as a property language instead of LTL
or another temporal logic [8], [38], [69], [79], [86], [87], [89].
More precisely, DSM should not only address modelling the design
of a system, but also its properties, its environment, its run-time
state, and its execution traces, which should all be modelled at the
domain level, in their own DSML. We take this to be a background
assumption in our work.

In accordance with these DSM principles, various dedicated
property DSMLs and tools have been developed. For example, a
visual formalism called TimeLine, developed at Bell Labs, allows
users to specify temporal constraints, which are automatically
translated to LTL [79]. Such approaches result in very suitable
tools and languages, but developing this tools comes with a high
development effort. Moreover, in the context of DSM, a DSML is
highly prone to change during the development cycle [77], thus
additional effort is required to keep verification tools synchronised
with the DSML.

Some modelling languages can be used with minor modifi-
cations for defining system designs as well as properties. The
Mathworks’ Simulink R© language for specifying the behaviour
of dynamic systems as block diagrams [51] can be reused for
specifying properties, by simply adding an “assertion block” [50].
Petri nets [70], used to specify the behaviour of concurrent systems,
can also be used to express temporal properties to which execution
traces conform [69], i.e., the execution trace of a system that is
modelled as a Petri net. This provides an elegant solution, as the
language, and possibly its semantics, can be re-used. This is not
possible for all design DSMLs.

User-friendly patterns have been devised for temporal logic.
Dwyer et al. [21] have defined specification patterns in terms of
LTL and other temporal logics, claiming that their patterns are
easier to use, and cover most of the specification they encountered
(i.e., over 90% [22]). Over time, given its use in theory and practice,
the Specification Patterns have become a strong foundation to build
on. The work has been very well cited, and is continuously been
used over the years in high-quality work (e.g., [3]).

Other approaches offer visual and generic modelling languages
for specifying properties [40], but do not offer a domain-specific

Figure 1. Overview of the ProMoBox approach.

syntax, which is essential in DSM. Although these efforts allow
users to specify properties in languages more appropriate than
temporal logic, no general DSM approaches exist today that provide
dedicated support for verification as part of the DSML engineering
process.

Problem statement. In this paper, we address the problem
of how to provide a general approach for specifying temporal
properties at the domain level for behavioural DSMLs.

Contributions. The contribution of this paper is twofold. Firstly,
aimed at language engineers, we have developed a novel semi-
automated method and tooling for generating a domain specific
property language for a DSML directly from the DSML definition.
Secondly, aimed at domain users, we have developed an automated
mapping to a verification backbone, which allows the domain user
to verify properties and inspect counterexamples at the domain
level.

This paper presents the ProMoBox framework, implementing
these two contributions as follows. Firstly, the language engineer
makes use of ProMoBox as shown in the upper part of Figure 1.
During the language engineering phase, the framework includes
a fully automated method to automatically generate verification
support for a given design DSML, if additional annotations are
provided. This includes a domain-specific verification language,
and tool support including peripheral domain-specific sublanguages
(for modelling environment, static design design, run-time state
and execution traces of the system) to enable the specification
and verification of these properties. Secondly, the domain user
can use this mapping to verify properties at the domain level,
as shown in the lower part of Figure 1. ProMoBox provides a
fully automated mapping to a suitable verification backbone for
model checking (temporal) properties. It takes as input a system
modelled in the DSML, a property modelled in the newly generated
verification language, and the DSML definition with annotations,
to fully automatically produce a verification result (i.e., an output
trace in case of a counterexample). All inputs and outputs of both
ProMoBox processes are lifted to the domain level, so that users
(domain users and language engineers alike) are shielded from
the underlying temporal logic and formal models. Flexibility and
automation are key in ProMoBox. ProMoBox supports definition
and verification of temporal properties for any discrete-time
behavioural DSML, for which the semantics can be described
as a schedule of graph rewrite rules.

ProMoBox is implemented using the modelling tool
AToMPM [83]. This paper introduces the ProMoBox framework us-
ing the elevator controller running example presented in Section 2.3.
In fact, the running example is inspired by an elevator controller
model used to illustrate model checking [54]. This paper shows
a mapping to the Spin model checker [35] and the specification
patterns by Dwyer et al. [21] as verification backbone in detail.
Furthermore, we evaluate the effort, correctness, model checking

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

performance, expressiveness, flexibility and limitations of using
the ProMoBox framework.

The paper sets the stage in Section 2, where the necessary
background is given on the subjects of DSM, running example,
process modelling with the Formalism Transformation Graph and
Process Model, temporal logic and model checking. An overview
of the ProMoBox approach is given in Section 3. In Section 4, the
ProMoBox’s sublanguages are presented, and it is explained how
they are generated. Section 5 discusses the mapping to a verification
backbone. Section 6 shows how we applied ProMoBox to our
Elevator DSML, and demonstrates how properties are checked
and how a counterexample can be produced. In Section 7, the
ProMoBox framework is evaluated. Limitations of the approach
are presented in Section 8. Section 9 discusses related work, and
Section 10 concludes the paper and gives some directions for future
work.

2 BACKGROUND

This section presents the prerequisites to discuss the ProMoBox
framework.

2.1 Modelling Language Engineering
The basis for this paper can be found in Domain-Specific Modelling
(DSM) [38]. DSM is part of model-driven engineering (MDE). It
requires modelling systems using domain concepts, rather than
concepts in the solution domain (i.e., the computing domain).
Consequently, systems are modelled at a higher level of abstraction,
and often code is generated from these high-level models. This
means that the development process is split into two tasks: (i)
the creation of a Domain-Specific Modelling Language (DSML)
known as engineering a language, by the language engineer,
in consultation with domain experts, and (ii) modelling the
system using this DSML by a problem domain (but not solution
domain) user, referred to as a domain user. Once the DSML is
created, systems in the domain can be modelled in the DSML.
Since the challenges addressed in this paper are an addition to
language engineering, this section will mainly discuss the language
engineering phase (as opposed to the model engineering phase) of
the development process.

The three main aspects of a DSML, or modelling language in
general, are its abstract syntax (describing the internal structure
of a model, as a typed abstract syntax graph), the concrete syntax
(describing how a model is represented, e.g., in 2D vector graphics
or in textual form) and its semantics (describing what a model
means) [63].

In this paper, we assume that the abstract syntax is described
by a metamodel [44] in the form of a class diagram [2] or a
similar formalism, including additional static semantics specified
as constraints. Static semantics can be described in a constraint
language such as the Object Constraint Language (OCL) [65].
Instance models of the DSML are said to conform to or typed by
the metamodel. In [44] this relation is referred to as a linguistic
instance of, and throughout this paper, instance (of) will refer to
this kind of instantiation. Conformance usually means that there is
a morphism between the instance model and the metamodel, both
typed, attributed, directed graphs.

The abstract syntax is represented by at least one concrete
syntax, either textually or graphically (or a combination of both).
Mappings between the abstract syntax and its concrete syntax(es)
are called rendering functions, and their inverses are called parsing

functions. These functions are used by model editors to render
(changes of) the model’s abstract syntax, and to parse user’s
concrete syntax edits to abstract syntax. In terms of graphical
concrete syntax, we use a connection-based syntax [18] in this
paper. This means that concrete syntax models consist of nodes
and icons (one kind for each metamodel class) that are connected
by edges (for each metamodel association).

Semantics can be described transformationally (also called
“denotationally”) or operationally [63]. Transformational semantics
provide a mapping of a model in a given modelling language onto
a model in a different modelling language for which a semantics
is available. Operational semantics capture explicitly how a model
can be executed, which we also call simulating the model, which is
effectively mapping a model onto a trace. In this paper, semantics
are always formalised as transformations, that can transform (an)
input model(s) to (an) output model(s), instances of the same
or different languages. Since models are represented as graphs,
a popular way to specify transformations is by means of graph
transformation rules.

2.2 Transformation Models
Transformations can be explicitly specified as transformation
models [7], in a language that combines generic transformation
concepts such as rules and a rule schedule, and concepts specific
to the languages it transforms. A process called RAMification to
generate such a rule-based domain-specific transformation language
for given input and output DSMLs is presented by Kühne et al. [46].

A rule schedule of a transformation language is generic, and
allows the modelling of how different rules are scheduled. Rules
consist of a left-hand side (LHS) containing a pattern representing
a condition, and a right-hand side (RHS) containing a pattern
representing an action (elements can be created, removed or
updated). LHS and RHS are generic language constructs that can
contain elements, each displayed as a different shape of container.
The contained elements form graph patterns that reuse concrete
syntax taken from the input and trace language. When a rule is
evaluated, a match for the LHS is searched for in the input model.
If a match is found, the RHS is applied to the input model, thus
changing it. If the rule fails to match, the input model is left
untouched. Depending on the outcome (failure or application), the
next rule according to the rule schedule is evaluated. Rule schedules
may be implicit. An example of implicit rule schedules is that the
next applied rule is chosen (pseudo-)randomly from the set of all
matching rules.

The name RAMification for the process of generating a domain-
specific transformation language is an abbreviation of its three
stages to generate a pattern language (for LHS) and action language
(for RHS) from the DSML:

1) Relaxation: the metamodel is relaxed by removing con-
straints in order to allow the creation of partial models,
to uniquely identify elements across the different parts
(LHS/RHS) of a rule;

2) Augmentation: each element in the metamodel is aug-
mented with a label, and with an option whether subtypes
should be potential match candidates. Other augmentations
can be used to influence the matching process [46] but are
not relevant for this paper;

3) Modification: for (attributes of) elements of the LHS, con-
ditions over values are specified because the LHS pattern
essentially models a condition or constraint that must be

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

Elevator

doors_open : boolean
going_up : boolean

Button

pressed : boolean

ElevatorButton FloorButton

DownButtonUpButton

Floor

nr : int

requests1 *

elevator_button

*

1

currentfloor

1

*

next
0..1

0..1

Figure 2. The metamodel of the Elevator controller DSML that serves as
the running example throughout this paper.

met. Similarly, for elements of the RHS, assignments of
values are specified.

Since the result of the RAMification transformation is a language
definition with metamodel and concrete syntax model, the language
engineer can adapt the concrete syntax model to make rules
more appealing. The three stages of the RAMification process are
explained more in detail using the running example in Section 2.3.

The RAMification process is implemented as a transformation
that takes a DSML metamodel and concrete syntax model as input
and a metamodel and concrete syntax model of the transformation
language as output. Since transformations themselves are explicitly
modelled, and written in a modelling language, transformation
models conform themselves to a transformation language, that has
abstract syntax and concrete syntax. Consequently, transformation
models can be transformed in their own right, or can be generated.
The transformations that have transformation models as input
and/or output are called higher order transformations (HOTs).
Similarly, abstract syntax and concrete syntax of a language are
modelled as metamodels (in the class diagram language) and
concrete syntax models (in e.g., an icon language) respectively, and
can thus be transformed as well.

2.3 Running Example

The running example that is used throughout this paper is a DSML
for elevator controllers. Our DSML enables modelling a building
with floors, elevators and buttons. Additionally, it defines the
step-wise (discrete-time) behaviour of an elevator system, such
as moving up or down to a different floor, closing or opening
elevator doors, or pressing buttons. The example is inspired by an
elevator controller model used to illustrate model checking in [54].
A similar “Elevator Control System” is presented by Strobl and
Wisspeintner [80] where it is used to demonstrate AutoFocus, a
tool for modelling embedded systems [36]. Although embedded
systems modelling is not the focus of this paper, the work illustrates
the complexity of elevator controllers.

Figure 2 shows the metamodel of the Elevator language which
we will call E. Elevators move between Floors responding to
Button press requests. A Button requests exactly one Floor. Floors
are ordered by the next association and a derived attribute nr
representing the Floor number. At any time, an Elevator is at
exactly one Floor, modelled by the currentfloor association. An
ElevatorButton is a button inside an Elevator, allowing a passenger
to request going to a certain Floor. At every Floor, there can be an
UpButton to request to go up and a DownButton to request to go
down. An Elevator can have its doors open (in that case it cannot
move) and has a direction (up or down).

A concrete syntax model for the Elevator language in the form
of icons and arrows is shown in Figure 3. For every element of E,
there is exactly one associated Icon or Link. An icon/arrow inside
a dashed box with a class or association name beneath it associates
that concrete visual syntax with the corresponding abstract syntax.
An icon consists of graphical elements, and text elements. This
model defines the appearance of instance elements and how these
appearances can change (i.e., text content of text elements, or
colours or transparency of graphical elements) in concert with their
associated abstract syntax, by implementing specific rendering and
parsing functions. In this way, as shown in the code fragment
connected to all ButtonIcons, a button instance icon has a white
fill which will becomes shaded if the associated button instance’s
attribute value for pressed is true, i.e., when the button is lit. If
the elevator is going up (going up is true), then only the upward
arrow is visible. If going up is false, only the downward arrow is
visible. Whether or not the doors are open is also visualised.

Figure 4 shows an instance model with three floors, one elevator
and seven buttons, that uses the concrete syntax. As defined in
the concrete syntax model, pressed buttons are shaded, and they
are connected to the floor they request. On the middle floor, a
button is pressed by someone requesting to go down, and inside
the elevator the button to go to the top floor has been pressed. The
elevator is currently at the bottom floor. Its doors are closed and
its current direction is down. Note how all elements, including the
links, conform to the metamodel of Figure 2. For simplicity, we
limit ourselves to models with only one elevator. A system with
multiple elevators is considerably more complex and would not
contribute significantly to explaining the approaches presented in
this paper.

The approach in this paper requires the definition of operational
semantics. Figure 5 shows the transformation model E[[.]] specify-
ing the operational semantics, that uses the instance model as input.
This model is a rule schedule, and determines how different rules
are scheduled. Rules consists of a left-hand side (LHS) containing
a model pattern, and a right-hand side (RHS) containing an action.
When a rule is evaluated, a match for the LHS pattern is searched
for in the input model. If a match is found, the RHS is applied to
the input model, thus changing it in-place. In the case that the rule
was applied, an outgoing success link in the schedule (depicted as
a black arrow) is followed. If no match is found, the input model is
unchanged and an outgoing notApplicable link (depicted as a grey
arrow) is followed. Execution starts at openDoor up, since it has
the isStart flag set (depicted as a bold line of the rule).

Inspired by a real elevator controller, the following rules
implement how the elevator changes floors (one at a time), and
opens and closes its door to honour the requests of users (modelled
as pressed buttons). Three rules implementing this behaviour are
shown in Figure 6. When a request for a floor is made for a different
floor than the elevator’s current floor, the doors close so that the
elevator can start moving. This is modelled in the closeDoor rule
shown in Figure 6. The LHS shows the pattern denoting an elevator
with open door on a floor. Its direction is greyed out as it is not
relevant to match this pattern, i.e., it will match any direction.
The pattern also shows a lit button (any subtype of Button, hence
the icon of the abstract Button class is shown) on another floor,
corresponding to the condition described above. The number labels
on the top left of each pattern element serve as the relationship
between LHS and RHS. Elements in the RHS with the same
label, are the same elements. The action in the RHS here denotes
that none of the matched elements are changed, except for the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

Figure 3. The concrete syntax model of the Elevator controller DSML that serves as the running example throughout this paper.

Figure 4. An Elevator model, instance of the Elevator DSML.

Figure 5. Rule schedule of the operational semantics of the Elevator
example.

doors open attribute value of the elevator. Further rules in the
transformation denote that the elevator passes all floors that are
requested on its path (which is either up or down), and opens its
door when the elevator’s direction corresponds to the direction
requested on that floor. The case where the elevator is moving up
(i.e., changes its currentfloor link) is shown in the moveUp rule.
Note that the LHS contains not only a pattern, but also a constraint,
stating that the requested floor (with label 0) must have a higher
floor number than the current floor (with label 1). Related rules
(not depicted) are moveDown (the dual of moveUp), moveUp last
(where the lit button is on the next floor), and moveDown last
(the dual of moveUp last). Pressed buttons unlight when the door
opens at a requested floor and the elevator goes in that direction in
the openDoor up rule (in the case the elevator is going up) and

closeDoor

1

4

0

2

1

4

0

25

3

5

3

moveUp

1

0

5

3

1

0

5

changeToUp

1

4

0

2

5

3

<6>.nr < <1>.nr

34

7

4

8

2 2

66

<0>.nr > <1>.nr

<4>.nr > <1>.nr

1

4

0

2

5

3
6

7

8

NAC

Figure 6. Three rules taken from the operational semantics of the Elevator
example.

its dual, the openDoor down rule. The elevator only changes its
direction if there are no more requests on its path. This can be seen
in the changeToUp rule, which contains a negative application
condition (NAC) (visualised as a dashed box) in addition to its
LHS. A NAC is evaluated the same way as a LHS, but the rule will
not be applied if a match is found. Hence, the rule will be applied
if a button is pressed at a higher floor (modelled in the LHS), but

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

not if a button on a lower floor is lit at the same time (modelled in
the NAC), i.e., in its current path. Note that, if the elevator is at a
lower floor and is going up, it can pass by a floor where one has
requested to go down without stopping, as the elevator is going in
the opposite direction, and vice versa.

The first rule that is applicable to the instance model of
Figure 4 is the changeToUp rule. The LHS Elevator pattern
element is bound to the only elevator in the instance model, and
the currentfloor with label 3 and the Floor with label 1 are bound
to the currentfloor link to the bottom Floor. Additionally, pattern
elements with label 2, 4 and 5 can be bound to the middle Floor
and lit DownButton with request link in between. An alternative
match for pattern elements with label 2, 4 and 5 can be found as
the top Floor and lit ElevatorButton with request link in between.
No match for the NAC can be found since the elevator is at the
bottom floor and going down, thus no buttons are in the elevator’s
path. Consequently, the rule matches and the RHS can be applied,
in which case only pattern element 0 that is bound to the node in
the instance graph changes an attribute value (i.e., in the elevator,
going up is set to true).

If no rule is applicable, the transformation terminates. This
means that the operational semantics implement the behaviour
in response to the initially pressed buttons. Unlike in a realistic
scenario, buttons can not be pressed during execution. One could
incorporate this behaviour in E[[.]], by adding a rule in which a
button is pressed. This however mixes input to the system, with its
reactive behaviour, and can therefore be considered bad practice. A
better solution would be to separately model input to the system in
a dedicated input language.

Note that if the rules are scheduled differently, i.e., if the move
rules are scheduled before the change direction rules, the NACs in
the change direction become superfluous. We use this E[[.]] in the
running example, to be able to showcase support for NACs where
necessary.

As can be seen from Figure 6 the modelling language for
rules is composed from some generic language constructs for LHS,
RHS and NAC, each displayed as a different shape of container.
They include a constraint or action, and domain-specific language
constructs that borrow syntax from the DSML. As stated before,
this language can be generated using a transformation that takes
the DSML metamodel and concrete syntax model as input and
the metamodel and concrete syntax model of the transformation
language as output, called the RAMification transformation [46]:

1) Relaxation: the metamodel is relaxed in order to allow for
patterns which are partial models: constraints on lower
multiplicities in the metamodel are removed, abstract
classes are made concrete so they can be instantiated
(see also the buttons used in rules of Figure 6), and
global constraints are removed. For example, Buttons
and FloorButtons become instantiable, and a Button does
not need to be connected to a Floor in a pattern (but does
in a model conform to the Elevator metamodel);

2) Augmentation: each class and association in the meta-
model is augmented with a label attribute for pattern
binding (its concrete syntax is a label in the top left
corner of the icon or next to the link), and each class with
subclasses is augmented with a Boolean attribute denoting
whether subtypes should be matched. Other augmentations
can be used to influence the matching process [46] but are
not relevant in the context of this paper;

Figure 7. A FTG (left) and PM (right) of the DSM process.

3) Modification: for elements of the LHS, the type of each
attribute is changed to the type Condition because the
LHS pattern essentially models a condition or constraint
that must be met. For example, a lit button in a LHS
has pressed == True as value of its pressed attribute.
Similarly for elements of the RHS the type is changed to
Action, which allows assigning new values to attributes.
For example, a lit button can be turned off in the LHS by
setting pressed = False as value of its pressed attribute.

Since the result of the RAMification transformation is a language
definition with metamodel and concrete syntax model, the language
engineer can adapt the concrete syntax model to make rules more
appealing. An example of this is shading the elevator direction or
doors grey in the icon to denote that there is no constraint on the
respective attribute values.

Throughout the paper, the adjective traditional will mean
according to the state of the art as described in Section 2.3. A
more detailed description of domain-specific modelling can be
found in [49], as well as an introduction of the DSM tool AToMPM,
which will be used in this paper.

2.4 Formalism Transformation Graph and Process
Model (FTG+PM)
It has become clear that the DSM process involves different models
(e.g., domain-specific models, metamodels, transformation models,
etc.) in various modelling formalisms (DSMLs, class diagrams,
transformation languages, etc.) that each serve a specific purpose
in the DSM process. DSM approaches use multiple modelling
languages and deal with their consistency and interaction. This
means that the MDE process for development and/or execution of
the modelled system becomes more complex as well, and is highly
customised.

The Formalism Transformation Graph and Process Model
(FTG+PM) [48] captures the MDE process by explicitly modelling
it. The FTG+PM consists of the Formalism Transformation Graph
(FTG) and its complement, the Process Model (PM), and models
all kinds of activities in the MDE lifecycle such as requirements
development, domain-specific design, verification, simulation,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

analysis, calibration, deployment, code generation, and execution.
The FTG describes in an explicit and precise way formalisms,
and their relationships, as transformations between models in
these formalisms. The PM specifies an MDE process using these
formalisms and transformations, and can be used as a basis for
process enactment. Figure 7 shows a FTG+PM of the DSM process.

The FTG depicts (domain-specific) formalisms as labelled
rectangles. Transformations (in the broad sense of the word)
between models in those formalisms are depicted as labelled small
circles. Formalisms can be connected to transformations by arrows
that depict formalisms as in- and output of these transformations:
executing a transformation takes instances of incoming formalisms
as input, and creates instances of outgoing formalisms as output.

The PM is specified in the UML Activity Diagram 2.0 lan-
guage [66]. The ovals (actions) in the Activity Diagram correspond
to executions of the transformations declared in the FTG. Labelled
rectangles (data objects) in the PM correspond to models that
are consumed or produced by actions, and are instances of the
formalisms in the FTG with the same label. Thin arrows in the
PM indicate data flow, while thick arrows indicate control flow.
Similar to the models, the arrows must also have corresponding
arrows in the FTG, meaning that their input and output nodes must
correspond. We also use Activity Diagrams control flow constructs
for a PM such as joins and forks, represented by horizontal
bars, and decisions, represented by diamonds. (Executions of)
transformations can be automatic (shaded) or manual (white). The
meaning of the FTG+PM is presented in depth in [48].

We use the FTG+PM in the context of DSM, to describe both
the language engineering phase and the system modelling phase,
while the FTG+PM was up to now only used for the latter [64].
Since languages are created in the language engineering phase
and are later used in the system modelling phase, they need to
appear on both the PM and FTG side. To this end, we extend the
FTG+PM language with the operationalise relationship. Using
the operationalise relationship, a metamodel and concrete syntax
model can be put into operation as a language, meaning models
that conform to the language can be created. A tool can automate
this as compilation or interpretation of the metamodel and concrete
syntax model, possibly by generating a (syntax-directed) language-
specific editing environment. Note the box around metamodel
and concrete syntax model to denote that they are operationalised
together to form a language (semantics is not yet included in the
box). Similarly, a transformation model can be put into operation
by compiling or interpreting it, meaning it becomes executable,
often to give semantics to a language. In the process model of
Figure 7 all activities from the top up to the CreateOS activity
are performed by the language engineer, and the remaining two
activities are performed by the domain user.

More in detail, the language engineer first creates a metamodel
in the CreateMM activity. Then he creates a concrete syntax model
in the CreateCS activity as well as a mapping specifying the
bidirectional relationship between both (note that this is not visible
in Figure 7), which results in a DSML definition. Then, he/she
RAMifies the DSML in the automatic RAMify transformation. The
resulting RAMDSML is part of the DSMLTransformation language.
This is the language of the OperationalSemantics transformation
model, which is subsequently created in the CreateOS activity. This
concludes the creation of a DSML. Next, the domain user models
a system in the CreateInstance activity. He/she can simulate this
model, by executing the operational semantics in the Simulate
activity, resulting in a new DSML instance.

Figure 8. Verification of properties.

Note that relationships between artifacts might become visible
when following links transitively. For example, in the PM, one
might expect that in the PM the OperationalSemantics model
should be input to the Simulate activity. The OperationalSeman-
tics model is however not literally an input of Simulate. Instead,
the Simulate transformation in the FTG is an operationalisation of
the OperationalSemantics model. Thus, the Simulate activity in
the PM is implicitly related to the OperationalSemantics model.

2.5 Temporal Properties
Properties allow us to encode questions we want to ask the
modelled system, with an answer that is yes or no (i.e., property
satisfied or not). Examples are: (a) Are there algebraic loops in
my block diagram?, or (b) If I press a button in an elevator, will
the elevator eventually reach the corresponding floor? Useful
properties are extracted from requirements, and it can be verified
whether a model of a system satisfies these properties. The general
verification process is shown in the Process Model (PM) of Figure 8,
where a formal model and properties are fed into a verification
engine. If no counterexample is found, the system satisfies the
property. If a counterexample is found, it needs to be visualised so
the user may correct the formal model, after which the verification
process can be restarted.

We distinguish two kinds of properties: structural properties and
temporal properties. Structural properties are evaluated statically
on the structure of a model, e.g., on the abstract syntax graph.
Structural properties can be expressed in e.g., a constraint language
like the Object Constraint Language (OCL) [65]. Example (a) can
be expressed in OCL. Temporal properties are defined in terms of
time, i.e., on paths of program execution, or execution traces.

One such way to express temporal properties is using Linear
Temporal Logic (LTL) [68], as done in the ProMoBox approach.
LTL is built up from propositions (e.g., ψ and φ), on which the
following temporal operators can be applied (yielding expressions
that are also propositions): �ψ (globally ψ), ♦ψ (finally ψ), #ψ
(next ψ), and ψ U φ (ψ until φ). The logic operators ∨, ∧, ¬,→
and↔ can be used in formulas, and operator precedence can be
enforced by brackets. Throughout this paper we will use ψ W φ
(“weak until” – where φ is not required to occur) which can
be defined as (ψUφ) ∨ �ψ. Knowing the syntax of LTL is not
mandatory for understanding this paper, but the interested reader
can find a complete summary of the syntax and semantics of LTL
in [23].

Another temporal logic is Computation Tree Logic (CTL) [24],
that reasons about execution tree branches rather than single
traces. Its syntax is similar to LTL, including the use of propo-
sitions, logic operators and brackets. It differs however in the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

temporal operators used: AGψ, EGψ, AFψ, EFψ, AXψ,
EXψ, A[ψ U φ], E[ψ U φ] where the A in the operator
means “for all paths”, and E means “there exists at least one
path”. The G (globally), F (finally), X (next), and U (until)
correspond to the LTL operators. Similarly to LTL, a “weak until”
operator is defined as A[ψ W φ] = ¬E[¬φU(¬ψ ∧ ¬φ)] and
E[ψ U φ] = ¬A[¬φW (¬ψ ∧ ¬φ)]

The logic operators ∨, ∧, ¬ and → can be used in LTL and
CTL formulas.

Using LTL or CTL, temporal properties such as those in
example (b) can be expressed. It is an example of a liveness
property (something must eventually happen). The other class of
temporal properties is the class of safety properties (something
should not happen). There is a slight difference in verifying liveness
and safety properties, as in order to find a counterexample in case of
a liveness property, it must be shown that the proposition that must
eventually happen is not present in traces with possibly infinite
length.

2.6 Model Checking

Verifying whether a model satisfies a temporal property can be done
in several ways. Some techniques for verification include manually
inspecting the model, using testing techniques, symbolic execution,
model checking, etc. In the ProMoBox approach we focus on model
checking. Model checking is an automated approach, where it is
determined whether a model satisfies a property by exhaustively
searching for a counterexample, which takes the form of an
execution trace. If no such counterexample is found, it is certain
that the model satisfies the property.

Advantages of model checking include that it is a fully
automated method, and that the outcome is reliable (unlike for
i.e., testing techniques). It has some major drawbacks however: the
search space has to be finite, and large search spaces are infeasible
to analyse. As the verification time as well as the required memory
easily suffers from combinatorial explosion, the approach only
allows a limited number of variables in the modelled system. This
means that although model checking is in itself fully automated,
often a manual abstraction step is required to make the technique
applicable to a model [4]. Throughout this paper, two tools for
model checking will be used.

Spin [35] is a tool that allows users to write system descriptions
in a textual programming language called Promela, encode proper-
ties in LTL, and verify whether the system description satisfies these
properties. The default verification algorithm visits every possible
state of the system description by building the state space explicitly.
This is a directed graph with state vectors as nodes and statement
executions as transitions. By traversing this complete state space
a conclusive answer to the satisfaction of an LTL formula can be
produced. Spin’s main application is the verification of concurrent
systems. Although very powerful, writing system descriptions in
Promela and LTL formulas requires a background in programming
and logic, skills that domain users do not necessarily have. In our
approach, we intend to leverage the power of Spin, without having
to expose its technicalities (i.e., its languages and interface) to
domain users.

Groove [71] is a tool for specifying rule-based transformations
on systems described as typed graphs. A type graph can be defined
(much like a metamodel), and graphs can conform to the type graph.
Similar to our view on model transformation, transformations
consist of rules that, if matched, manipulate the graph. Rules

Figure 9. Verification in Domain-Specific Modelling.

are scheduled using an imperative language. Groove excels in its
feature of verification of temporal logic properties written in LTL
and CTL, which is typically not available in a domain-specific
modelling tool. Groove is used in this paper to evaluate the impact
of replacing the verification backbone (i.e., Spin).

3 OVERVIEW OF THE ProMoBox APPROACH

The state of the art in verification for DSM is illustrated in Figure 9.
The diagram is divided into the domain layer where models are
domain-specific, and the lower layer where artifacts are represented
as logic formulas or code whose creation requires a significant
theoretical background. A DSML has been developed, and systems
can be modelled that conform to the DSML. Transformations can
be defined for simulating or translating this model, for generating
documentation or platform-specific code. Note that these activities
are not shown in Figure 9, as it exclusively focuses on the
verification activity. Step 1 of Figure 9 consists of creating the
formal model for verification. A transformation automatically
compiles any model that conforms to the DSML to a formal
representation (in this case Promela, a textual pml file), bridging
the DSM layer and formal methods layer (step 1).

A first problems arises, as this transformation is created by the
language engineer, who is not necessarily and expert in verification
methods. The second problem is related to the domain user. While
the DSML and model are usable by non-technical domain users, the
necessary LTL-formulas (ltl files in the lower “formal methods”
layer) for verification are not easily usable by domain users. In step
2 the formal model is executed in Spin, performing the actual model
checking. In case of a counterexample, a trail-file representing
the output trace is generated by Spin. This presents an additional
problem: understanding the trail also requires a similar theoretical
background. In conclusion, the problem with the current state of
the art in verification is that the language engineer and domain user
still have to work in the formal methods layer.

The goal of ProMoBox is to fully lift the user experience
(both for language engineer and domain user) which was hitherto
limited to the construction of system design models (and did not
include requirements or property models), to the DSM layer, with a
minimal increase in user effort. This section presents the use cases
of ProMoBox, and gives an overview of the ProMoBox framework.

3.1 Use cases of ProMoBox

As ProMoBox builds on the principles of DSM, it consists of a
language engineering phase (the upper part of Figure 1) and a
system modelling phase (the lower part of Figure 1). Consequently,
the primary use case of ProMoBox consists of these two phases,
explained in detail as follows: (1) generate a verification language
and support for a DSML, to allow multiple different applications of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

(2) modelling a property and verifying whether the system satisfies
this property. The former is performed by the language engineer
and domain experts, the latter is performed by the domain user.
Both are lifted to the domain level, thus hiding underlying formal
methods and tools. This use case that includes these two phases
will be the main thread throughout the paper, and will be referred
to as UC1.

Other, less common use cases may occur, that nevertheless
need support:

• UC2: verification support needs to be created for an already
existing DSML with ProMoBox. This is different from UC1,
because in some cases, the DSML needs to be adapted to
ensure that it is compliant with ProMoBox. This use case
will be addressed in Section 4.4;

• UC3: the DSML needs to be changed after the ProMoBox
is applied. This may include the DSML’s abstract syntax,
concrete syntax or semantics. This use case will be
addressed in Section 4.5;

• UC4: the ProMoBox framework itself needs to be adapted
to support new or changing technology. This use case will
be addressed throughout Section 4 and Section 5.

Throughout the paper, we will discuss how these use cases are
supported by ProMoBox, and we attribute certain design choices
to these use cases. These use cases are discussed in detail in the
evaluation of Section 7.5.

3.2 Outline of the ProMoBox Approach

The ProMoBox framework presented in this paper builds on our
earlier work [20], [57], [60]. ProMoBox stands for “Properties
and (design) Models developed (Boxed) in concert”. The language
engineering support of ProMoBox consists of the following three
parts.

The first part is the definition of five sublanguages. According
to DSM principles everything should be modelled using the
most appropriate formalisms. Therefore, ProMoBox replaces the
traditional DSML with five sublanguages (each DSMLs) for
modelling all artifacts that are needed to specify and verify
properties [57]. The five sublanguages are the following:

• A design language for design modelling as supported by
traditional DSMLs. With this language, the static structure
(i.e., language concepts that do not change at run-time) of
the system is modelled. In case of Elevator, this includes
all Elevator concepts, without the currentfloor association,
nor the doors open, going up and pressed attributes;

• A run-time language for run-time state representation. The
design language always includes all elements of the design
language, plus dynamic state information that can change
at run-time. Run-time instances are always associated
with a design instance with the same static structure. One
design instance possibly has multiple run-time instances
corresponding with it, representing all possible states of
the model. Note that in traditional DSM, the DSML often
includes run-time concepts, meaning that no distinction
is made between static structure and dynamic state. The
running example was also presented including dynamic
state information in Section 2.3. In fact, the metamodel
shown in Figure 2 is the same as Elevator’s run-time
language;

• An input language to model event-based input (to model the
environment in which the system operates). This language
represents a stream of input events. In case of Elevator, this
language only consists of a sequence of button presses;

• A trace language for state-based output representation (to
model an execution trace of the system or verification coun-
terexample). An execution trace is a sequence of run-time
states connected with transitions that represent execution
steps (i.e., operational semantics’ rule executions). The
trace language can be used to represent execution traces
of a simulation. A trace model is usually generated by a
simulator or as a counterexample by a verification tool. It
can be generated manually as well for e.g., modelling an
oracle for a test case. In the Elevator case, this is a sequence
(in terms of operational semantics steps) of run-time states
with references to e.g., move up, open doors, etc. (see
Figure 5).

• A property language for property specification (to model
temporal or structural properties). The properties language
allows the user to define temporal properties, which are
properties on the behaviour of systems. Properties are
represented by temporal and structural operators over
propositions. These propositions are patterns that can be
matched or not matched (resulting in true or false) on a run-
time state or static structure of a system. Since properties
reason about state and structure, all language constructs of
the design language and run-time language are included
in the property language. In the Elevator case, a property
can express that whenever a button is pressed, the elevator
should eventually reach the corresponding floor.

The second part is the generation of these five sublanguages. As
the traditional DSML is replaced by five languages (i.e., DSMLs),
it would be time consuming to keep these intimately related sub-
languages presented above consistent. Therefore, a fully automated
method generates these sublanguages from a single DSML specifi-
cation, keeping the five sublanguages consistent by construction.
If necessary (i.e., in case of UC2), simplifications are made in
the DSML’s metamodel, to address the scalability issues of model
checking. We extend metamodelling and model transformation
languages with annotations, to add necessary information for every
language construct and to introduce a conceptual simulation step.
This additional information enables the fully automatic generation
of the five sublanguages and necessary transformations between the
sublanguages, thus minimising the effort of the language engineer.
This way, not only building the five sublanguages requires less
effort, but also maintaining consistency in case of DSML changes.
This is because only the annotated DSML needs to be edited,
after which the sublanguages can be regenerated. This addresses
the use case UC3, which deals with evolution of the DSML.
Each of the sublanguages is built from a DSML-independent
template, and domain-specific language concepts. Although the
templates are predefined, the resulting modularity allows extensive
modification of the templates, as desired by UC4. By using
templates and a generative approach, the ProMoBox framework
becomes configurable for various DSMLs.

The third part is the mapping to and from a verification
backbone. A verification backbone based on the Spin model
checker [35] is directly plugable to DSM environments. Properties
in ProMoBox are translated to LTL and a Promela model is
generated that includes a translation of the domain-specific system

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

Design language (L)

:Metamodel

:ConcreteSyntax

Runtime language (L)

:Metamodel

:ConcreteSyntax

Input language (L)

:Metamodel

:ConcreteSyntax

Trace language (L)

:Metamodel

:ConcreteSyntax

Properties language
(L)

:Metamodel

:ConcreteSyntax

GenerateLanguages (F)

AnnotatedMetamodel
(F)

ConcreteSyntax
(T)

Metamodel (T)

CreateMM (L) CreateCS (L)

CreateOS (L)

x10

AnnotateMM (L)

RAMified Design
language (L)

:Metamodel

:ConcreteSyntax

:AnnotateMM

:GenerateLanguages

:CreateOS

:AnnotatedTransformation
(L)

: CreateCS

:ConcreteSyntax
(L)

:AnnotatedMetamodel
(L)

:AnnotatedMetamodel
(L)

RAMified Runtime
language (L)

:Metamodel

:ConcreteSyntax

RAMified Input
language (L)

:Metamodel

:ConcreteSyntax

RAMified Trace
language (L)

:Metamodel

:ConcreteSyntax

RAMified Properties
language (L)

:Metamodel

:ConcreteSyntax

ConcreteSyntax
(T)

x10

:CreateMM

DSMLTransformation

RAMRuntime (L)

Rule (T)

AnnotatedSchedule (F)

RAMInput (L)

RAMTrace (L)

Formalism Transformation Graph
consume/produce instance
formalism-specification model
automated transformation
manual transformation

Process Model
control flow data flow

operationalize (to FTG)
model artifact
automated activity
manual activity

(T) Tool-specific
(F) Framework-specific
(L) Language-specific
(A) Application-specific
(P) Property-specific

Figure 10. FTG+PM of language engineering with ProMoBox .

Figure 11. Property verification with ProMoBox and Spin.

specification, its initial state, the environment, and the rule-based
operational semantics of the system. The verification results (in
case of a counterexample) are translated back to the domain level.
We argue that verification tools other than Spin can be used in
the ProMoBox framework, as required by UC4. This use case is
evaluated in Section 7.

The Elevator ProMoBox is illustrated in Figure 11. When using
the ProMoBox approach, only the grey models in Figure 11 need
to be modelled by hand, the white models are generated. The
five sublanguages Ed, Er, Ei, Et and Ep are generated from an
annotated metamodel E′. A property model prop, a design model
model and a run-time model config can be modelled by the domain
user in these sublanguages. Note that only a minimal number

of models needs to be created by hand thanks to the generative
character of ProMoBox. As shown in steps 1-5, a property can be
verified automatically by transforming these models to a Promela
model and LTL formula, execute the Spin tool and in case of a
counterexample, transform it to an instance of the trace language.
These steps will be explained in detail further in the paper. It is
important to note that all manually created models are at the DSM
layer, meaning that both language engineers and domain users do
not need to take a look “under the hood”. This is exactly the intent
of DSM.

The next section explains language engineering with ProMoBox
in detail, in the standard case of UC1. As the ProMoBox approach
as presented in Figure 11 involves a significant number of modelling
artifacts and transformation steps, the FTG+PM of Figure 10 serves
as a process-oriented view on ProMoBox and will serve as a
guide throughout this section. To put all artifacts in the FTG+PM
(i.e., languages, models and transformations) in perspective, they
are marked with a specification level:

• (T) tool-specific: an artifact marked (T) (e.g., a language
for metamodelling) is defined by the DSM tool, and
implemented by a DSM tool builder. As ProMoBox builds
on DSM, it is a prerequisite for ProMoBox;

• (F) framework-specific: an artifact marked (F) (e.g., a
transformation generating the five sublanguages from an
annotated DSML) is defined by the ProMoBox approach.
One who aims to implement the ProMoBox framework will
have to define this artifact, but once defined it can be used
for any DSML ProMoBox;

• (L) language-specific: an artifact marked (L) (e.g., annotat-
ing a metamodel) is defined by a language engineer when
defining a DSML using ProMoBox;

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

Figure 12. The annotations model of the ProMoBox framework.

• (A) application-specific: an artifact marked (A) (e.g., the
model shown in Figure 4) is defined by a domain user
who instantiates the DSML to model a system. Since
this section discusses the language engineering phase,
application-specific artifacts will only appear in Section 6
discussing the system modelling phase;

• (P) property-specific: an artifact marked (P) (e.g., a model
of a property or its counterexample) is defined by a domain
user who models a property. Similar to application-specific
artifacts, property-specific artifacts will only appear in
Section 6.

The Process Model on the right side of the FTG+PM shown
in Figure 10 starts with two manual traditional DSM tasks
of creating a metamodel in the CreateMM activity as well as
specifying a concrete syntax model (CreateCS). This results in an
:AnnotatedMetamodel instance (rather than a Metamodel instance,
yet still without annotations) and a :ConcreteSyntax instance.
Then, the specific activities of the ProMoBox, further explained
in the remainder of this section, are outlined. In Section 4.1, we
define how metamodels can be annotated (the AnnotateMM activity,
resulting in E′ in Figure 11) to define the relationship with the five
sublanguages. In Section 4.2, we discuss the sublanguages in detail
and how they are generated from the annotated metamodel (the
AnnotateMM activity). In Section 4.3, we present how to use these
languages to create the annotated operational semantics which
fine-tunes the behavioural semantics of the DSML ProMoBox
(the CreateOS activity). In Section 4.4 we divert from the main
FTG+PM track to give insight in how to migrate DSMLs, as created
following the traditional process shown in Figure 7, to ProMoBox.

4 LANGUAGE ENGINEERING WITH ProMoBox
This section presents the architecture of the ProMoBox framework.
It discusses the different languages and models of the framework,
and it is explained how the framework can be applied to a DSML.
Section 4.1 to 4.3 explains language engineering with ProMoBox
in detail, in the standard case of UC1. In Section 4.4, UC2 is
addressed, and 4.5 discusses UC3. We present a customisable
approach, to cater UC4. The Elevator case is used as a running
example.

4.1 Defining a ProMoBox

In parallel with the :CreateCS activity, metamodel elements need
to be annotated manually in the :AnnotateMM activity in Figure 10.

The metamodel elements (classes, associations and attributes)
can be annotated with:

• rt: run-time, annotates a dynamic concept that serves as
output (e.g., a state variable);

• ev: an event, annotates a dynamic concept that serves as
input and output (e.g., a button press);

Elevator

<<rt>>doors_open : boolean
<<rt>>going_up : boolean

Button

<<ev>>pressed : boolean

ElevatorButton FloorButton

DownButtonUpButton

Floor

nr : int

requests1 *

elevator_button

*

1

currentfloor<<rt>>

1

*

next
0..1

0..1

Figure 13. The annoted metamodel of the Elevator example.

• tr: a trigger, annotates a static concept that also serves as
input and output (e.g., a key stroke – not available in the
Elevator case).

These annotations are explicitly modelled as annotation types in
the annotations model of Figure 14 which is shown in Figure 12.
The annotations model is an instance of the AnnotationTypes
DSML. Technically, each annotation type represents sublanguage
membership, visualised by checked boxes in Figure 12. An
annotation on an metamodel element denotes in which sublanguage
the element becomes available (i.e., included in the sublanguage’s
metamodel). For example, if an association is annotated with rt, it
will be included in the run-time metamodel, the trace metamodel
and the property metamodel, but not in the design metamodel and
the input metamodel. We say for such an element, that it is (for
example) part of the run-time metamodel. In case of annotations
on an attribute that require the inclusion of the attribute in a
sublanguage, their containing class is included as well, even if it
should not be included by itself. This way, attributes will always
have a containing class. Associations are treated similarly; their
source and target classes will be included if the association is
included. Furthermore, subclasses inherit annotations from their
superclasses.

The annotations model of Figure 12 can be extended with more
annotation types, and will be automatically incorporated by the
ProMoBox framework. A possible example could be an annotation
that denotes inclusion in the output metamodel only, as it is a
derived value (e.g., the total amount of Buttons pressed) of the
systems state. An annotation type must adhere to the following
rules:

• an annotation type should result in at least one inclusion in
a sublanguage’s metamodel;

• if an annotation type denotes inclusion in the design
metamodel, then it must denote inclusion in the run-time
metamodel as well;

• if an annotation type denotes inclusion in the input
metamodel, then it must denote inclusion in the run-time
metamodel as well;

• if an annotation type denotes inclusion in the run-time
metamodel, then it must denote inclusion in the property
metamodel as well.

The first annotation type of Figure 12 defines the case where
no annotation is applied to a metamodel element. In that case,
the concept is not part of the input language. These rules are
incorporated in the static semantics of the AnnotationTypes DSML.

If multiple annotations are applied to an element, the union of
all sublanguage memberships is taken. This union has to adhere to
the above rules.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

As shown in Figure 13, in the case of Elevator and its
metamodel of Figure 2, all language concepts are static, except for
the currentfloor association, and the doors open, going up and
pressed attributes. The values of currentfloor, doors open and
going up can change at run-time when the operational semantics
transformation Figure 5 is applied. Therefore, the rt annotation
is used, meaning that they will be part of the run-time, trace
and property metamodel. The pressed attribute is annotated with
ev, and can thus also serve as input. In fact, it will be the only
metamodel element that appears in the input language.

As shown in Figure 10, from an annotated metamodel and a
concrete syntax model, the fully automatic GenerateLanguages
transformation generates a metamodel and a concrete syntax model
for each of the five sublanguages, and for the RAMified sublan-
guages (so that the sublanguages can be used in transformations),
resulting in a total of 10 languages.

4.2 Generating the ProMoBox Languages

As shown in Figure 11, the five ProMoBox sublanguages are
generated from an annotated metamodel and a concrete syntax
model using a template-based approach. The fully automatic
GenerateLanguages transformation of Figure 10 of one language
and its RAMified counterpart is depicted in Figure 14.

4.2.1 Design, Run-time, Input and Trace Languages
The design, run-time, input and trace languages are generated in
a similar fashion. As for the abstract syntax, the metamodel is
first filtered producing an ordinary metamodel in the FilterMM
transformation. In this transformation, all language elements that
are according to the annotations model not part of the language to
be generated are removed, taking into account that annotations on
attributes or associations are inherited by the related classes. From
the elements that remain, remaining annotations are removed, so
that the result is an ordinary metamodel.

Then, depending on the language to be generated, a prede-
termined metamodel template is added to the metamodel in the
MergeMM transformation. All templates have an Element class,
with an attribute id, to which an inheritance relationship is created
from all DSML-classes of the metamodel. This id will be used to
link elements between different models. The result is the metamodel
of the sublanguage.

Figure 15 to 18 show the generated metamodels of the Elevator
DSML. The template elements are shaded. The template of
the design language and the trace language consists of only
one abstract element-class. The remainder of the metamodel are
the DSML-specific elements, if they were annotated to be part
of the language. This way, the dynamic elements currentfloor,
doors open, going up and pressed do not appear in the design
language Ed, but do appear in the run-time language Er. In the
input language, the template includes an Environment as an Event
list containing InputElements. In Ei, a series of inputs can consist
of button presses. For now, we assume that at most one button
can be pressed in the same event (the empty Event indicates
that there is no input at that time). If the language engineer
decides that more than one or exactly one button can be pressed
at the same time, he can create a variant of this template (see
also Section 7.5.1). This would be a manifestation of UC4. The
template of the trace language Et consists of a Trace of States and
Transitions. This language is able to express a sequence of system
states and the intermediate operations that caused the state change

(rule executions, rule applications in the operational semantics
E[[.]], and/or an input events). Instances of Et are often generated.
The output of E[[.]], or the counterexample in verifications are
instances of Et.

The design instance of the elevator system with three floors is
shown in Figure 19, from which dynamic concepts are excluded.
Figure 4 is a valid instance of Er as it includes dynamic concepts,
and can take the role as run-time instance. Instances of the input
language are out of scope of this paper, because the model checking
approach in this paper implies that all possible input should be
taken into account. The interested reader can find an example of
an instance of an input language in [20]. Due to the possibly large
number of elements in such an execution trace, an instance of Et

is stored in textual form, and can be interpreted or “played out”
by showing step-by-step an instance of the run-time language Er.
This is shown further in this paper, in Figure 28. The interested
reader can find an explicit instance of a trace language in [57].

The concrete syntax model of each of these languages is
generated in a similar way. As depicted in Figure 14, the original
concrete syntax model is filtered in the :FilterCS transformation. All
icons and links of classes and associations that are not part of the
to be generated metamodel are removed. Additionally, all concrete
syntax elements such as text elements that contain references to
attributes that are not part of the to be generated concrete syntax
model are removed as well. Then, the template is added in the
:MergeCS transformation, adding icons and links of respective
template classes and associations. This results in a concrete syntax
model, with a complete mapping to the abstract syntax model.

The result of the generation process for one sublanguage is
an ordinary metamodel and concrete syntax model, thus fully
compliant with the DSM tool.

4.2.2 Property Language
The property language Ep deserves special attention as it is the
pivotal language of the ProMoBox, and its metamodel is generated
in a slightly different way to the four other sublanguages, as shown
in Figure 14 due to the decision node.

After filtering the metamodel according to annotations, an
additional transformation (RAMification) is executed that produces
a pattern language, suited for transformation languages [46], [82] as
explained in Section 2.3. This language can however also be used
to express structural patterns for properties as the same principle
of pattern matching is re-used in this context. At the bottom of
Figure 20 the RAMified DSML elements are shown. All attribute
types are now conditions, abstract classes are now concrete classes,
and lower bounds of multiplicities are relaxed to 0.

Next, the template for property languages is added to the meta-
model, resulting in the metamodel of Figure 20. PropertyElement,
the superclass of all DSML classes, includes a general condition,
a label for inter-pattern matching similarly to [46], [82] and an id
for inter-model traceability similar to the four other sublanguages.
The template consists of a property Specification, which can be
composed of the following four language parts:

• The quantification of the formula by (i) forAll or exists
clause(s), and (ii) corresponding structural pattern(s). The
modeller can choose to model a property for all elements
that match a given structural pattern. This structural pattern
is evaluated on the design model, and can thus not refer
to run-time concepts, because the match set must be static.
Consequently, the property must be satisfied for all, or

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

Figure 14. FTG (left) and PM (right) of generating one of the five sublanguages.

DesignElement

id : String

ElevatorButton FloorButton

DownButtonUpButton

Elevator

ButtonFloor

nr : int

requests1 1

elevator_button

*

1

next

0..1

0..1

Figure 15. Metamodel of the Elevator design language Ed.

Elevator

doors_open : boolean
going_up : boolean

RunTimeElement

id : String

Button

pressed : boolean

ElevatorButton FloorButton

DownButtonUpButton

Floor

nr : int

requests1 *

elevator_button

*

1

currentfloor

1

*

next

0..1

0..1

Figure 16. Metamodel of the Elevator run-time language Er .

for one (depending on the quantifier) match(es) of the
structural pattern. The resulting matches can be re-used
as bound variables in the property, if they have the same
label. Quantification patterns can be nested, or can contain
a temporal or structural pattern.

• The LTL operators, so that ProMoBox can match the expres-
sive power of LTL. One exception is LTL’s next operator,
which is not included in ProMoBox as its semantics remain
unclear in this context (see Section 8.3 for a discussion).
The supported LTL operators include all other operators
as defined in Section 2.5: temporal operators �ψ, ♦ψ,
and ψ U φ, and logic operators ∨, ∧, ¬,→ and↔. The

Button

pressed : boolean

Event

current : boolean

ElevatorButton

InputElement

id : String
Environment

DownButton

FloorButton

UpButton

currentEvent
10..1

event

{ordered}

*1 element *1

nextEvent
0..10..1

Figure 17. Metamodel of the Elevator input language Ei.

Transition

rule_execution : RuleExecution [*]
input_event : Event [*]

Elevator

doors_open : boolean
going_up : boolean

Button

pressed : boolean

ElevatorButton

id : String

TraceElement

FloorButton

DownButtonUpButton

Floor

nr : int

Trace State

requests1 *

nextState1 0..1

nextTransition 0..11

currentState

0..11

elevator_button

*

1

state

{ordered}

*1

currentfloor

1

*

element

*

1

next

0..1

0..1

Figure 18. Metamodel of the Elevator trace language Et.

operands ψ and φ are structural properties of the system,
modelled as structural patterns (explained below). Rather
than using these LTL operators, the user is encouraged to
use temporal patterns, as introduced below.

• The temporal pattern, based on the specification patterns
by Dwyer et al. [21]. The available temporal patterns
are listed in Table 1. The temporal pattern allows the
user to specify a pattern over a given scope, e.g., “the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14

property meaning type scope LTL formula

Absence ψ is false Safety Globally �(¬ψ)
Before ρ ♦ρ→ (¬ψ U ρ)
After σ �(σ → �(¬ψ))
Between σ and ρ �((σ ∧ ¬ρ ∧ ♦ρ)→ (¬ψ U ρ))
After σ until ρ �(σ ∧ ¬ρ→ (¬ψ W ρ))

Existence ψ becomes true Liveness Globally ♦(ψ)
Before ρ ¬ρW (ψ ∧ ¬ρ)
After σ �(¬σ ∨ ♦(σ ∧ ♦ψ))
Between σ and ρ �(σ ∧ ¬ρ→ (¬ρW (ψ ∧ ¬ρ)))
After σ until ρ �(σ ∧ ¬ρ→ (¬ρ U (ψ ∧ ¬ρ)))

Bounded existence (2) ψ becomes true at most 2 times Safety Globally (¬ψ W (ψ W (¬ψ W (ψ W �¬ψ))))
Before ρ ♦ρ→ ((¬ψ∧¬ρ) U (ρ∨((ψ∧¬ρ) U (ρ∨((¬ψ∧¬ρ) U (ρ∨

((ψ ∧ ¬ρ) U (ρ ∨ (¬ψ U ρ)))))))))
After σ ♦σ → (¬σ U (σ∧(¬ψW (ψW (¬ψW (ψW �¬ψ))))))
Between σ and ρ �((σ∧♦ρ)→ ((¬ψ∧¬ρ) U (ρ∨((ψ∧¬ρ) U (ρ∨((¬ψ∧

¬ρ) U (ρ ∨ ((ψ ∧ ¬ρ) U (ρ ∨ (¬ψ U ρ))))))))))
After σ until ρ �(σ → ((¬ψ∧¬ρ) U (ρ∨((ψ∧¬ρ)U(ρ∨((¬ψ∧¬ρ)U (ρ∨

((ψ ∧ ¬ρ) U (ρ ∨ (¬ψ W ρ) ∨ �ψ)))))))))
Universality ψ is true Safety Globally �(ψ)

Before ρ ♦ρ→ (ψ U ρ)
After σ �(σ → �(ψ))
Between σ and ρ �((σ ∧ ¬ρ ∧ ♦ρ)→ (ψ U ρ))
After σ until ρ �(σ ∧ ¬ρ→ (ψ W ρ))

Precedence φ precedes ψ Safety Globally ¬ψ W φ
Before ρ ♦ρ→ (¬ψ U (φ ∨ ρ))
After σ �¬σ ∨ ♦(σ ∧ (¬ψ W φ))
Between σ and ρ �((σ ∧ ¬ρ ∧ ♦ρ)→ (¬ψ U (φ ∨ ρ)))
After σ until ρ �(σ ∧ ¬ρ→ (¬ψ W (φ ∨ ρ)))

Response φ responds to ψ Liveness Globally �(ψ → ♦φ)
Before ρ ♦ρ→ (ψ → (¬ρ U (φ ∧ ¬ρ))) U ρ
After σ �(σ → �(ψ → ♦φ))
Between σ and ρ �((σ ∧ ¬ρ ∧ ♦ρ)→ (ψ → (¬ρ U (φ ∧ ¬ρ))) U ρ)
After σ until ρ �(σ ∧ ¬ρ→ ((ψ → (¬ρ U (φ ∧ ¬ρ)))W ρ))

Table 1
List of temporal properties (adapted from [21]).

Figure 19. An instance of Ed modelling the design of Figure 4.

absence of an occurrence of ψ, after the occurrence
of σ”, or “an occurrence of ψ is responded to by an
occurrence of φ, between occurrences of σ and ρ” (with
proposition variables ψ, φ, σ and ρ). Over 90% of the
properties that were investigated by Dwyer et al. can
be expressed in this simple framework [22]. Given its
use in theory and practice, the specification patterns have
become a strong foundation to build on, making it an
excellent baseline for our work. In our work, six patterns
are supported, to express the absence, existence, bounded
existence, universality response or precedence for given
proposition(s). Note that our approach allows more patterns
to be specified, as explained in Section 5.5. Additionally,
a scope can be defined specifying whether the pattern is
applicable globally, or after, before, in between or after
until the occurrence of given proposition(s). The patterns

and scopes are shown as template classes in Figure 20,
which is meaningful as Dwyer et al. identified numerous
variants of their patterns, which are used depending on
the domain [22]. In total up to four proposition variables
can be used in a temporal pattern, and we implement them
as structural patterns, that represent patterns on the state
of the system at run-time. Table 1 shows each pattern
and its type: safety or liveness property. A safety property
is a property where something should not happen, and a
liveness property is a property where something should
happen eventually. Technically, the property is a safety
property when its translation to Büchi automata has no
non-accepting states with a path to an accepting state [1].
Safety and liveness properties are verified in a different
way, as liveness properties could be violated when the
system can enter a loop that excludes the proposition
that should happen. The LTL formula is shown for every
temporal pattern. Some of them can be confusing to come
up with manually, e.g., existence of ψ before ρ, in which
the case where ρ never occurs should be incorporated in the
formula. Other LTL formulas are long and contain a high
parenthesis depth, such as the bounded existence patterns.
Note that these formulas do not yet include quantification
and structural patterns, so they can easily end up being
more complex.

• The structural pattern, based on PaMoMo [30], [31], for
both design (when used in a quantification pattern) as well
as run-time (when used in a temporal pattern) models. Only

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

15

Elevator

doors_open : Condition = return True
going_up : Condition = return True

StructuralPattern

name : String
condition : Condition = return True
dynamic : boolean

PropertyElement

id : String
label : String
condition : Condition = return True

Button

pressed : Condition = return True

OrderedTemporalPattern

Floor

nr : Condition = return True

TemporalOperator

TemporalFormula

BoundedExistence

n : Integer

QuantifiedPattern

quantifier : Quantifier

TemporalPattern

BinaryOperator UnaryOperator

LowerBounded UpperBounded

<<enumeration>>

Quantifier

exists
forAll

BinaryPattern

ImpliesPattern

ElevatorButton

AtomicPatternUnaryPattern

Specification

name : String

DownButton

Precedence

FloorButton

Universality

AndPattern

StrongUntil

NotPattern

Equivalent

Response

Eventually

WeakUntil

Existence

OrPattern

AfterUntil

UpButton

Absence

Between

Pattern

Globally

Implies Always

Before

Scope

Or Not

After

And

1

0..1

1

0..1

1

0..1

1

1

requests0..1 *

2

1

0..1

elevator_button

*

0..1

10..1

1

0..1

11

currentfloor
0..1

*

1..*1

1

next

0..1

0..1

1

2

0..1

Figure 20. Metamodel of the Elevator Property Language Ep.

a small part of PaMoMo’s expressiveness is included in
the property language, but this suffices for defining most
properties. The basic pattern is an AtomicPattern, which
contains the DSML elements. Just like PropertiesElement,
a StructuralPattern, can hold a condition, which returns
true by default. Note that two types of structural patterns
exist: static patterns that define patterns on a design model
and dynamic patterns that define patterns on a run-time
model. The former are used in quantifier patterns, the latter
are used in temporal pattern propositions. The distinction
is made using the dynamic attribute. This could have been
modelled explicitly by adding StaticStructuralPattern and
DynamicStructuralPattern as subclasses of StructuralPat-
tern, each referring to their respective DSML elements.
Since this would require duplicating the structural pattern
elements and DSML elements, a constraint in metamodel
of Ep enforces the use of correct patterns instead.

Apart from being RAMified, the concrete syntax model is
generated in a similar way as the other sublanguages. The concrete
syntax template for property languages consists of a combination
of natural language and containers denoting visual, DSML patterns.
In light of UC4, the language engineer could choose to change the
concrete syntax according to his or her preference to e.g., icons
denoting the temporal patterns, by changing the concrete syntax
model. This does not affect the abstract syntax model however, as
explained in Section 2.1.

Figure 21 shows a property for the Elevator DSML. The visual,
domain-specific syntax is very similar to the concrete syntax of the

Figure 21. The reachesFloor instance of Ep: for any floor, after a button
is pressed, the elevator will eventually open its doors on that floor.

Figure 22. FTG+PM of operational semantics usage with ProMoBox .

rules in Figure 5. It is combined with a textual syntax to define
temporal operators. A quantification pattern is used to denote that
this property must be valid for all matches of the pattern, i.e., for
all floors. Its structural pattern (visualised by a container) binds a
Floor of the design model of Figure 19 to the pattern element with
label 0. On the right an existence pattern (the Elevator will reach
the previously bound Floor) with lower temporal boundary (after
a Button is pressed that requests the previously bound Floor) is
shown.

4.3 Operational Semantics Annotation

ProMoBox makes input and output explicit in its sublanguages.
Whereas the traditional Simulate transformation of Figure 7 has
a DSML instance as input (i.e., the model in its initial state), and
produces a DSML instance (i.e., the model in its final state), the
Simulate transformation in ProMoBox takes a run-time model
(initial state, generated or manually created from the design model)
and an input model (input events) as input, and generates a run-
time model (the final state) and a trace model (simulation trace)
as shown in Figure 22. The transformation rules are restricted in
that they can only change run-time elements of the model, and can
only use design elements for matching. This restriction guides the
language engineer in creating a correct model of the operational
semantics. Moreover, since information about input and output
needs to be incorporated in the semantics of the language, the
operational semantics of Figure 5 need to be annotated. More
specifically, the operational semantics have to define when (i.e., at
what point in the rule schedule) a new input event is applied to
the system, and a new state is added to the execution output trace.
Different semantics are possible.

Perhaps the most straightforward semantics would be to read
an event from the input environment and add the state to the output
trace, following each successful rule execution of the operational
semantics. This however implies a direct correlation between the
rules of the operational semantics and a conceptual “time step”
(i.e., an abstraction of a significant period of time) of the semantics,
while this is not necessarily so. In the Elevator example, it makes

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

16

Figure 23. Rule annotated schedule of the operational semantics of the
Elevator example.

sense to consider moving up or opening the doors to be interpreted
as a conceptual time step, but maybe not changing the direction,
as this happens on a much smaller time-scale than the elevator
movement. Time-scale abstraction is hence appropriate [62]. Also,
a more complex conceptual step might need more than one rule to
express it, causing semantically inconsistent states in between. For
example, the rule that opens the doors also immediately unlights
the corresponding button. Suppose this would be modelled in two
rules, then the language engineer might want to avoid adding the
state to the trace that is in between those two actions.

To be able to distinguish between rules we introduce annota-
tions for rule schedules, that allow determining the points when
input is read and output is written. The CreateOS activity of
Figure 10 includes the traditional modelling of the operational
semantics (mentioned in Section 2.3, and out of scope of this
paper) and an annotation of the rule schedule. Two new language
constructs are used in Figure 23: the input star and the Boolean
attribute conceptualStep that allows full or dashed transitions.

When the schedule arrives in an input star, the next input
event is read, and the currentEvent link (see Figure 17) is pointed
to the next input event, if available. The input star thus models
the interleaving between input language and run-time language.
This cooperation between heterogeneous models is modelled using
principles of semantic adaptation, where data (in this case button
presses), time (in this case the conceptual time steps) and control
(in this case determined by the rule schedule) of one formalism
is adapted to the other [9], [55]. The input star can be translated
to a generated rule implementing this. The rule links all elements
in the input event by id to elements of the run-time model and
propagates changes to the run-time model. The corresponding
element in the run-time model can always be found because all
elements of the input model are also present in the run-time model.
Note that using metamodel annotations on classes would require
the input language to be changed in order to be of full use. Because
dynamically created class instances would not be addressable by
id, the events should consist of patterns to indicate what part of
the model receives input (i.e., what button is lit). To that end, the
DSML elements in the input language would have to be RAMified
similarly to the property language, and structural pattern elements
might have to be added. We choose not to do this to keep the input
language simple, and because there are no additional limitations to
our approach. After executing the input star, the successful link
is modelled if the read event was not empty, or the notApplicable
link if the event was empty.

Transitions in an annotated rule schedule can include appending
the current state to the output trace (full line), or not (dashed line).
By default, notApplicable links are dashed and successful links are

full. Appending to the output trace can be implemented as a rule
Append that can be generated from the annotated metamodel. A
transition with a full line can be translated to a traditional transition
by replacing it with a transition of the same type to Append
(a new reference to Append for each transformed transition),
followed by a notApplicable and successful link to the target. The
translation from an annotated transformation model to a traditional
transformation model is defined as a higher order transformation,
that serves as the transformational semantics of the annotated
transformation.

In the example of Figure 23, output is written after every
successful rule application, except after reading input. Input is read
after every successful rule application, except for the rules that
change the direction. Note that the bottom input star keeps reading
input events until something has changed (i.e., a non-empty event
was applied).

4.4 Migrating to ProMoBox Compliance
Throughout this section, we have assumed that the language
engineer can start modelling a language from scratch. In this
section, we will focus on UC2: how to simplify an available,
traditionally modelled DSML and how to migrate this DSML to
make it compatible with the ProMoBox approach.

4.4.1 Simplification
In some cases, the metamodel needs to be simplified manually
to address scalability issues of model checking. We investigated
this simplification step by applying the ProMoBox approach to a
DSML for gestural interaction [20]. Together with annotating the
metamodel and operational semantics model, this is the only manual
task that needs to be performed in comparison with traditional
DSML language design. As explained in Section 2.6, it is common
practice to improve efficiency in model checking via abstracting the
model (i.e., by reducing the search tree by abstracting the model)
[4]. To this end, we limit annotated metamodels with the following
constraints:

• attribute abstraction: strings and floating point variables
cannot be used as dynamic variables, although they can
be used as static variables. Such variables need to be
simplified to Booleans or integers, to decrease the domain
size of the variable. Composite types, such as lists or
maps, are not supported. The user may choose to model
a number of attributes that represent an array, but this is
not recommended as the number of variables is best kept
as small as possible;

• integer limitation: integer values are restricted to a max-
imum of [0..255] (byte) or [−215 − 1..215 − 1] (short),
depending on the user’s choice when compiling the model;

• association limitation: associations can be instantiated a
maximum number of times, depending on the user’s choice
when compiling the model;

• dynamic class limitation: similarly, class instantiation
(i.e., classes must be part of the design metamodel) can be
instantiated a maximum number of times.

Note that these constraints make the number of distinct states of
the DSML (i.e., instances of its run-time language) finite. This is
essential in order to be able to analyse the entire state space, as
done by explicit-state model checkers such as Spin.

In addition to adhering to these constraints, following some
guidelines has a direct impact on the performance:

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

17

• avoid dynamic classes: it is not recommended in Pro-
MoBox to include dynamic instantiation of classes in the
DSML as it severely reduces efficiency by increasing
the state space as Promela does not support dynamic
instantiation;

• limit variables: it is good practice to limit the number
of variables, especially integer attributes and dynamic
associations (i.e., that are not part of the design metamodel);

• limit inheritance: the number of inheritance links should
be limited if possible, as inheritance needs to be emulated
in Promela. Flattening the inheritance hierarchy reduces
the execution time, because for pattern instances, less
candidates have to be evaluated;

• limit input language: since model checking will take any
possible scenario into account, the execution time is heavily
dependent on what input it can get. Consequently, the
number of distinct inputs scenarios should be limited by
making abstractions that decrease the complexity of the
input language (i.e., limit the number of elements that
are part of the input metamodel). When possible, it is
recommended to translate integers in the input language to
enumerations.

The operational semantics transformation can be simplified
in a similar way. There are no constraints in the design of the
operational semantics, but some guidelines should be taken into
account:

• determinism: it is recommended to avoid nondeterminism
in the transformation’s rule schedule, as this can drastically
increase the size of the state space;

• number of pattern matches: the number of matches that a
pattern is expected to have should be kept to a minimum as
this increases the state space width. In particular, abstract
classes in a pattern should be used with caution.

These simplifications only affect the DSML formalism. Note
that the eventual model checking performance will also be heavily
affected by the size of the system model and the complexity of the
property.

4.4.2 Migration of Existing Models
A traditional metamodel can be automatically converted to an anno-
tated metamodel. The metamodel language (i.e., Class Diagrams) is
a subset of ProMoBox’s metamodelling language Annotated Class
Diagrams language, which only adds the possibility to annotate
metamodel elements with different predefined annotations. We can
analyse the migration impact of changes by interpreting switching
from Class Diagrams to Annotated Class Diagrams as a language
evolution [58]. In this case, only additive, non-breaking changes
are made. This means that the conformance of the Class Diagram
instances (i.e., the actual metamodels), is not broken after migrating
them to Annotated Class Diagrams, only there are no annotations
used. Depending on the tool that is used, it might however be
necessary to change the namespace of the types used in the
metamodel to explicitly denote that the metamodel is an annotated
metamodel. This can be done using a simple transformation that
traverses all metamodel elements and changes the type. Once the
metamodel is migrated, the regular ProMoBox process can continue
from AnnotateMM activity in Figure 10.

A traditional operational semantics model can be automatically
converted to an annotated transformation model as well. Similarly,

this is an additive, non-breaking change in the transformation
language, where the rule schedule is migrated to an annotated rule
schedule, and the patterns in rules are migrated to the run-time
language. The migrated rule schedule will not yet include input
stars, and will have the default output behaviour. The migrated
rules do not change (except for namespace changes if necessary),
and can be used in ProMoBox as is.

An existing concrete syntax model does not need to be
migrated as traditional concrete syntax modelling is still used
in the ProMoBox approach.

As a consequence of the migration of a traditional metamodel,
existing instances should be converted as well. The traditional
metamodel might include static, dynamic and input concepts,
which are all included in the run-time language according to
the annotation type rules. This means that to migrate instances
to the run-time language, yet again, no explicit migration is
necessary. If however the instance has to be migrated to the
design language or input language, some language constructs
might become unavailable. These metamodel changes can be
calculated in retrospect by analysing the difference between the
traditional metamodel and the design or input metamodel. The
resulting metamodel changes are eliminate metaclass, and eliminate
metaproperty (which covers both associations and attributes) [58].
These are subtractive, breaking and resolvable changes, so a
corresponding migration transformation can be generated. The
transformation will remove all instances of removed meta-elements,
thus again establishing conformance with the target language
(i.e., design or input language).

As a conclusion, all existing DSM artifacts can be automatically
migrated to ProMoBox, so that the additional required effort for
the language engineer is limited to annotating the metamodel and
transformation schedule.

4.5 Evolution of the DSML in ProMoBox
The DSML, notably :AnnotatedMetamodel, :ConcreteSyntax and
:AnnotatedTransformation in Figure 10, may evolve, causing
inconsistencies among other modelling artifacts. As the ProMoBox
approach is generative, this generative process can be redone in
case of evolution, consequently solving inconsistencies between
sublanguages. Since :AnnotatedMetamodel is created at the very
start of the ProMoBox process, all subsequent activities have to be
redone. There are however shortcuts possible:

• if only :ConcreteSyntax evolves, :AnnotatedMetamodel
and the metamodel of the five sublanguages can remain
untouched. Only the concrete syntax models have to be
regenerated (the automated :FilterCS, :MergeCS and :RAM-
ify activities) in Figure 14. In AToMPM, instance models
like in Figure 27 and operational semantics transformation
models that use the concrete syntax do not need to change.
We validated this by changing the button icons (compared
to [57]), which was achieved in a matter of minutes;

• if only :AnnotatedTransformation evolves, only the com-
pilation to the verification backbone and the verification
itself have to be redone, similar to changing :Property. No
models need to be adapted. We validated this by optimising
our operational semantics as explained in Section 7.3, by
reordering rules and removing the NACs, which was also
achieved within minutes;

• in case of an evolution of :AnnotatedMetamodel, co-
evolution may happen for (some of the) sublanguages

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

18

Annotated metamodel change operation Type Sublang. ch. Sublanguage instance migration operation

1 Generalise property Non-breaking 1 None
2 Add class Non-breaking 2 None
3 Add non-obligatory property Non-breaking 3 None
4 Make class concrete Non-breaking 4 None
5 Extract abstract superclass Non-breaking 5 None
6 Extract superclass Non-breaking 6 None
7 Flatten abstract hierarchy Non-breaking 7 None
8 Push property from abstract class Non-breaking 8 None
9 Pull property to abstract class Non-breaking 9 None

10 Eliminate class Breaking and resolvable 10 Eliminate instances
11 Eliminate property Breaking and resolvable 11 Eliminate instances
12 Make class abstract Breaking and resolvable 12 Eliminate instances
13 Extract class Breaking and resolvable 13 Extract properties and add instances
14 Inline class Breaking and resolvable 14, 3, 20, 10 Inline properties and remove instances
15 Flatten hierarchy Breaking and resolvable 15 Eliminate superclass instances
16 Push property Breaking and resolvable 16 Eliminate properties from superclass instances
17 Rename class Breaking and resolvable 17 Change instances
18 Rename property Breaking and resolvable 18 Change instances
19 Change class annotation Breaking and resolvable 2, 10 Eliminate instances

20 Add obligatory property Breaking and unresolvable 20 Add default instances
21 Pull property Breaking and unresolvable 21 Add default properties for superclass instances
22 Restrict property Breaking and unresolvable 22 Remove instance if non-compliant
23 Change property annotation Breaking and unresolvable 3, 20, 11 Add default instances or Eliminate instances

Table 2
Catalogue of change operations adapted from [58], [12] and [34], including change operations (operation 19 and 23) for changes in metamodel

annotations, and with the possible resulting change operations on the sublanguages (Sublang. ch.).

and their instances, as shown in Table 2. In the change
catalogue, property applies to both association and attribute.
It might very well be possible that changes to the annotated
metamodel are not applied to one or more of the five
sublanguages. For example, if an association annotated with
rt is added, the design metamodel and input metamodel
will remain the same. Consequently, their instance models
do not need to be migrated either.
In case of a change in a sublanguage, it needs to be regen-
erated. Additionally, the respective co-evolution scenario
described Table 2 must be followed. It lists all possible
change operations on the annotation metamodel, together
with its type (i.e., non-breaking, breaking and resolvable,
or breaking and unresolvable). The next column indicates
what the possible change operation may be for each of the
sublanguages. For most of the change operations, this may
be either no change (if the affected elements are not in the
sublanguage, as described above), or the same change. For
example, suppose an Eliminate property operation on the
annotated metamodel, of an attribute annotated with rt. This
change does not change the design and input metamodel
because the attribute is not included in these sublanguages,
but results in the same Eliminate property operation on the
run-time, trace and property metamodel.
As can be seen from Table 2, a special operation is Inline
class, that moves a class’ properties to a class to which
it is associated with a one-to-one mapping, and removes
the class and the association. In case the to be deleted
class was not part of the sublanguage but the receiving
class is, this results in a Add non-obligatory property or
Add obligatory property operation on the sublanguage. The
other way around, in case the to be deleted class was part
of the sublanguage but the receiving class is not, this results
in a Eliminate class operation on the sublanguages.

Because annotations were added to the metamodelling
language in the ProMoBox framework, two additional
change operations are added, namely Change class an-
notation and Change property annotation. As indicated
in Table 2, Change class annotation may result in Add
class and Eliminate class operations on sublanguages,
and Change property annotation may result in Add non-
obligatory property, Add obligatory property or Eliminate
property.
In any case, the resulting changes of the sublanguages are
fully compliant with [58], and co-evolution rules can be
applied to its instances. The migration operation is shown
in the rightmost column of Table 2. In case of breaking
and unresolvable changes, a default migration operation
is suggested, but often a customised migration operation
needs to be developed, or even manual migration needs to
be employed.
If a migrated instance is input to the Compile2Pml activity,
the full verification process as described above has to be
restarted. Incremental techniques might be used to only
partly regenerate or recompile, but since the impact of the
automated activities can be neglected, this is out of scope
of this paper.

In [20] we went a step further by applying ProMoBox to a DSML
for the gestural interaction domain, including a simplification step
as described in Section 4.4.1. This process only took slightly longer
than a traditional DSM process. This confirms the discussion of
Section 7.1.

The use of generative techniques for generating sublanguages
possibly introduces problems in case of evolution of a DSML, as
stated in use case UC3. Indeed, instances of any of the sublanguages
may become invalid, and need to be migrated to the new DSML
version. Such problems are present in a regular DSML context
as well, and in this section we showed how to apply resolutions

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

19

Figure 24. The ProMoBoxPromela compilation process.

for DSML evolution to the ProMoBox approach. Each part of a
DSML can evolve, namely the abstract syntax, the concrete syntax,
and the operational semantics. The impact of the latter two are
completely automated in the ProMoBox framework. Using the
23 change operations, we can conclude that the evolution of the
DSML, although it entails five sublanguages, can be treated as a
regular language evolution problem. A solution to the language
evolution problem is given in, amongst other works, [58], and is
therefore out of scope for this paper.

Another type of inconsistency that may occur is that changing
a design or run-time model may invalidate the property model.
However, this change does not render the property model syntacti-
cally incorrect. Structural patterns that were intended to match, may
simply never match. In this framework, we do not provide dedicated
support for handling the fact that changing a design model may
invalidate a property model. Nonetheless, some auxiliary language
constructs can be used to address such consistency issues. Firstly,
quantification patterns may be evaluated at design time. Secondly,
the introduced id attribute refers to model elements in the design
model, and can be used for consistency checking. Nevertheless,
because property models are first-class modelling artifacts, we
consider the modelling of correct property models the responsibility
of the domain user.

5 MAPPING TO A VERIFICATION BACKBONE

As shown in Figure 11, a generic transformation generates a
Promela model (a pml file) containing an LTL formula by means
of a model-to-text transformation. This section explains this part in
detail. The Promela model is compiled from the following models:

• the annotated metamodel, that is used to generate the
Promela run-time metamodel and environment;

• an initial state in the form of a run-time model;
• a property model;
• an operational semantics model;
• the annotations model (not shown);
• the LTL compilation rules, specifying how temporal pat-

terns are translated to LTL formulas (not shown), which is
added for flexibility (see Section 5.5).

A dedicated Promela model is generated that is optimised for a
specific modelled system, initial state and property. The compilation
process follows the steps shown in Figure 24. First, the models are
parsed following the traditional concrete syntax parsing, resulting
in a platform independent abstract syntax graph ASGPI . Then, the
abstract syntax is queried taking the Promela target language into
account to obtain a platform specific abstract syntax tree ASTPS .
The distinction between ASGPI and ASTPS is made to allow
easier replacement of the verification backbone, in case of UC4.
The ASTPS is used to perform semantic analysis that organises
the tree to generate optimised Promela code. Finally, the ASTPS

is compiled to Promela including an LTL formula. The compilation
results in a pml file that serves as input for the Spin verification
tool.

Promela is a language specifically designed for explicit state
model checking, meaning that during model checking the state

1 <METAMODEL>
2 hidden __System s;
3 __RuntimeSystem r;
4 <ENVIRONMENT>
5 <LTL FORMULA>
6 active proctype instance() {
7 <INSTANCE>
8 <SET INITIAL RULE>
9 do ::

10 atomic {
11 <RULE SCHEDULE>
12 <RULE 1>
13 <RULE 2>
14 ...
15 <RULE N>
16 <PRINT STATE>
17 <UPDATE STATE>
18 }
19 od;
20 }

Listing 1. The overall structure of the generated Promela model.

space, i.e., a graph of states of the system, is formed. This means
that in designing a suitable Promela model, certain restrictions
have to be taken into account:

• the state space (i.e., number of different states and tran-
sitions) needs to be as small as possible. This means that
nondeterminism has to be limited to constrain the breadth of
the state space and that the number of atomic statements has
to be limited to constrain the depth of the state space. This
influences the verification time and memory consumption;

• the state vector has a static size and needs to be as small
as possible, so that the individual nodes in the graph are
as small as possible. This mainly influences the memory
consumption of the verification.

The overall structure of the pml file is shown in Listing 1,
where code snippets are referenced between angle brackets, which
are explained in detail below. The Promela model is structured as
follows, and the role of each model in the compilation process is
discussed in the remainder of this subsection:

• line 1: code for the metamodel (see Section 5.1) which
implements the definition of types;

• line 2-3: declaration of the system variables for the static
s and dynamic part r of the system, which are typed by
the metamodel. The hidden keyword denotes that s, the
static part of the system, is not part of the state vector;

• line 4: code for the input language (see Section 5.3) which
is implemented as a function that nondeterministically
executes an input event;

• line 5: an LTL formula implementing the temporal pattern
(see Section 5.5);

• line 6: start of the main process (stops at line 20);
• line 7: code for the initial state (see Section 5.2) initialising

the system variable by assigning values to fields of r and
s;

• line 8-15: code for operational semantics (see Section 5.4),
including a do-loop, i.e., the simulation loop, that applies
a rule at each indivisible atomic iteration (ends at line 19).
This includes a rule schedule, which branches (by using
gotos) to code for rules;

• line 16: code for the trace language (see Section 5.6), which
prints out the current state of the system in a predefined
format, which can be written to a text file;

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

20

1 mtype = {movedown_last_, opendoor_up_, changetoup_, changetodown_,
opendoor_down_, movedown_, moveup_last_, closedoor_, environmentstep2_,
environmentstep1_, moveup_, ElevatorButtonType, ElevatorType, FloorType,
UpButtonType, DownButtonType}

2 typedef Button {
3 short __subtype;
4 short requests_out; // Floor out
5 short elevator_button_in; // Elevator in
6 }
7 typedefRuntimeButton {
8 bit pressed;
9 }

10 typedef Elevator {
11 short __subtype;
12 short elevator_button_out[3]; // ElevatorButton out
13 }
14 typedefRuntimeElevator {
15 bit doors_open;
16 bit going_up;
17 short currentfloor_out; // Floor out
18 }
19 typedef Floor {
20 short __subtype;
21 short nr;
22 short next_out; // Floor out
23 short next_in; // Floor in
24 short requests_in[3]; // Button in
25 short currentfloor_in; // Elevator in
26 }
27 typedef __System {
28 Button button_[7];
29 Elevator elevator_[1];
30 Floor floor_[3];
31 }
32 typedef__RuntimeSystem {
33 RuntimeButtonbutton_[7];
34 RuntimeElevatorelevator_[1];
35 }

Listing 2. The compiled bounded meta-model.

• line 17: code for evaluating the property propositions
(i.e., structural patterns) which will be executed after every
state change (i.e., rule application) (see Section 5.5).

5.1 Compilation of the Metamodel
A metamodel is created in the form of typedef statements as
shown in Listing 2, that allow the declaration of statically structured
types. First (line 1), an mtypedeclaration is given, which introduces
symbolic names for concrete metamodel types and rules (the
latter will be used in Section 5.4). Only the three classes on
top of the inheritance hierarchy become Promela types (line
2-26). The instances of these types are stored as static arrays,
and instances are accessed by indexing that array. Attributes are
converted to typedeffields (e.g., line 8), with corresponding types.
Since Promela is not an object-oriented language, inheritance and
associations have to be encoded, as shown in Listing 2. Inheritance
is implemented by the __subtype attribute (e.g., line 3), that refers
to any class in the run-time or design metamodel. Associations
are implemented with bidirectional navigability by fields of type
short, that refer to the index of the target, rather than to an object
(e.g., line 4). For instance, if the currentfloor_out (line 17) of an
Elevator is 1, its target is the Floorwith index 1. If no link exists,
its index is set to -1. Two kinds of types are created: static types
(Button, Elevator, Floor and __System) that model the design
language, and dynamic types (RuntimeButton, RuntimeElevator
and __RuntimeSystem) that model the additional elements of the
run-time language. This distinction is made so that the state vector
only contains a minimum of state information.

The model of the initial state of the modelled system (modelled
as a run-time instance) is taken into account in three ways to

1 d_step {
2 // ElevatorButton$atompmId:1
3 s.button_[0].__subtype = ElevatorButtonType;
4 r.button_[0].pressed = true;
5 s.button_[0].requests_out = 0;
6 s.button_[0].elevator_button_in = 0;
7 // ElevatorButton$atompmId:2
8 s.button_[1].__subtype = ElevatorButtonType;
9 r.button_[1].pressed = false;

10 s.button_[1].requests_out = 1;
11 s.button_[1].elevator_button_in = 0;
12 (...)
13

14 // Elevator $atompmId:0
15 s.elevator_[0].__subtype = ElevatorType;
16 r.elevator_[0].doors_open = true;
17 r.elevator_[0].going_up = false;
18 s.elevator_[0].elevator_button_out[0] = 2;
19 s.elevator_[0].elevator_button_out[1] = 0;
20 s.elevator_[0].elevator_button_out[2] = 1;
21 r.elevator_[0].currentfloor_out = 2;
22

23 // Floor $atompmId:4
24 s.floor_[0].__subtype = FloorType;
25 s.floor_[0].nr = 2;
26 s.floor_[0].requests_in[0] = 3;
27 s.floor_[0].requests_in[1] = 0;
28 s.floor_[0].requests_in[2] = -1;
29 s.floor_[0].next_in = 1;
30 s.floor_[0].next_out = -1;
31 s.floor_[0].currentfloor_in = -1;
32 (...)
33 }

Listing 3. The compiled design model and initial state (abbreviated).

ensure that the state space of the Promela model is bounded.
First, a __System type is declared (line 27-31) with static arrays
of 7 Buttons, 1 Elevator and 3 Floors, and a __RuntimeSystem
type (line 32-35) with 7 Buttons and 1 Elevator, referring to the
multiplicities of the design model. These two types represent
the static and dynamic part of the modelled system, and both
are instantiated once as shown in Listing 1 on line 2-3. Second,
maximum array sizes for fields implementing associations are
chosen according to the multiplicities of the design model. If
the number of possible instances of a dynamic association is
unbounded, a maximum number is set to ensure boundedness of the
Promela model. Third, only one end of each dynamic association
needs to be stored in the dynamic state vector, and the one with the
lowest multiplicity of the design model is chosen in order to limit
the state vector size. Both ends are stored to improve navigability
but will constantly be kept synchronised, so only one end has to
be part of the state vector. In this example, the currentfloor_out
field (line 17) has a multiplicity of maximum 1 as there is only one
Elevator in the design model, while the currentfloor_in field
(line 25) has a multiplicity of maximum 3 as there are three Floors,
so the former is stored in the state vector.

5.2 Compilation of the Model and Initial State

The first statements of the one and only active process started
on line 6 in Listing 1 set the values of the initial state of the
modelled system as shown partially in Listing 3. The values for
each model element are set, creating attribute values (e.g., line
4), type values (e.g., line 3) and association links (e.g., line 5).
In comments the corresponding type and element id from the
modelling tool are given as documentation. This results in the
static __System instance s and the initial state of the dynamic
__RuntimeSystem instance r. The element order of array fields in
__Systemand __RuntimeSystem is by definition the same, meaning

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

21

1 inline environment() {
2 if
3 :: true -> skip
4 :: r.button_[0].pressed == 0 ->
5 d_step { success = true; r.button_[0].pressed = true; }
6 :: r.button_[1].pressed == 0 ->
7 d_step { success = true; r.button_[1].pressed = true; }
8 :: r.button_[2].pressed == 0 ->
9 d_step { success = true; r.button_[2].pressed = true; }

10 :: r.button_[3].pressed == 0 ->
11 d_step { success = true; r.button_[3].pressed = true; }
12 :: r.button_[4].pressed == 0 ->
13 d_step { success = true; r.button_[4].pressed = true; }
14 :: r.button_[5].pressed == 0 ->
15 d_step { success = true; r.button_[5].pressed = true; }
16 :: r.button_[6].pressed == 0 ->
17 d_step { success = true; r.button_[6].pressed = true; }
18 fi
19 }

Listing 4. The compiled environment model.

that e.g., s.button_[2] refers to the same Button instance as
r.button_[2]. The initialisation code is in a d_stepblock, making
it an indivisible, deterministic block of code.

5.3 Compilation of the Input Language
Listing 4 shows a macro containing a model of one execution step
of the environment that implements the input language. It represents
passing through an input star during simulation. It consists of an
if-statement that can set the pressed-value of any Button to true
(or 1) if it was not yet true. Promela evaluates the if-statement by
evaluating all of its conditions, then chooses randomly one option
that evaluates to true, and executes the corresponding body. The
code of an environment step that is shown above ensures that at
most one, but also no (see line 3) button can be pressed. Other
semantics can be chosen which would result in a variation of this
macro, such as: exactly one option has to be chosen, more than
one but unique options can be chosen, more than one and the same
options can be chosen, etc. Also, in our current implementation, a
Boolean input is implemented that can only be turned on, not off,
by the environment. The environment strongly influences the size
of the state space, as this macro is typically executed a multitude
of times and might result in a significant number of state space
branches. Therefore, the possible options (in this case maximally
8) should be kept to a minimum by wisely choosing the above
described environment variant. This often requires an abstraction.
The success variable is necessary to denote whether a rule was
applied and reflects whether the success or notApplicable link
exiting an input star should be followed in the rule schedule. The
print statement will be used to create a textual report in the case of
a counterexample (see Section 5.6).

5.4 Compilation of the Operational Semantics
Listing 5 shows the partial rule schedule of Figure 23 in Promela.
This rule schedule is part of the simulation loop shown in Listing 1.
In line 1-14, control flow is directed to the correct rule. The initial
rule is set earlier in the code, right before the start of the simulation
loop, by assigning the nextrule variable. From line 16 onward,
the schedule is modelled which is activated after evaluating a rule.
After evaluation, the rule was either successful (e.g., line 18) or
not applicable (e.g., line 22), which is modelled by the success
variable that is set in the rule code. According to this, the new value
of nextrule is determined, and depending on whether output must
be added to the output trace control flow is directed to OUTPUT

1 if
2 :: (nextrule == movedown_last_) -> goto MOVEDOWN_LAST;
3 :: (nextrule == movedown_) -> goto MOVEDOWN;
4 :: (nextrule == moveup_last_) -> goto MOVEUP_LAST;
5 :: (nextrule == opendoor_up_) -> goto OPENDOOR_UP;
6 :: (nextrule == closedoor_) -> goto CLOSEDOOR;
7 :: (nextrule == changetoup_) -> goto CHANGETOUP;
8 :: (nextrule == changetodown_) -> goto CHANGETODOWN;
9 :: (nextrule == initialize_) -> goto INITIALIZE;

10 :: (nextrule == environmentstep2_) -> goto ENVIRONMENTSTEP2;
11 :: (nextrule == environmentstep1_) -> goto ENVIRONMENTSTEP1;
12 :: (nextrule == opendoor_down_) -> goto OPENDOOR_DOWN;
13 :: (nextrule == moveup_) -> goto MOVEUP;
14 fi;
15

16 MOVEDOWN_LAST_schedule:
17 if
18 :: (success == true) -> // when successful
19 rule = movedown_last_;
20 nextrule = environmentstep1_;
21 goto OUTPUT;
22 :: else -> // when not applicable
23 nextrule = changetodown_;
24 goto UPDATESTATE;
25 fi;
26 OPENDOOR_UP_schedule:
27 if
28 :: (success == true) -> // when successful
29 rule = opendoor_up_;
30 nextrule = environmentstep1_;
31 goto OUTPUT;
32 :: else -> // when not applicable
33 nextrule = opendoor_down_;
34 goto UPDATESTATE;
35 fi;
36 (...)
37 ENVIRONMENTSTEP1_schedule:
38 if
39 :: (success == true) -> // when successful
40 nextrule = opendoor_up_;
41 goto UPDATESTATE;
42 :: else -> // when not applicable
43 nextrule = opendoor_up_;
44 goto UPDATESTATE;
45 fi;
46

47 ENVIRONMENTSTEP2:
48 success = false;
49 environment();
50 goto ENVIRONMENTSTEP2_schedule;
51

52 ENVIRONMENTSTEP1:
53 success = false;
54 environment();
55 goto ENVIRONMENTSTEP1_schedule;

Listing 5. The compiled rule schedule (abbreviated) and environment
steps.

(see Listing 1 line 16) or directly to UPDATESTATE (see Listing 1
line 18), after which a new iteration of the simulation loop starts.
Note that a new iteration starts after every evaluation of a rule,
successful or not.

The input stars are modelled as rules on line 47-55 and as such,
can be triggered by line 1-14. The success variable is set to false,
and can be set to true in the function call to the environment macro
of Listing 4. Like any rule, control flow is directed to the right
schedule block at the end of the rule.

The compiled changeToUp rule is shown in Listing 6. Just
like the input star, it starts by setting the success variable to false
and ends with a goto statement. A rule consists of an LHS (the
pattern that must be matched), optional NACs (given an LHS
match, patterns that should not match) and an RHS (the effect of
the pattern).

For each of these three parts, its pattern elements are compiled
one by one. The order in which elements are compiled is determined
by a sorting algorithm, that sorts according to a score for each

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

22

1 CHANGETOUP:
2 success = false;
3 e0 = 0; // this is the only Elevator so index must be 0
4 f1 = r.elevator_[e0].currentfloor_out; // direct access
5 b2_indexes[0]=0; b2_indexes[1]=1; b2_indexes[2]=2; b2_indexes[3]=3; b2_indexes

[4]=4; b2_indexes[5]=5; b2_indexes[6]=6;
6 b2_max = 7;
7 do
8 :: (success == false && b2_max > 0) ->
9 if

10 :: ((e0 >= 0) && (s.elevator_[e0].__subtype == ElevatorType)
11 && (r.elevator_[e0].going_up == false)
12 && (f1 >= 0)
13 && (s.floor_[f1].__subtype == FloorType)
14 && (b2_max > 0) && (b2_indexes[0] >= 0)
15 && (s.button_[b2_indexes[0]].__subtype == ElevatorButtonType
16 || s.button_[b2_indexes[0]].__subtype == DownButtonType
17 || s.button_[b2_indexes[0]].__subtype == UpButtonType)
18 && (r.button_[b2_indexes[0]].pressed == true)
19 && (s.button_[b2_indexes[0]].requests_out>= 0)
20 && (s.button_[b2_indexes[0]].requests_out != f1)
21 && (s.floor_[s.button_[b2_indexes[0]].requests_out].__subtype == FloorType)
22 && (s.floor_[s.button_[b2_indexes[0]].requests_out].nr>s.floor_[f1].nr))
23 -> b2 = b2_indexes[0]
24 (...)
25 :: else -> break
26 fi;
27 f4 = s.button_[b2].requests_out; // direct access
28 // NAC_
29 NAC__success = false;
30 b7_indexes[0]=0; b7_indexes[1]=1; b7_indexes[2]=2; b7_indexes[3]=3;

b7_indexes[4]=4; b7_indexes[5]=5; b7_indexes[6]=6;
31 b7_max = 7;
32 do
33 :: (NAC__success == false && b7_max > 0) ->
34 if
35 :: ((b7_max > 0) && (b7_indexes[0] >= 0)
36 && (s.button_[b7_indexes[0]].__subtype == ElevatorButtonType
37 || s.button_[b7_indexes[0]].__subtype == DownButtonType
38 || s.button_[b7_indexes[0]].__subtype == UpButtonType)
39 && (r.button_[b7_indexes[0]].pressed == true)
40 && (s.button_[b7_indexes[0]].requests_out>= 0)
41 && (s.button_[b7_indexes[0]].requests_out != f1)
42 && (s.floor_[s.button_[b7_indexes[0]].requests_out].__subtype
43 == FloorType)
44 && (s.floor_[s.button_[b7_indexes[0]].requests_out].nr
45 < s.floor_[f1].nr))
46 -> b7 = b7_indexes[0]
47 (...)
48 :: else -> break
49 fi;
50 f6 = s.button_[b7].requests_out; // direct access
51 // NAC_ matched
52 NAC__success = true;
53 break;
54 :: else -> break
55 od;
56 if
57 :: (NAC__success == false) ->
58 r.elevator_[e0].going_up = true;
59 success = true;
60 break;
61 :: else ->
62 b2_max--; temp = b2_indexes[b2_max]; b2_indexes[b2_max] = b2_indexes[

b2_index]; b2_indexes[b2_index] = temp;
63 fi;
64 :: else -> break
65 od;
66 goto CHANGETOUP_schedule;

Listing 6. The compiled changeToUp rule (abbreviated).

element, representing the expected probability to find a match.
This compilation order is illustrated in Figure 25, where the score
of each element, followed by the order of compilation between
brackets, is shown at the right side of each element on Figure 25.
The score given to each pattern element is determined by the
following formula: 10 · nrOfAttributes − 2 ·multiplicity −
subclassMatching, with nrOfAttributes, the number of at-
tributes with a constraint, multiplicity, the number of elements
of that type, and subclassMatching whether or not (value 1

Figure 25. The order of compilation of the LHS of the changeToUp rule.

or 0) this element can be matched with candidates of a subtype
(e.g., an UpButton can match a Button pattern element). Pattern
elements with high scores are more constrained and thus less likely
to match. For efficient pattern matching, it is desirable to know as
soon as possible if the pattern will not match, and it is therefore
preferable to try to match “hard” elements first. A different sorting
algorithm can be plugged in easily. From a compiled element, the
code generator traverses the pattern by following links from the
element. A similar pluggable sorting algorithm is implemented for
links to determine which of the pattern element links should be
matched first.

In Promela, a match candidate is represented by an array index
stored in a variable and the variable name is composed of the
first letter of its type, followed by the label of the pattern element
(e.g., e0 on line 3 represents a match candidate for the Elevator
with label 0 in the changeToUp rule in Figure 5). In principle, the
code for matching the elements and thus finding the right candidate
consists of nested blocks in order of element traversal. Depending
on the element one out of two kinds of code blocks is generated:

• a do block, if there are multiple candidates, e.g., for
matchingButtons. The do block iterates over all candidates
until one is found that satisfies the element constraints.
According to the pattern matching semantics, a random
candidate has to be found. This is achieved by storing
all valid candidates in a temporary _indexes array (line
5, 30). The first _max (line 6, 31) elements in the array
are the candidates that are not evaluated yet. Since at the
start no elements are evaluated yet, _max is equal to the
length of _indexes. If a candidate does not satisfy the
pattern element constraints, its _indexes entry is swapped
and _max is decreased so that the candidate is not in the
first _max elements of _indexes anymore (line 62). In
each iteration, a candidate is chosen by an if statement
that chooses a random candidate for which the additional
conditions are met (line 9-26, 34-49). Each option has the
same condition, but a different candidate is used from the
_indexes array, e.g., b2_indexes[0] is used for the first
candidate as the Button with label 2, b2_indexes[1] as
the second candidate (not shown), etc. For brevity, only one
option is shown per if statement. If a candidate satisfies the
condition, the candidate variable is set (line 23, 46). If no
valid candidate can be found, control breaks out of the do
loop (line 25, 48).

• an if block, if there is only one candidate, e.g., for
matching a Floor pattern element that is reached via the
requests_out link from a Button. No _indexes variable

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

23

has to be used, because only the condition of the single
candidate has to be checked.

In practice however, the nested structure is folded where possible
into a smaller number of tests, by combining conditions of
multiple pattern elements. This way the cyclomatic complexity,
and consequently the state space, is decreased significantly. For the
changeToUp rule, the LHS can be folded into a single do loop,
and the NAC is folded into a single do loop as well.

The conditions that are used to check whether a candidate
satisfies the constraints of a pattern element (line 10-22, 35-45) are
the following:

1) they are not null (i.e., the match candidate is not -1) and
there are still possible candidates (line 10, 12, 14, 19, 35,
40);

2) if applicable, they are not the same as a previously matched
item (line 20, 41),

3) if applicable, their dynamic type, represented by the
__subtype attribute, is correct (line 10, 13, 15-17, 21,
36-38, 42-43) and,

4) if applicable, element conditions that are specified are
satisfied (line 11, 18, 22, 39, 44-45).

The order of evaluating the candidates as shown in Figure 25 can
be recognised in the order of expressions in the conditions.

If a match is found for the LHS (line 7-26, 64-65), and no match
is found for a NAC (line 32-55), the right-hand side (RHS) of the
rule is applied (line 58), which is generated from the difference
between the RHS and the left-hand side of the rule. The rule is
flagged successful and is exited (line 59-60). Finally the execution
jumps back to the rule schedule, which will decide the next step
(line 66).

5.5 Compilation of the Property Instance
The property instance is translated to an LTL formula (line 5 in
Listing 1) and Promela code. Promela code is necessary to evaluate
the formula’s propositions which are modelled as structural patterns
(line 17 in Listing 1). The compilation to an LTL formula is done
according to the formulas of Table 1.

Additional to these formulas, Dwyer et al. identified more
variants in [22], e.g., whether scopes are open or closed on the left
and right (by default scopes are closed on the left and open on the
right), constrained response, chained patterns, number of links in
chains, maximum number in bounded existence, etc. The number
of possible combinations is enormous. In order to potentially
support all possible combinations of variants, we introduced a
dedicated mechanism to add variants. Rather than hard-coding
the translation of a predefined set of variants in the compiler, we
now allow the user to specify model-to-text rules that intuitively
map given template extensions to LTL. Consequently, the language
engineer can not only introduce new variants of the pattern system,
but can also create new temporal properties in the template for
property languages and specify their semantics in terms of LTL.
The mechanism works at the domain-independent level, so once a
new variant is specified, it is available for any DSML.

An example of such an LTL compilation rule is shown in
Figure 26, where it is specified how a bounded existence with
upper limit of 2 is translated to LTL. In the LHS of the rule, an
instance the pattern is shown, with two generic structural patterns,
called P and Q. In the RHS of the rule the corresponding LTL
formula is specified, and P and Q are used as propositions. The

compiler can use this rule as a template, and replace P and Q with
actual propositions during the compilation process.

Additionally, quantification patterns are statically evaluated on
the design model and for each match an LTL formula is instantiated,
joined by logical and in case of for all quantification, and logical
or in case of exists quantification. For example, the reachesFloor
property of Figure 21 for the design model of Figure 19 can be
compiled to the formula �(¬P0 ∨ ♦(P0 ∧ ♦Q0)) ∧ �(¬P1 ∨
♦(P1∧♦Q1))∧�(¬P2∨♦(P2∧♦Q2)). The two proposition
patterns of Figure 21 (i.e., the two rightmost structural patterns),
are thus translated to six propositions, as both are expanded to
each of the three floors. The proposition P0 represents “a button is
pressed at the first floor”, Q0 represents “the elevator has opened
its doors at the first floor”, etc. Note how the resulting formula does
not only depend on the property, but also on the modelled system.

The propositions of the property must be evaluated after every
rule application of the operational semantics. This is done in the
UPDATE STATE block (line 17 in Listing 1), which is shown in
Listing 7. The evaluation of propositions P0 (line 5-16) and Q0
line (17-24) are shown, and P1, P2, Q1, and Q2 are not shown
but are similar, modulo the different value of f0 (line 4). Since
the code represents matching a pattern, it is similar to the code
implementing a rule. The main difference however is that we are
only interested in whether a match can be found, while it is not
important which match is found. Therefore, the choice of candidates
can be deterministic (line 3), allowing for more optimal and simpler
code that only traverses all candidates (line 6-16). If a match is
found, the proposition variable becomes 1 (line 12), else it remains
0.

5.6 Compilation and Parsing of the Counterexample
If the transition that is followed in the rule schedule dictates that
output must be written, the schedule directs to the OUTPUT label
in the PRINT STATE block (line 16 in Listing 1) which is shown
in Listing 8. The last executed rule and state of the system are
printed out using the id of the corresponding model element. This
information can be used to trace back the value to the run-time
model, and allows for playing out a trace. The printf statements
are only executed during simulation in Spin, not during model
checking.

After the Promela model is generated (step 1 in Figure 11),
Spin uses model checking to find a counterexample of the property
(step 2 in Figure 11). If a counterexample is found, a trail file is
generated, which can be simulated in Spin, to execute the print
state code of Listing 8 (step 3 in Figure 11). The resulting text
is structured according to the grammar shown in Listing 9 and
represents a trace, i.e., the succession of states. The first line of
the text contains the LTL formula (corresponding to Table 1), the
subsequent lines are generated during simulation in Spin, and can
be:

• a system step: rules of the operational semantics, created
by executing the printf statements of Listing 8;

• an environment step: similar to a system step, but repre-
senting the occurrence of an input (i.e., line 14 and 15 of
Listing 8);

• a property step: the progression of the LTL formula as
so-called never claim (i.e., Büchi automaton), which is
generated by Spin [35]. This can be either a regular
progression to a subformula of the LTL formula, or the
indication that an acceptance cycle is reached.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

24

after eventually at most 2 times

Q P

<>Q -> (!Q U (Q & (!P W (P W (!P W (P W []!P))))))

Figure 26. The LTL compilation rule for a bounded existence pattern with after scope and n = 2.

1 UPDATESTATE:
2 skip;
3 d_step {
4 f0 = 0; // statically set
5 P0 = 0;
6 do
7 :: ((P0 == 0) && (b1 < 3) && (s.floor_[f0].requests_in[b1] >= 0)
8 && (s.button_[s.floor_[f0].requests_in[b1]].__subtype ==

ElevatorButtonType
9 || s.button_[s.floor_[f0].requests_in[b1]].__subtype ==

DownButtonType
10 || s.button_[s.floor_[f0].requests_in[b1]].__subtype == UpButtonType)
11 && (r.button_[s.floor_[f0].requests_in[b1]].pressed == 1)) ->
12 P0 = 1;
13 break;
14 :: (b1 >= 3) -> break;
15 :: else -> b1++;
16 od;
17 Q0 = 0;
18 e3 = 0; // via id field
19 if
20 :: ((r.elevator_[e3].doors_open == 1)
21 && (f0 == r.elevator_[e3].currentfloor_out)) ->
22 Q0 = 1;
23 :: else -> skip;
24 fi;
25 (...)
26 }

Listing 7. The compiled proposition patterns of the property.

The trace ends with a line stating how many internal steps are
executed by Spin. The printed text is directed to a text file, which
can be interpreted by a generic parser that implements the grammar
of Listing 9. From this trace and the design model, a trace model
can be generated (step 4 in Figure 11). This is done by, for each
state in the trace, mapping the state to the design model, thus
forming a trace language State. The Transitions in between states
are collected from the rule_application non-terminal.

The trace model can be played out on the run-time model,
so that the counterexample is visualised step by step (step 5 in
Figure 11). Because the trace model usually has this purpose, it is
parsed implicitly to memory instead of constructing a Et instance.

6 THE ELEVATOR ProMoBox IN ACTION

We implemented the ProMoBox framework in AToMPM [83], and
the compiler for models to Promela and the parser for text to
models were written in Python, using AToMPM bindings. Figure 27
shows the FTG+PM of the full process of using ProMoBox for
modelling and verification, including the modelling of the system
and property. In accordance with the two DSM phases explained in
Section 2.1, this modelling process is typically carried out by the
domain user and starts where the process of the language engineer
of Figure 10 stops.

The user starts by modelling a system in the design language.
The design model can be automatically converted to a run-
time model using the generic ToRuntime transformation. This
transformation is similar to the migration described in Section 4.4.2,
meaning that it only consists of a namespace switch, if necessary.
Linguistically, no model elements are changed. In this case however,

1 OUTPUT:
2 skip;
3 d_step {
4 printf("%d: ", timestep);
5 if
6 :: (rule == movedown_last_) -> printf("MOVEDOWN_LAST ");
7 :: (rule == movedown_) -> printf("MOVEDOWN ");
8 :: (rule == moveup_last_) -> printf("MOVEUP_LAST ");
9 :: (rule == opendoor_up_) -> printf("OPENDOOR_UP ");

10 :: (rule == closedoor_) -> printf("CLOSEDOOR ");
11 :: (rule == changetoup_) -> printf("CHANGETOUP ");
12 :: (rule == changetodown_) -> printf("CHANGETODOWN ");
13 :: (rule == initialize_) -> printf("INITIALIZE ");
14 :: (rule == environmentstep2_) -> printf("ENVIRONMENTSTEP2 ");
15 :: (rule == environmentstep1_) -> printf("ENVIRONMENTSTEP1 ");
16 :: (rule == opendoor_down_) -> printf("OPENDOOR_DOWN ");
17 :: (rule == moveup_) -> printf("MOVEUP ");
18 :: else -> skip;
19 fi;
20 printf("$atompmId:1.pressed=%d;", r.button_[0].pressed);
21 printf("$atompmId:2.pressed=%d;", r.button_[1].pressed);
22 printf("$atompmId:3.pressed=%d;", r.button_[2].pressed);
23 printf("$atompmId:7.pressed=%d;", r.button_[3].pressed);
24 printf("$atompmId:8.pressed=%d;", r.button_[4].pressed);
25 printf("$atompmId:9.pressed=%d;", r.button_[5].pressed);
26 printf("$atompmId:10.pressed=%d;", r.button_[6].pressed);
27 printf("$atompmId:0.doors_open=%d;", r.elevator_[0].doors_open);
28 printf("$atompmId:0.going_up=%d;", r.elevator_[0].going_up);
29 if
30 :: (r.elevator_[0].currentfloor_out == 0) ->
31 printf("$atompmId:0.currentfloor_out=$atompmId:4;");
32 :: (r.elevator_[0].currentfloor_out == 1) ->
33 printf("$atompmId:0.currentfloor_out=$atompmId:5;");
34 :: (r.elevator_[0].currentfloor_out == 2) ->
35 printf("$atompmId:0.currentfloor_out=$atompmId:6;");
36 fi;
37 printf("\n");
38 timestep = timestep + 1;
39 }

Listing 8. The compiled code for printing the current state.

an initial state still needs to be modelled in the SetInitialState
activity. Obligatory run-time attributes (such as the pressed,
going up and doors open attributes) and run-time associations
with a minimum cardinality greater than 0 (such as the currentfloor
association) are required in Elevator and Button instances in the
run-time language. Consequently, the result of the transformation
is a model that is conform to a “relaxed” run-time language (much
like the intermediate metamodel described in [59]), i.e., the run-
time language modulo constraints on the minimum cardinality of
run-time associations. In this relaxed run-time language, the initial
state can be modelled in the SetInitialState activity so that the
resulting model is a valid run-time model. In case of the elevator
example, the currentfloor link should be set and initial values for
pressed attributes, going up and doors open should be given. The
result of the initialisation step in our example is Figure 4. Instead
of modelling by hand, default values can be used, if available. For
this particular model however, it is not relevant which initial state
is chosen, as all states turn out to be reachable from one another.
In parallel with modelling the system, a property is modelled in
the ModelProperty activity, which results for this example in the
property model shown in Figure 21.

The remainder of the process model in Figure 27 explains the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

25

1 output_trace = ltl "\n" {(system_step | environment_step | property_step)
"\n"} spinend "\n"

2 ltl = "ltl" property_name ":" ltl_string
3 property_name = ID
4 system_step = step_nr ":" rule_applicationsystem_state
5 step_nr = NUMBER
6 rule_application = ID
7 system_state = {variable "=" value ";"}
8 variable = "$atompmId:" atompmid "." feature
9 value = NUMBER

10 environment_step = "INPUT" system_state
11 property_step = regular_step | cycle
12 regular_step = "Never claim moves to line" NUMBER "[" ltl_string "]"
13 cycle = "<<<<<START OF CYCLE>>>>>"
14 spinend = "spin:trail ends after" NUMBER "steps"
15

16 ltl_string = operand | "(" ltl_string ")" | ltl_string binop ltl_string
| unop ltl_string

17 operand = "true" | "false" | proposition
18 binop = "U" | "W" | "&&" | "||" | "-->"
19 unop = "!" | "[]" | "<>"
20 proposition = ID
21

22 ID = ("a".."z"|"A".."Z"|"_") {"a".."z"|"A".."Z"|"0".."9"|"_"}
23 NUMBER = ("0".."9") | ("1".."9")("0".."9")*

Listing 9. The grammar in EBNF of the text file generated by running the
Promela model with a trail file in Spin (after step 3 in Figure 11).

five steps of Figure 11 in detail. The property model, the run-time
model, and the existing annotated metamodel and operational
semantics are translated to a Promela model as explained in
Section 5 in the Compile2Pml activity. This Promela model,
containing an LTL formula, is fed to the Spin model checker
in the VerifyWithSPIN activity. Depending of the type of the
property (liveness or safety, as indicated in Table 1), ProMoBox
automatically instructs Spin whether to look for acceptance cycles
or not. The report of the verification is stored as a text file. In the
HasCounterExample? transformation, the report is automatically
analysed to conclude whether a counterexample is found. If none
is found, the model checking process finishes and it is concluded
that the system satisfies the property. In case of a counterexample,
Spin produces a trail file, containing a counterexample scenario.
Subsequently, Spin is executed to perform a guided simulation in
the PrintTrace transformation, following the scenario described in
the trail file. In guided simulation, the generated print statements
(see Section 5.6) are executed, which results in a textual execution
trace. As explained in Section 5.6, the resulting output stream is
directed to a text file which is a sequence of system states and
transitions, and which follows the format of Listing 9. This text
file can be automatically transformed to a trace model by a generic
parser with the TransformTrace transformation. Note however that
for performance reasons, the result of this transformation is an
implicit trace model, as actual trace models tend to be rather large
– in the order of magnitude of the number of elements in the
design model times the number of states in the trace trace. In
order to inspect the counterexample at the level of the DSML, the
trace model can be automatically loaded in AToMPM as shown in
Figure 28, showing the initial state and a toolbar (shown below
AToMPM’s main toolbar) to step through the counterexample. As
shown in this toolbar, a counterexample can be loaded, it can be
fully played out, one step can be taken, and a full play-out can be
paused or stopped, which is done in the manual PlayTrace activity.

When applying this process to the running example, (maybe
unexpectedly) a counterexample for the reachesFloor property is
found. When playing out the counterexample as shown in Figure 28,
it can be seen that the system might get in an infinite loop consisting
of three steps: (1) a button is pressed on the floor where the closed

elevator currently is, (2) the elevator opens its doors and unlights
the button, and (3) the elevator closes its doors. These three steps
can be repeated infinitely many times (which is shown when
playing out the counterexample), even if buttons on other floors
are pressed, thus resulting in an acceptance cycle representing this
fairness problem. Indeed, this way, the requested floor will never
be reached, as the system is flooded with other requests.

We checked the property with Spin [35] version 6.4.4 on a 64-
bit Windows 7 SP1 PC with an Intel(R) Core(TM) i7 Q 720 CPU at
1.60 GHz (up to 2.80 GHz) with 8 GB of 1600 MHz DDR3 memory.
As is typical for ProMoBox in case of a counterexample [20], [57],
[60], the execution time is short. In this case, Spin takes less than 1
millisecond to find a counterexample, and uses 5 KB of memory.

Another property is shown in Figure 29 stating that if the
elevator doors are closed, they will eventually open again. The
system satisfies this property, so this no counterexample is produced
for this property. Model checking with Spin results in a traversal of
the entire state space, and takes 48 milliseconds, using 409 KB of
memory.

7 EVALUATION OF ProMoBox
In this section, the ProMoBox approach is evaluated, by answering
the following research questions:

• RQ1: Is the language engineering effort of using ProMoBox
improved compared to manual methods? The hypothesis is
that using ProMoBox requires less effort than using existing
methods.

• RQ2: Does ProMoBox improve the quality (i.e., decrease
of errors) when using the verification support compared
to manual methods? The hypothesis is that ProMoBox
decreases the number of errors when using verification
support.

• RQ3: Is there a model checking performance cost in using
ProMoBox compared to manual methods? The hypothesis
is that using ProMoBox does not introduce an additional
performance cost compared to manual methods.

• RQ4: How does the expressiveness of the resulting verifi-
cation language in ProMoBox compare to the specification
patterns by Dwyer et al.? The hypothesis is that ProMoBox
is at least as expressive as the specification patterns,
excluding the semantically unclear “next” operation (see
also Section 8.3).

• RQ5: What is the customisability of the ProMoBox frame-
work? The hypothesis is that the effort to customise the
ProMoBox framework is acceptable.

In case of an experiment, the experimental setup is described
in detail. When necessary, factors that may jeopardise the validity
of our results are discussed. These threats to validity are classified
as follows [76], and we briefly repeat their definition:

• Construct validity: This aspect of validity reflect to what
extent the operational measures that are studied really
represent what the researcher have in mind and what is
investigated according to the research questions.

• Internal validity: This aspect of validity is of concern
when causal relations are examined. When the researcher
is investigating whether one factor affects an investigated
factor there is a risk that the investigated factor is also
affected by a third factor. If the researcher is not aware
of the third factor and/or does not know to what extent

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

26

Figure 27. FTG (left) and PM (right) of the domain user’s activities using ProMoBox .

Figure 28. Using the toolbar for playing out the counterexample trace in
AToMPM.

Figure 29. The doorsCanOpen property.

it affects the investigated factor, there is a threat to the
internal validity.

• External validity: This aspect of validity is concerned with
to what extent it is possible to generalise the findings, and

to what extent the findings are of interest to other cases
outside the investigated case. During analysis of external
validity, the researcher tries to analyse to what extent the
findings are of relevance for other cases.

• Reliability: This aspect is concerned with to what extent
the data and the analysis are dependent on the specific
researchers or tools. Hypothetically, if another researcher
later on conducted the same study, the result should be the
same.

7.1 RQ1 Modelling Effort
This section presents an evaluation to answer the research question
RQ1: Is the language engineering effort of using ProMoBox
improved compared to manual methods? We use a logic argument
and an experiment to answer RQ1.

We will evaluate the amount of manual work for the language
engineer. Note that we do not compare effort for the domain user,
as we assume that, according to DSM principles, a DSML should
be created by the language engineer to lift a domain user task to
the domain level. The domain user then only has to limit him- or
herself to the bare necessities of the task at hand, using the most
suitable language. We will however compare to “incomplete” DSM
solutions for verification, to properly assess the effort needed when
using ProMoBox.

In the literature, we distinguish four approaches related to
verification support for DSMLs (see also Section 9):

• Approach 0: no support for properties is available, thus, it
is impossible for the domain user to verify properties. This
approach serves as the baseline in our comparison, as our
approach builds on traditional DSM, where no support for
verification is available;

• Approach 1: no DSML for properties is available. Instead,
properties are directly modelled in logic, but there is a

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

27

A
pp

ro
ac

h
0

A
pp

ro
ac

h
1

A
pp

r o
ac

h
2

A
pp

r o
ac

h
3

P
ro

M
oB

ox

DSML modelling man. man. man. man. man.
DSML annotation n/a n/a n/a n/a man.
System model mapping to veri-

fication backbone
no man. man. man. aut.

Property language modelling no no man. man. gen.
Property mapping to verifica-

tion backbone
no no man. man. aut.

Counterexample parsing no no no man. aut.

Table 3
Comparison of the degree of automation between existing methods and

ProMoBox .

mapping to a formal language (e.g., [72], following the
architecture shown in Figure 9);

• Approach 2: a DSML for properties is created including a
mapping to a verification backbone, but no counterexample
parsing is supported (e.g., [40]);

• Approach 3: a DSML for properties is created including a
mapping to and counterexample parsing from a verification
backbone (e.g., [79]). This is in fact the only approach that
offers the same functionality as ProMoBox.

The comparison is based on the different tasks that need to
be performed by the language engineer, and are extracted from
the activities of the FTG+PM models in this paper. Naturally,
the language-specific activities (L) have to be taken into account,
but also a number of framework-specific activities (F), as they
represent language-specific activities for property verification in
the absence of ProMoBox. The other (tool-specific, application-
specific, property-specific) activities are not part of the language
engineering phase. We identified the following tasks that reflect
FTG+PM activities as follows:

• DSML modelling: represents the traditional DSML mod-
elling activities (i.e., CreateMM, CreateCS and CreateOS
in Figure 7 and Figure 10);

• DSML annotation: represents the annotation activity
(i.e., AnnotateMM, and partly CreateOS in Figure 7);

• System model mapping to verification backbone: represents
the part of the Compile2Pml in Figure 27 activity dealing
with mapping the system model;

• Property language modelling: represents the part of the
GenerateLanguages activity in Figure 10 (thus replacing
one instance of Figure 14) dealing with the creation of a
property language;

• Property mapping to verification backbone: represents the
part of the Compile2Pml in Figure 27 activity dealing with
mapping the property model;

• Counterexample parsing: represents the activities for gen-
erating the counterexample and transforming it to the
domain-specific level (i.e., the PrintTrace,TransformTrace
and LoadTrace in Figure 27).

According to the existing methods we encountered, the framework-
specific activities in the FTG+PM models that are not mentioned
above are not required for providing verification support.

The comparison between existing methods with ProMoBox is
shown in Table 3. Rows represent tasks as explained above, and

columns represent the DSM approaches. The approaches differ in
whether they support, either manually or automatically, the given
six language engineering activities. Note that the annotation activity
is not applicable (entry “n/a”) for existing methods. If the activity
is not supported (entry “no”), this lack of support puts an additional
burden on the domain user, because the activity is not lifted to the
domain level. If the activity is marked “man.”, it requires a manual
effort from the language engineer resulting in a DSM solution
for the domain user. A “gen.” marking means that a generative
process enables the execution of the activity and “aut.” refers to an
automated process.

The table shows that language engineering with ProMoBox
requires the additional effort of annotating the DSML compared to
existing methods. In particular, compared to a traditional DSML
without support for verification (Approach 0), this is the only
additional task. Apart from that, the more advanced the existing
method, the more manual activities are required. In order to obtain
the same support as ProMoBox provides (i.e., Approach 3), five
tasks need to be performed manually by the language engineer,
compared to automated tasks when using the ProMoBox approach.

7.1.1 Experimental Setup
To gain more detailed insight into how much effort each task
represents, we provide a quantitative analysis of two case studies.
In this experiment, we wish to obtain a quantified measure of effort.
We deliberately did not measure effort in terms of time spent,
in order to avoid a bias introduced by the skills of the language
engineer subjected to the test.

The popular COCOMO approach [39] gives an estimate of
effort based on the estimated size (i.e., lines of code) of a project,
by defining a linear relationship between effort and size. In [81],
it is shown that the COCOMO model can be transposed to model-
driven engineering. Considering this, we will use the size of the
model as the determining factor for effort. In this experiment,
approaches are partly modelled, but may also contain Python code
for mappings to and from the verification backbone. Therefore, we
make a distinction between model size and code size. The model
size metric is the sum of the number of model elements (nodes and
edges), plus the number of connections between model elements,
plus the number of attributes of model elements. The code size
metric is the number of lines of code.

The COCOMO model only provides a rough estimate of effort.
Nevertheless, creating a more complex model may require more
modelling effort than creating an equally large, but less complex
model. Therefore, we will compare the complexity of different
approaches to complement the size metrics. As suggested in [32],
McGabe’s cyclomatic complexity metric [52] can be applied
to DSM. Similar to the size metrics, cyclomatic complexity is
determined separately for models and code. Cyclomatic complexity
for models is defined as E −N + P , where E is the number of
connections between model elements (i.e., nodes and edges), N is
the number of model elements, and P is the number of connected
components in the model. Note that the number of attributes is
not included in the model, as this would equally increase E and
N , thus resulting in the same metric score. As total cyclomatic
complexity of a program is the weighted average of the cyclomatic
complexity of every unit, the model complexity metric is a weighted
average of the cyclomatic complexity of every model. The code
complexity metric is a weighted average of all code created in a
case study. The cyclomatic complexity of Python code is measured
with the radon 1.4.2 Python package.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

28

Elevator
Model Size

GISMO
Model Size

Elevator
Code Size

GISMO
Code Size

case
metric

0

1000

2000

3000

4000

5000

sc
o
re

Effort: Size

Approach 0

Approach 1

Approach 2

Approach 3

ProMoBox

Figure 30. Total language engineering effort comparison of traditional
DSM approaches and the ProMoBox approach in terms of size (lower
scores are better).

Elevator
Model Complexity

GISMO
Model Complexity

Elevator
Code Complexity

GISMO
Code Complexity

case
metric

0

5

10

15

sc
o
re

Effort: Complexity

Approach 0

Approach 1

Approach 2

Approach 3

ProMoBox

Figure 31. Total language engineering effort comparison of traditional
DSM approaches and the ProMoBox approach in terms of complexity
(lower scores are better).

We analyse two case studies, namely the Elevator and
GISMO [20], and obtain metrics for size and complexity. The
case studies reflecting the existing methods deliberately result in
semantically equal models and transformations as the respective
models and transformations in the ProMoBox approach. Seman-
tically preserving differences may be present, but the domain
user must be presented with syntactically the same language and
mappings.

7.1.2 Findings
The results of the analysis of the size metrics are shown in Figure 30.
When comparing Approach 0 and the ProMoBox approach, the
model size scores are highly comparable and code size scores are
the same. This indicates that the additional effort for annotating
the DSML is minimal compared to the total effort. Additionally,
it can be observed that in both case studies and for both metrics,
ProMoBox performs considerably better than existing methods for
verification (Approach 1-3), because of ProMoBox’s automation.

The complexity metrics are shown in Figure 31. The cyclomatic
complexity when using ProMoBox is comparable, if not lower,
compared to when using existing methods.

We conclude that the language engineering effort is significantly
less when using the ProMoBox approach, compared to the effort
when using existing approaches that include verification support.
Moreover, using ProMoBox requires only a relatively small amount
of additional work (i.e., the annotation of the DSML definition)
compared to traditional DSM which does not include verification
support.

7.1.3 Threats to Validity

Construct validity. The metrics size and complexity may not be a
suitable representation of effort. We experimented with different
metrics:

• time metrics that take Approach 0 as baseline. The time it
takes to annotate a DSML definition takes in our experience
significantly less time than the time it takes to finish
Approach 1 to 3;

• model metrics that count instances of classes plus instances
of associations as elements;

• model metrics that do not take into account attributes,
meaning that no code at all is taken into account;

• model metrics that do not include measuring concrete
syntax, because the concrete syntax models consist of
many elements and many attributes to define icons. This
means that the language engineer can choose how detailed
these icons can be, which nevertheless greatly influences
the size metric;

• metrics based on computational complexity, determining
the time complexity (i.e., big O notation) of the mental
effort required for each activity. However, such an analysis
is in our opinion not sufficiently backed up.

Each of these metrics resulted in the same conclusion: ProMoBox
requires less effort than existing DSM methods for verification.
Consequently, we believe that other metrics will yield similar
results, because starting from the Approach 0 baseline, ProMoBox
only requires the additional effort of annotation (which turns out to
be minimal), while existing methods require significant additional
modelling and/or coding.

Internal validity. The experiment may be influenced by the fact
that semantically similar models and transformations were created
using existing approaches. When manually creating verification
support, more fine-tuned design choices can be made. Once again,
since the additional effort for annotation is relatively very small
compared to manually modelling verification support, we are
convinced that this will not influence the conclusion.

External validity. The experiment is conducted on two cases
only. Their results are very similar, while the cases are sufficiently
different, stemming from an entirely different domain. Notably,
GISMO [20] has a significantly larger metamodel compared to
Elevator, and heavily uses subclassing. Moreover, the number of
run-time elements are very limited in GISMO, while its input
language is relatively large. For other case studies, we do not
expect results that would change our conclusion.

Using other modelling tools for Approach 1-3 may influence
the results. In particular, template-based code generation languages
like EGL [75] can be used for generating Promela code. Again,
we do not expect that this would change the outcome of this

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

29

evaluation, because of the additional effort required for annotation
in the ProMoBox approach is very small.

For this comparison, we only consider approaches that are
applicable to DSMLs in general, thus excluding modelling lan-
guages that are expressive enough to support property specification
(e.g., [51]). Such languages may include verification support. If not,
only a translation to and from a verification backbone is needed,
for both the part of the language for describing properties and the
system. That case can be compared to Approach 3: the difference
is that system modelling and property modelling are bundled into
a single language, but the total effort remains similar. We do not
take into account these specific DSMLs in this comparison, as
ProMoBox focuses on a large class of languages that usually do
not have this advantage.

Reliability. The first author of this paper first implemented
ProMoBox, and then conducted large parts of this experiment. In
the GISMO case, the experiment was conducted by a domain
expert with expertise in language engineering (i.e., the first author
of [20]), except for the mappings to and from Promela, which were
implemented by the first author of this paper. The involvement of
the first author of this paper may have influenced how models and
transformations were implemented using existing methods. The
author has attempted to be as objective as possible, and relied for
example on an existing Promela model for the Elevator case, and
on the state pattern for the GISMO case.

7.2 RQ2 Correctness
This section presents an evaluation to answer the research question
RQ2: Does ProMoBox improve the quality (i.e., decrease of errors)
when using the verification support compared to manual methods?
We conducted a qualitative study [78] that investigated the ability of
domain users to write correct properties using verification support
generated by the ProMoBox approach. The study allowed us to
gain insight in usability of the ProMoBox approach.

7.2.1 Experimental Setup
The study involved candidates using the ProMoBox approach,
followed by an open interview where we assess the experience
of the user. We let six candidates write and verify properties for
a DSML model representing a Wristwatch Controller1 using the
approaches below:

• ProMoBox: A ProMoBox was generated from the simplified
and annotated DSML definition as presented in Section 4.
Users were instructed to specify properties using the
generated property language, and had to check these
properties and inspect counterexamples that could be played
out on a run-time model. This was all done in AToMPM,
as presented in Section 6;

• LTL, Spin and its GUI JSpin: The Wristwatch Controller
was translated to Promela. Through the GUI JSpin, users
were instructed to write LTL properties for the system,
check with Spin whether the wristwatch controller satisfies
this property, and inspect textual counterexample traces
that were generated from print statements. Since the system
is represented as a DSML model, this is according to
Approach 1 from Section 7.1, which we consider the current
standard for verification support in DSM.

1. The Wristwatch Controller DSML is an extension of an exercise that has
been developed for a course on modelling and simulation.

The Wristwatch Controller DSML and model were more
complex than the illustrative Elevator example in this paper: the
Wristwatch Controller metamodel contains 29 elements, and the
model used in the case study has over 100 elements. The DSML
contains a subset of Statecharts [33], including orthogonal regions,
composite states, history, actions and raising events to model a
controller, and additional constructs representing an environment
consisting of buttons, external events, observable variables and
function implementations. The instance model with documentation
annotations, as it was presented to the candidates, is shown in
Figure 32.

The candidates for the study were selected to represent the
target audience for the ProMoBox approach, namely domain
experts that use DSML models in their domain, but who are not
necessarily familiar with verification methods. The candidates were
representative domain users, as all of them were acquainted with
Statecharts. Moreover, the candidates were familiar with DSM,
and AToMPM. The candidates did not need to have experience
with LTL and Spin, but most of the candidates had at least some
experience.

The experiment was carried out as follows:

1) 10-minute introduction about the goal of the experiment;
2) 1.5-hour tutorial on LTL, Spin and JSpin;
3) 1-hour tutorial on ProMoBox;
4) 20 exercises in randomised order per candidate, for 10

of which the candidate had to define a property using
ProMoBox, and for 10 using LTL. Then, using the re-
spective framework, the candidate was instructed to verify
whether the system satisfies the property, and interpret the
counterexample, if any. At the start of the exercises, the
candidates were given the model expressed in the DSML
and in Promela. Each exercise involved a requirement
written in English. Half of the candidates were instructed
to solve the first ten exercises with LTL, and the last
ten with ProMoBox, and the other half of the candidates
were instructed to do the opposite, to counter possible bias.
Candidates were instructed to skip the exercise if a solution
was not found within five minutes. An instructor was
present throughout the experiment to assist with technical
questions. For each question, candidates filled out a form
asking whether they were able to formulate an answer
to the question, whether they felt that the verification
result conformed to what they expected, and whether
they could understand the counterexample (in case of a
counterexample);

5) to be able to get an insight about usability, the candidates
filled out a form to calculate the system usability scale [10]
for JSpin and ProMoBox. This consists of 10 statements
on the topic of usability, for which a score from 1 to
5 must be given depending on the extent to which the
candidate agrees to the statement;

6) a one-on-one 15-minute interview was conducted during
which the candidates could openly discuss their experience.
Each candidate was asked to give an open answer to the
following questions:

• How was your experience with JSpin/ProMoBox?
• Did you feel you were able to write correct

properties with JSpin/ProMoBox?
• What did you think of hiding the concepts of

liveness and safety in ProMoBox?

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

30

Figure 32. The Wristwatch Controller DSML instance in AToMPM, as given to the candidates.

• What is your proficiency prior to the experiment
with LTL/Spin/Statecharts/DSM?

• Do you have remarks about the experiment?
• What are possible improvements of ProMoBox?
• In the interest of writing correct properties, which

would you prefer: JSpin or ProMoBox?
• In general, which would you prefer: JSpin or

ProMoBox?

In addition to interviewing the candidates, we inspected and
scored their solutions. However, as the limited number of candidates
in the experiment is insufficient to acquire statistical relevance
for the quantified outcome, we refrain from any statistics in our
analysis of these scores. Instead, we use these scores to support the
candidates’ claims.

7.2.2 Findings
Five out of six candidates claimed to have limited or no proficiency
in LTL and Spin (one candidate had adequate experience), and all
candidates claimed to have good proficiency in Statecharts and
DSM. This confirms that the candidates are representative target
users of the ProMoBox approach, as they are confident in their
domain and DSM but are not experts in verification of temporal
properties.

During the interview, all candidates claimed to prefer Pro-
MoBox over JSpin, both in the interest of writing correct properties,
and in general. Candidates claimed they felt they were often not
able to write correct properties with JSpin given their training, and
that this was improved a lot with ProMoBox.

A long learning curve was a general remark when using JSpin.
Candidates claimed it was hard to interpret counterexamples from
the textual trace of generated Promela model, and figure out
variable names for propositions from the Promela model. The

experience with JSpin was frustrating for many candidates. Some
candidates thought the textual syntax allowed for quick editing of
LTL formulas. The candidate that had adequate experience with
LTL felt differently about JSpin, and felt that the experience was
“ok”. Nevertheless, the candidate had significantly more correct
answers using ProMoBox than using JSpin, conforming to the
general trend among all candidates.

When discussing ProMoBox, the candidates indicated that the
learning phase is significantly shorter, due to the familiar DSML
syntax when writing properties and interpreting counterexamples.
This was backed up by the candidate scores: all candidates scored
at least as good for their final 5 ProMoBox exercises, compared to
their first 5 ProMoBox exercises. For JSpin exercises, scores were
similar for the first 5 and last 5 exercises. The use of patterns was
also lauded, as well as the ability to write correct structural patterns.
Candidates suggested improvements for debugging support, as
error messages now appear in a console.

We analysed the correctness scores of the exercises’ solutions.
All candidates scored better when using ProMoBox, compared to
JSpin. Table 4 shows per exercise how many times a successful
answer was provided out of total number of answers in LTL (third
column) and for ProMoBox (fifth column). For example, 2/3 means
that that particular exercise was carried out by 3 candidates, of
which 2 times the candidate found a correct solution. Note that
the combined total number of answers per exercise is 6, as each
exercise needs to be solved by every candidate using either JSpin
or ProMoBox. For only one out of twenty exercises (highlighted in
bold), a higher percentage of candidates had a correct answer in
LTL compared to ProMoBox.

Similarly, from the 10 exercises in each approach (ProMoBox
or JSpin), all candidates was able to express the same number or
more properties using ProMoBox. Table 4 shows per exercise how

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

31

JSpin ProMoBox
Exercise Expressed Correct Expressed Correct

1 2/3 2/3 3/3 2/3
2 2/3 1/3 3/3 0/3
3 1/2 0/2 4/4 1/4
4 1/2 0/2 4/4 3/4
5 3/3 2/3 3/3 3/3
6 5/5 1/5 1/1 1/1
7 5/5 0/5 1/1 0/1
8 1/1 0/1 5/5 3/5
9 2/3 0/3 3/3 0/3

10 3/3 1/3 3/3 1/3
11 3/4 0/4 2/2 1/2
12 3/4 1/4 2/2 1/2
13 2/3 0/3 3/3 2/3
14 2/2 1/2 4/4 3/4
15 3/4 0/4 2/2 1/2
16 2/2 0/2 4/4 3/4
17 2/2 0/2 4/4 4/4
18 3/4 0/4 1/2 1/2
19 3/3 0/3 2/3 1/3
20 0/2 0/2 4/4 1/4

Total 48/60 9/60 58/60 32/60
Table 4

Aggregate results of the study, per question.

many times a property could be expressed out of total number
of answers in LTL (second column) and for ProMoBox (fourth
column). For only two out of twenty exercises (in bold), a higher
percentage of candidates was able to express a property in LTL
compared to ProMoBox.

Interestingly, in both of the exercises that were expressed more
easily in LTL, all LTL formulas were incorrect. Moreover, the total
number of exercises that could be expressed in JSpin (48/60) is
significantly different from the total number of correct properties
(9/60) compared to ProMoBox (58/60 compared to 32/60). This
corresponds to the candidates’ claim that they have difficulties
trusting the LTL formulas they write. When inspecting the errors
in the LTL formulas, typical errors are:

• forgetting a temporal operator (globally/finally) before a
proposition;

• disregarding a special case, e.g., the case where some
condition never occurs;

• using an incorrect structural pattern.

The results of applying the system usability scale were in favour
of the ProMoBox approach. The JSpin approach scored on average
33.3%, which is deemed “unacceptable”, while ProMoBox scored
on average 68.5%, which is deemed “acceptable”, with adjective
rating “ok” [10]. The results for ProMoBox can be split up as
follows: four candidates gave a score indicating an adjective rating
of “ok” (50%-73%), and two candidates that gave a score indicating
an adjective rating of “good” (73%-85%).

We conclude from the study that the candidates felt they were
able to write properties in ProMoBox more correctly than in JSpin.
This is backed up by the candidates’ scores. Our interpretation
is that for the domain user, correctness is improved because all
models he/she creates, edits or reads, are at the domain level. The
domain user thus reaps the DSM benefits of lowering the chances
of error because of the used generative techniques [38], compared
to traditional methods where models need to be created or inspected
at the formal methods layer.

7.2.3 Threats to Validity

Construct. We did not explicitly provide the candidates with
specification patterns and their LTL representation for the JSpin
exercises. However, at least one candidate looked up the patterns
and used them. Nevertheless, the score of the candidate was
comparable to the other candidates’ scores. While we believe
that employing specification patterns improves the correctness of
properties, we believe that the most important factor is that the
domain user can specify and verify properties at the domain level.

External Validity. As discussed above, the number of candi-
dates is low, as we selected candidates based on their knowledge
in DSM and AToMPM. Because of the low population, we refrain
from using statistics on these scores. Instead, to draw conclusions,
we focus on the qualitative aspect of this study, i.e., the interview,
and use the scores to illustrate the candidates’ conclusions.

The score on the system usability scale is only applicable to
the target audience for the ProMoBox approach. In other words,
this does not mean that the usability of JSpin is unacceptable for
LTL experts. Instead, the score of JSpin illustrates the motivation
of our work, i.e., that verification tools are not suitable for domain
users that are not LTL experts.

The Wristwatch Controller DSML is used as a single example
of DSML, which may introduce bias. Nevertheless, we think the
Wristwatch Controller DSML is a suitable case study, for three
reasons. Firstly, the candidates are familiar with the DSML and
the model, which allows them to act in the experiment as domain
experts. Secondly, it is a variant of a model that has been used
and tested extensively for several years in a master course on
modelling. Thirdly, the Wristwatch Controller is very suitable to
devise plausible, intricate temporal properties.

Reliability. We intentionally selected candidates that are
familiar with our research tool AToMPM, so that there is no bias
in the study that is caused by unfamiliarity of AToMPM. However,
as AToMPM is an academic prototype and has a limited user base,
this means that the candidates already had limited prior knowl-
edge of ProMoBox, through previous presentations on the topic.
Nevertheless, the candidates never used the ProMoBox approach
before. Moreover, the experiment required the candidates to follow
training on both approaches, meaning that prior knowledge was
required before starting the exercises. We believe that the reliability
of the experiment is higher when candidates are selected that know
AToMPM, than that they have to get acquainted with AToMPM
during the experiment.

7.3 RQ3 Model Checking Performance

This section presents an evaluation to answer the research question
RQ3: Is there a model checking performance cost in using
ProMoBox compared to manual methods? We use a logic argument,
backed up by an experiment to answer RQ3.

7.3.1 Analysis of the Generated Promela Model

When considering performance, we are interested in the execution
time and memory consumption of model checking in Spin for
the generated Promela model, compared to the manually created
Promela model encoding the same system. We consider this with
the metrics verification time (in seconds), memory usage (in KB),
number of states and transitions in the Spin state space, and state
vector in Spin. When analysing the compilation of Section 5, the
following may be argued:

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

32

• The state vector is minimised according to the annotated
metamodel. The compilation is implemented in a way that
the variable __RuntimeSystem is the minimal and only
variable represented in the state vector (see Section 5.1).
All other variables are hidden, i.e., not part of the state.
This assumes that the correct annotations are set in the
annotated metamodel.

• The number of states and transitions depends on (1) what
information is represented in the state vector, (2), the LTL
formula that is verified and (3) the algorithm in the Promela
model.
The LTL formula is generated according to the verification
patterns by Dwyer et al. [21], and is therefore minimally
represented as shown in Table 1. Quantification patterns are
translated to multiple LTL formulas. A manually created
LTL formula can therefore not be less complex than an
LTL formula which is generated from a property model.
The number of states and transitions is determined by
the number of times control structure (i.e., conditions
and loops) are traversed when executing the algorithm.
The algorithm mostly depends on the code generated
from the operational semantics. Other code snippets have
significantly less impact, as they are evaluated only once
in the beginning of the execution (i.e., declaration of the
metamodel and initialisation of the model on line 1-3 and
7-8 of Listing 1, Listing 2, and Listing 3), or only include
maximally one d_step per iteration (i.e., (a) the compiled
environment model on line 4 of Listing 1, Listing 4, (b)
the compiled code for printing the current state on line 16
of Listing 1, Listing 8, and (c) the compiled proposition
patterns on line 17 of Listing 1, Listing 7). Consequently,
the operational semantics in Promela have the highest
impact on the model checking time.
We argue that the operational semantics in Promela is in the
same time complexity as the manually created semantics.
The compiled rule schedule is a one-to-one translation of
the rule schedule. Using this rule schedule, similar control
structures as in Promela (i.e., conditions and loops) can be
modelled. Therefore, the rule schedule will be in the same
time complexity.
The evaluation of the rules’ LHS heavily influences the
algorithm of the Promela model as the underlying subgraph
matching algorithm is computationally expensive. One
could correctly argue that, when manually modelling the
similar problem in Promela, one would not make use of
such an expensive subgraph matching algorithm, but would
rather use simple conditional statements. However, we
encode the LHS in such a way that conditions are folded
into a minimally nested control structure (see Listing 6). We
argue that this reflects the minimal control structure, as one
would model manually in Promela. Note that conditions
tend to become quite long, but this does not affect the
number of states and transitions.
Consequently, because of the optimisations in ProMoBox,
the generated algorithm is in the same time complexity as
a manual algorithm.

• The memory usage of Spin is the number of states
multiplied by the state vector size, and is thus a derived
metric. Hence, it is in the same time complexity as a manual
algorithm.

• The verification time depends on the number of states/tran-

sitions and the time per transition. This time per transition
is influenced by the number of statements/expressions per
deterministic step of Promela code. This has, compared
to the number of states/transitions, a minor influence on
overall verification time, because of Spin’s optimisations
such as lazy evaluation. Consequently, the verification time
of a generated Promela model should be comparable to a
manual Promela model.

Overall, we conclude that compared to manual modelling in
Promela, ProMoBox’s mapping to Promela does not introduce
additional complexity in the code that changes its time complexity,
meaning that model checking performance is comparable.

7.3.2 Experimental Setup
We reinforce the above claims by an experiment. In this experiment,
we compare the model checking performance between Promela
models that are generated by ProMoBox for the Elevator DSML
and a manually constructed model. The generated code for
the operational semantics is the most complex, and influences
performance most. Therefore, we are especially interested in
whether the Promela model of the operational semantics is indeed
in the same time complexity as a manual Promela model (as
reasoned above), depending on the size of the run-time model.
We argue that the Elevator case is a good candidate for this
comparison, as it extensively uses the features of a DSML
specification, such as inheritance, associations, attributes, different
multiplicities, different annotations, LHSs, RHSs, NACs, condition
and action code, non-trivial property propositions, multiple input
stars, different attribute types, non-empty environment and trace
language, and patterns with multiple match candidates.

We perform this experiment only for the Elevator DSML,
because for that DSML we can compare our results to a manually
created model that is a variant of a similar model presented in
Merz and Navet’s “on the verification of real-time systems” [54].
The model presented in the book is simpler than our case study.
Consequently we adapted it so that it behaves the same as our
rule-based variant. Since it is derived from a model presented by
experts in the domain of verification, this model is representative
for a model built by an average Promela user. The model is shown
in Appendix A and corresponds to the running example, which has
three floors and seven buttons. In this case however, no buttons are
pressed in the initial state, but a simple environment is modelled
where buttons can be pressed. We use a meaningless LTL formula
�(True) that forces a full state space traversal so that we can
focus on the operational semantics.

The ProMoBox Promela model used as running example
throughout this paper, has some slight differences compared to the
compiled Elevator case of Section 2.3:

• we use the more optimal rule schedule where the change
direction rules are evaluated before the move rules, so that
the NAC in the change direction rules can be removed as
mentioned in Section 2.3;

• similar to the manual Promela model, no buttons are
pressed in the initial state;

• we use the same LTL formula �(True), which ensures
that the entire state space will be traversed.

Variants of the model in Appendix A and of the ProMoBox
model are used that have different numbers of floors and buttons.
For every number of floors, we use at least as many buttons as

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

33

3
,3

3
,4

3
,5

3
,6

3
,7

4
,4

4
,5

4
,6

4
,7

4
,8

4
,9

4
,1

0
5
,5

5
,6

5
,7

5
,8

5
,9

5
,1

0
5
,1

1
5
,1

2
5
,1

3
6
,6

6
,7

6
,8

6
,9

6
,1

0
6
,1

1
6
,1

2
6
,1

3
6
,1

4
6
,1

5
6
,1

6

test case (#buttons, #floors)

10-3

10-2

10-1

100

101

102

103
ti

m
e
 t

a
ke

n
 (

s)
Average time taken

manual

ProMoBox

Figure 33. Comparison of the state space traversal time.

Figure 34. Comparison of the state space traversal memory usage.

the number of floors, so that every floor can be requested, and at
most as many buttons as needed to have one elevator button, up
button and down button for each floor, with no down button for
the ground floor and no up button for the top floor. In the variants,
buttons are equally distributed over floors. We cover all variants up
to the number of floors that causes Spin to run out of memory.

We used Spin [35] version 6.4.4 on a 64-bit Windows 7 SP1
PC with an Intel(R) Core(TM) i7 Q 720 CPU at 1.60 GHz (up to
2.80 GHz) with 8 GB of 1600 MHz DDR3 memory. To optimally
address the research question, we only inspect model checking
time and memory consumption as reported by Spin, and do not
take into account compilation time by ProMoBox. This is because
model checking is the first and foremost limiting factor in usability,
as explained in Section 2.6.

7.3.3 Findings
The results are shown in Figure 33 and Figure 34. Both plots
use a logarithmic scale on the vertical axis. All test models are
shown on the horizontal axis, indexed by two numbers: the number
of floors and the number of buttons. We verified each Promela

3
,3

3
,4

3
,5

3
,6

3
,7

4
,4

4
,5

4
,6

4
,7

4
,8

4
,9

4
,1

0
5
,5

5
,6

5
,7

5
,8

5
,9

5
,1

0
5
,1

1
5
,1

2
5
,1

3
6
,6

6
,7

6
,8

6
,9

6
,1

0
6
,1

1
6
,1

2
6
,1

3
6
,1

4
6
,1

5
6
,1

6

test case (#buttons, #floors)

0

2

4

6

8

10

12

14

16

im
p
ro

v
e
m

e
n
t

fa
ct

o
r

Comparison
Memory

Transitions

Time

States

State vector

Figure 35. Improvement factor of the traversal time and memory usage.

model 50 times, and excluded the 5 highest and 5 lowest outliers.
The averages of the execution times without outliers is shown in
Figure 33. Figure 34 shows memory-related resources. The number
of states and number of transitions reflect the size of the state space.
The state vector size is shown and the memory usage for the state
space is shown (excluding memory used for optimisations, which
is determined by Spin run-time parameters). Note how the required
resources grow exponentially with the size of the environment
(i.e., the number of buttons) as discussed in Section 4.4.1. This
behaviour can be seen in both the generated, and the manual
Promela models. In this experiment, the generated Promela models
need fewer resources for all test cases.

Figure 35 shows the improvement factor of all resources for
every test case. The plot indicates no decline in improvement for
larger models. Interestingly, the improvement (especially in time
but also in memory) increases for the more complex cases that
have a larger number of buttons.

The results indicate that the generated ProMoBox Promela
models are in the same time complexity and space complexity as
the manually created models. The generated ProMoBox Promela
models perform better in this experiment. This supports the
argumentation above, and indicates that ProMoBox comes with no
additional cost in model checking performance.

7.3.4 Threats to Validity
Internal validity. We are quite confident that the compiler is
correct, as the Elevator case covers most linguistic features as
explained above. Nevertheless, we cannot prove that the compiler
contains no errors. To address this, we have extensively tested the
compiler, resulting in branch coverage of over 90%.

Construct validity. The manually created Promela model may
not be representative for an average Promela user and may influence
the model checking results of the manual Promela model. We
used the model from a book [54] explaining how to properly use
Promela, where model checking performance is also taken into
account. We continued on this model to make minor adaptations on
the manual model, to make it comparable to models in our DSML.
Other factors may play however, like slightly different semantics,
which may influence modelling decisions of a Promela user.

Reliability. As we have performed the experiment on a
Windows machine, results concerning execution time may be

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

34

influence by OS behaviour. To address this, we performed every
experiment 50 times, and excluded outliers.

External validity. In the experiment, we only investigated a
single DSML, on the one hand because we have a manual model for
comparison for the Elevator case. On the other hand, we feel that
further evaluation on the performance of generated Promela models
diverges from the contribution of this paper for two reasons. First,
the mapping to Promela and LTL is only one example of a possible
verification backbone for ProMoBox. In this respect, a mapping
to Groove and CTL is shown in Section 7.5.1. Second, optimising
the generated Promela models requires profound knowledge of
Promela and Spin rather than of the DSML and is thus beyond
the scope of this DSM-centred contribution. Nevertheless, we
argue that the Elevator case is representative and covers most of
ProMoBox’s features, as explained in Section 7.3.2.

Furthermore, we have not experimented with different proper-
ties, as we believe that sufficient proof of an optimal mapping from
temporal patterns to LTL is given in [21]. Moreover, the techniques
used in the manual Promela model may not be generalisable to
other domains. For example, the behaviour in another domain may
not be optimally representable using a rule-based approach as in the
ProMoBox approach, but may be very suitable for representation as
a Promela model. Nevertheless, DSMLs with rule-based semantics
represent a significant class of DSMLs. Finally, we did not include
compilation time by ProMoBox in our evaluation, as we reason
that model checking time will generally be the limiting factor.

Despite these threats to validity, we feel that the experiment
illustrates the logic argument of this section.

7.4 RQ4 Expressiveness

This section presents an evaluation to answer the research question
RQ4: How does the expressiveness of the resulting verification
language in ProMoBox compare to the specification patterns by
Dwyer et al.? When introducing a new language, it is important to
assess its expressiveness. To this end, we evaluate the expressive-
ness of any generated properties DSML by evaluating the template
of the properties language. This is done by evaluating whether all
of the specification patterns by Dwyer et al. can be expressed using
the ProMoBox approach.

The specification patterns by Dwyer et al. can be defined
in terms of LTL [21]. To be able to technically able to express
all specification patterns excluding the semantically ambiguous
“next” operation (see also Section 8.3), we included a functionally
complete set of LTL operators (except “next”) in ProMoBox.

Nevertheless, it is the intent of the approach to allow the user to
specify properties using temporal patterns. In the remainder of this
section, we will discuss which (variants of) specification patterns
by Dwyer et al. are supported in the template of the properties
language as it is presented in this paper.

The template of the properties language supports six patterns:
universality, existence, absence, bounded existence, response and
precedence. These can be combined with five scopes: globally,
before, after, between, and after until. Nevertheless, next to these
patterns, Dwyer et al. identified several variations of these patterns
in [22]:

• chained response and precedence. For example, a 2-3
chained response means that the occurrence of two stimuli
in the presented order must result in the occurrence of
three responses in the presented order. Any multiplicities

can be applied, and a regular response/precedence can be
considered a 1-1 chained response/precedence;

• upper bound of the bounded existence pattern;
• nested specification patterns. In [22] an example is given for

CTL, namely “infinitely often P”, translated to AG(AF(P)),
as a universal pattern instantiated with parameter AF(P).
This substitution is only valid for some scopes or patterns,
and no further analysis is made in [22];

• scope boundaries. Scopes are defined as closed on the left
and open on the right. Variations can be defined that close
the left end of the scope and/or open the right;

• variants of chain patterns. Chain patterns can use absence
instead of existence between chains;

• constrained response/precedence: absence between stimu-
lus and response; analogue for precedence;

• next response. The response must be immediately next.
We will not take this variant into account, because the
semantics of “immediately next” are not clear, as explained
in Section 8.3.

The number of possible combinations of these patterns is
enormous: open vs. closed, constrained vs. not constrained, chained
vs. not chained, number of links in chains, etc. Implementing all
possible variants is infeasible, and was never the intention of the
pattern system in [21]. For instance, the website by the same authors
dedicated to the specifications patterns2 lists the main patterns and
only some of the variants. According to Dwyer, the intention of
the specification patterns is that users would customise patterns
depending on their domain. Therefore, we include customisation
support in our approach, by allowing users to:

1) specify new patterns by changing the template for gener-
ating properties languages,

2) specify the translation of newly defined patterns by using
LTL compilation rule system in Section 5.5.

This way, all variations above can be implemented, and the correct
mapping to LTL can be specified. To have a representative starting
point, we implemented constrained response.

In summary, the main patterns are implemented in ProMoBox,
support for implementation of variants is provided by ProMoBox,
and, if desired, LTL formulas can be used.

7.5 RQ5 Customisability
This section presents an evaluation to answer the research question
RQ5: What is the customisability of the ProMoBox framework?
We use an experiment to answer RQ5. Two customisation scenarios
can be distinguished. An experiment is conducted for each of these
scenarios (representing UC4).

Customisation of the property language i.e., the metamodel
template for properties. We do not consider the customisation of
templates of other sublanguages, as this sublanguages exist to
support the property sublanguage. However, customisation of other
templates results in a similar scenario.

Customisation of the verification backbone. A change in the
verification backbone may result in a change of all mappings to,
and from, the verification backbone.

Given that the framework is intended for long term use by an
organisation, we would expect that acceptable customisation effort
for a trained customiser should be on the order of a few person
days of effort rather than tens or hundreds of person days of effort.

2. http://patterns.projects.cs.ksu.edu/

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://patterns.projects.cs.ksu.edu/

35

Figure 36. The variant of the reachesFloor property: after a button is
pressed, the elevator will eventually open its doors at the corresponding
floor, and then close them again.

7.5.1 Experimental Setup
For both experiments, changes were made to the current imple-
mentation of ProMoBox in AToMPM. We are interested in the
effort for customisation. The metric for customisability we use
in this experiment is amount of development time (in hours)
spent applying the customisation task to ProMoBox. The changes
were made by the first author of this paper. The developer was
undisturbed during the experiment.

Customisation of the property language. The first exper-
iment involves a customisation of the property language, by
changing the metamodel template for properties in Figure 14 (as
shown in Figure 20). As indicated by the (F) mark of the template,
this is in fact a change of the ProMoBox framework itself, instead of
a change of its input models. A consequence of the customisation
is that the concrete syntax template might have to be updated
and that the property language has to be regenerated. Also, the
co-evolution rules apply to its instances, possibly requiring the full
verification process as described above to be redone. In this case,
since the template has changed, the Compile2Pml activity needs
to be adapted as well, so that the changed language is adequately
compiled.

The experiment consists of adding additional patterns called
“chained response” and “chained precedence” [22] to the property
language template. These are similar to “response” and “prece-
dence” but have more than one cause and/or effect that need to
happen in a prescribed order.

Customisation of the verification backbone. In the second
experiment, the entire verification backbone is replaced. We
replaced the mapping to Promela and LTL by a mapping to Groove
and CTL. Since models in Groove are graphs and transformations
are rule-based just like in our view on DSM, the mapping is more
straightforward than to Promela. The downside is that Groove is
not as expressive as Promela (notably the lack of NAC patterns
and a limited scheduling language) and the performance of model
checking is significantly lower. Regarding the mapping to CTL,
similar to the LTL formulas presented in Table 1, Dwyer et al. [21]
also provide a mapping to CTL for every temporal pattern.

7.5.2 Findings
Customisation of the property language. Implementing the
additional patterns in the template and adapting the compiler took
less than two hours, and no existing property models had to be
changed, since the customisation can be classified as an additive,
non-breaking change.

Using the new patterns we were able to extend the reachesFloor
property by adding a second restriction that the doors should close
again after they were opened. This new property is shown in
Figure 36.

The customisation of the following models has a similar impact:

• the impact of changing the template of another sublanguage
is similar. In particular, changing the trace language

Figure 37. The Groove type graph generated from the metamodel.

Figure 38. The Groove instance graph generated from the run-time
model.

template differs slightly as it requires the parser Transform-
Trace to be changed instead of the compiler Compile2Pml;

• the impact of changing the concrete syntax of a template
is fully automated. It only requires the regeneration of the
concrete syntax of the sublanguages;

• the impact of changing the annotations model of Figure 12
is fully automated with respect to the language engineer. It
requires all sublanguages to be regenerated. For the sublan-
guage instances co-evolution rules apply, so depending on
the change the instance might have to be migrated and the
verification process might have to be redone.

This experiment indicates that the effort for customising the
property language is acceptable.

Customisation of the verification backbone. The mapping
to Groove took 32 hours during four days to implement, including
getting familiar with Groove.

A similar compilation strategy is followed as shown in Fig-
ure 24, where ASTPS is now Groove-specific, and the target is
divided in multiple different models implementing Groove type
graphs, instances, rules, environment, property propositions and
traces (as XML-files), and a rule schedule and CTL formula (in
textual syntax):

• The run-time metamodel of Figure 16 is translated to a
Groove type graph as shown in Figure 37. Colours are
added for clarity, and the multiplicities are encoded in the
edges (not visible).

• The Groove equivalent of the instance depicted in Figure 4
is shown in Figure 38. A generic concrete syntax is used,
with rectangles, arrows with labels, and expressions.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

36

Figure 39. The Groove rule for MoveUp.

1 while(true) {
2 try {
3 openDoor_up_UpButton | openDoor_up_ElevatorButton;
4 Environment | nothing;
5 } else {
6 try {
7 openDoor_down_DownButton | openDoor_down_ElevatorButton;
8 Environment | nothing;
9 } else {

10 try {
11 closeDoor;
12 Environment | nothing;
13 } else {
14 try {
15 moveUp;
16 Environment | nothing;
17 } else {
18 try {
19 moveUp_last;
20 Environment | nothing;
21 } else {
22 try {
23 moveDown;
24 Environment | nothing;
25 } else {
26 try {
27 moveDown_last;
28 Environment | nothing;
29 } else {
30 try {
31 changeToDown;
32 } else {
33 try {
34 changeToUp;
35 } else {
36 Environment;
37 }
38 }
39 }
40 }
41 }
42 }
43 }
44 }
45 }
46 }

Listing 10. The rule schedule in Groove.

• The translation of the MoveUp rule (see Figure 5) is shown
in Figure 39. The pattern includes the LHS and RHS, where
all pattern conditions represent the LHS, and all statements,
creations and deletions represent the RHS and are applied if
a match is found. In this case, the RHS consists of deleting
a currentfloor link (dashed) and creating a new one on the
floor above (bold). This notation allows for concise rules.
The left part of the rule visualises a simple comparison
operation representing the LHS condition.

• The complete rule schedule is shown in Listing 10. This
schedule is generated from the more optimised schedule
that first evaluates the move rules, followed by the change
direction rules. The main control structure of the schedule

Figure 40. The Groove environment generated from the annotated
metamodel (left) and the Groove proposition rule for P0, the elevator
opens its doors at the ground floor (right).

is an infinite while loop, representing the simulation loop.
The rules are tried in the correct order. If successful, the
environment is evaluated if necessary, and a new iteration
of the main while loop is started. If unsuccessful, the next
rule is tried. Note that, since Groove does not support
conditions on pattern element types, the openDoor up and
openDoor down rules have to be split into two rules: one
matching a directional button and one matching an elevator
button.

• The environment distilled from the annotated metamodel is
shown on the left of Figure 40, and presses a button that
is not yet pressed. Additional to this rule, an empty rule
nothing is created to give Groove the option to not perform
an environment step.

• According to the specification patterns by Dwyer et
al. [21] and taking quantification into account as presented
in Section 5.5, the property is translated to the CTL
formula:
A[!Q0 W (Q0 & AF(P0))] & A[!Q1 W (Q1 & AF(P1))]
& A[!Q2 W (Q2 & AF(P2))].

• The propositions are translated to conditions in Groove,
which are rules that do not have a side effect. Groove
automatically evaluates after every state change whether
or not a match for these conditions can be found. The
condition P0 is shown on the right in Figure 40.

• In case a property yields a counterexample, it is translated
back to the domain-specific level. In the case of Groove,
a counterexample is shown as a highlighted trace in
the (partial) state space. The sequence of states can be
saved, and each state has the same format as the Groove
equivalent of a run-time model (e.g., as shown in Figure 38).
Consequently, these states are parsed and can be translated
to an output model or can be played out in AToMPM.

This experiment is an indication that the effort to customise the
verification backbone is acceptable.

7.5.3 Threats to Validity

Construct validity. The experimental results only include devel-
opment time. However, time may have to be allocated to testing.
As the amount of time for testing highly depends on the desired
confidence the developer wants to reach, this is not included in this
experiment. Furthermore, we used no other metric than time spent
to measure flexibility. Also, other metrics may be deemed relevant,
such as metrics that measure maintainability of the resulting system.

Reliability. The experiment was carried out by the first author
of the paper, who is also the developer of ProMoBox. This highly
influences the resulting time spent. Nevertheless, we reason that
this benefits the experiment, as the experiment is not influenced
by a lack of knowledge for the involved tools and languages
(e.g., AToMPM, Python, verification patterns). Time spent on
getting acquainted with these tools and languages would bias
the results, as we do not wish to evaluate the user friendliness of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

37

the involved technologies. In this sense, using a developer who
knows the involved technologies improves the internal validity of
the experiment. Note that time was spent during the experiment for
getting acquainted with Groove.

External validity. We only conducted two experiments for
assessing customisability. In certain cases, extensions may be more
difficult. For instance, we only added temporal patterns in the
template of the property language. One might wish to add e.g., real
time to the property language. We consider such changes too
intricate to be called a customisation, because they would require
not only the property language to change, but also the verification
backbone, the input and trace language, and even the transformation
language for operational semantics. However, this is interesting for
future work. Furthermore, no other sublanguage templates were
adapted, because we reason that the sublanguages have a supporting
role towards the property language. However, a very intricate
change may cause these templates to be changed as well. Again,
we consider such changes out of scope of this evaluation. The
time it takes to change the verification backbone similarly depends
on the degree of difference between the ProMoBox framework
(which relies on typed, attributed, directed graphs and rule-based
semantics) and the verification backbone. In case of Groove,
this cognitive distance is low, especially compared to Promela.
Nevertheless, while the time spent on customisations can vary, we
feel that the experiments illustrate that the ProMoBox framework
can indeed be customised well to support other variations of
properties or verification backbones.

8 SCOPE AND LIMITATIONS OF THE APPROACH

In this section we discuss the assumptions and limitations of the
approach.

8.1 Format of the DSML
It is assumed that we can express the abstract syntax of the DSML
as a metamodel in the form of a class diagram. The concrete syntax
is defined graphically by icons for every abstract syntax concept.
The semantics is given by a transformation model with a rule
schedule supporting control flow and graph transformation rules.
Under these conditions, an operational ProMoBox can be generated
from any DSML.

8.2 Boundedness
The rule-based nature of the operational semantics ensure a step-
wise, state-based semantics. In its current state, ProMoBox supports
DSMLs that have a notion of state. Since we apply explicit state
model checking, the number of possible states must be bounded.
This is guaranteed by limiting the multiplicity of the run-time
elements. If such boundedness is not achieved in the metamodel
because of an infinite multiplicity value, this value must be bounded
(possibly through abstraction) in order to allow model checking.
Likewise, other simplification steps might be performed to ensure
boundedness, as explained in Section 4.4.1.

8.3 Format of the Properties
We currently support temporal properties with quantification and
structural patterns. The properties can be mapped to LTL and
CTL, so the approach can be considered representative for a wide
range of properties. ProMoBox does not include support for the
“next”-operator (i.e., something must happen immediately after

something else), as “immediately” can be interpreted in many ways.
A promising direction is to use the principle of the conceptual time
step (see Section 4.3) and define “immediately” as “in the next
conceptual time step”.

Because of ProMoBox’s customisability, we feel that the
approach described in this paper can be reused for different kinds
of properties by defining generic mappers to tools supporting
model checking with e.g., OCL, real time properties, or properties
using distributions. The target tool has to be expressive enough so
that a correct structure and operational semantics can be defined,
i.e., all elements can be queried, variables can be stored and
updated throughout the evaluation of the temporal formula (context-
dependency), etc. The key to automation of the approach is that
it is defined at the meta-level (class diagrams, concrete syntax
definitions, and rule-based transformation with scheduling), in
combination with predefined, generic templates.

We use a combination of natural language and patterns as
concrete syntax for properties. Although very expressive, simple
properties can be cumbersome to model and can still be confusing,
which was the very problem ProMoBox tried to solve. The
contribution of ProMoBox is however to provide means to ease the
specification and verification of properties. We showed that because
of the template-based approach the modeller can easily change
the concrete syntax, if for example, a user prefers a visual syntax
for patterns. Also, syntactic sugar may be added to easily express
and visualise features that occur often. For example, the pattern
structure might be bypassed if it consists of a single element. In that
respect, and because a domain-specific concrete syntax is used, we
feel that the ProMoBox framework improves the understandability
of the properties.

8.4 Scalability

As scalability limitations are inherent to model checking, it remains
a main concern. The compiler generating Promela could be further
optimised. On the one hand, further generic optimisations can
be applied to the compiler by a cooperation between a DSM
and Promela expert. On the other hand, the compiler might be
extended to take user-defined optimisation information into account.
For example, since pattern matching is the bottleneck of rule-
based transformation, search plans [85] can be incorporated in the
approach, to allow an optimal matching order of pattern elements.

Another way to contain the scalability issue is to extend and
quantify the modelling guidelines, so that a prediction of the model
checking time and memory consumption can be given. To this end,
extensive empirical research is needed to quantify the relationship
between model characteristics and model checking performance.
This relationship is different for every verification backbone.

A radically different solution to the problem of scalability
would be to not map to a model checking approach, but instead use
test case generation techniques to generate relevant test cases in the
form of input models and trace models (oracles). A first step in this
direction has been taken in [56], where the ProMoBox framework
is extended to the generation of a domain-specific testing language,
including execution semantics. This illustrates how ProMoBox
benefits from its flexible modelling approach, because mappings
to different semantic domains can be implemented. However,
this research direction is not yet investigated for the ProMoBox
approach.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

38

9 RELATED WORK

With respect to the contribution of this paper, we distinguish
two types of related work. First, we consider approaches that
translate models to formal representations to specify and verify
properties that are created specifically for one modelling language.
Second, we discuss approaches that have a more general view
on providing specification and verification support for different
modelling languages.

9.1 Specific Solutions
In the last decade, a plethora of language-specific approaches
have been presented to define properties and verification results
for different kinds of design-oriented languages. For instance,
Cimatti et al. [13] have proposed to verify component-based
systems by using scenarios specified as Message Sequence Charts
(MSCs). Li et al. [47] also apply MSCs for specifying scenarios for
verifying concurrent systems. The CHARMY approach [67] offers
amongst other features, verification support for architectural models
described in UML. Collaboration and sequence diagrams have been
applied to check the behaviour of systems described in terms of
state machines [11], [41], [42]. These mentioned approaches are
just a few examples that aim at specifying temporal properties
for models and verifying them by model checkers (see [27] for a
survey). They have in common that they offer language-specific
property languages. However, these approaches are not aiming to
support language engineers in the task of building domain-specific
property languages.

TimeLine [79] is specifically designed to address the design
of temporal properties in a visual manner. Analogous to LTL
formulas, these TimeLine properties can be transformed to Promela
never claims (i.e., Büchi automata), which can be directly used for
model checking by Spin. TimeLine was used to convert informal
requirements written in English to formal requirements that are
still very readable. The problem that TimeLine addresses is highly
related to the problem statement of this paper, but in our approach
we generalised this approach for DSM.

Compared to our previous work [57], we have put a great
amount of effort in improving the compiler to Promela. Table 5
shows the results of the experiment presented in [57] compared to
the results in this paper. Both experiments represent the running
example of Figure 4, executed with the LTL formula �(True).
Although only one experiment could be validly compared, it
illustrates the compiler’s improvement. The dramatic improvement
can be attributed the more optimal encoding of the state vector, and
the limitation in decisions (i.e., loops and conditions), which limits
the number of bounds as discussed in Section 7.3.

9.2 Generic Solutions
This work is based on the specification patterns of Dwyer et al. [21].
The patters are evaluated in [22], and out of 555 specifications
collected, 511 (92%) matched one of the patterns. The work in [17]
continues the work, and introduces a textual language that includes
structural patterns and quantification, much like the framework
presented here. However, the presented language is limited to Java
only.

In [84], Varró presents an approach in which a metamodel with
operational semantics and an instance model can be transformed
to a transition system. Transition systems are used as the de facto
interchange standard of the Symbolic Analysis Laboratory [6],
a framework for combining tools for formal methods. Safety

properties and deadlock can be analysed. The approach also makes
the distinction between static and dynamic language concepts for
reducing the state space.

Rivera et al. map models and their operational semantics
of DSMLs to rewriting logic [74], as well as metamodels [73].
Maude [15] can verify properties using rewriting logic, so opera-
tional semantics can be subjected to analyzing methods provided
out-of-the-box of Maude environments such as reachability analysis
and checking of temporal properties specified in LTL. The approach
maps rules to rewriting logic (which is in essence rule-based), while
our mapping to Promela supports a broader platform for rule-based
semantics.

There are some approaches that aim to shift the specification
and verification tasks to the model level in a more generalised
manner. First of all, there are approaches that propose OCL
extensions, often referred to Temporal OCL (TOCL), for defining
temporal properties on models [8], [37], [89]. As OCL may be
combined with any modelling language, TOCL can be seen as
a generic model-based property language as well. In [16], [87],
[88] the authors discuss and apply a pattern to extend modelling
languages with events, traces, and further run-time concepts to
represent the state of a model’s execution and to use TOCL
for defining properties that are verified by mapping the design
models as well as the properties expressed in TOCL to formal
domains that provide verification support. In addition, not only the
input for model checkers is automatically produced, but also the
output, i.e., the verification results, is translated back to the model
level. Contrary to our approach, a transformation for the latter
has to be built by hand. Furthermore, instead of using patterns
as propositions like we propose, helper functions have to be
written (requiring knowledge of OCL), while temporal properties
in TOCL use these helper functions. The authors explain the choice
of using TOCL to be able to express properties at the domain
level, because TOCL is close to OCL and should be therefore
familiar to domain engineers. However, they also state that early
feedback of applying their approach has shown that TOCL is
still not well suited to many domain engineers and they state
in future work that more tailored languages may be of help for
the domain engineers. The work presented in this paper goes
directly in this direction by enabling domain engineers to use
their familiar notation for defining properties and exploring the
verification results. Interestingly, Combemale et al. [16] argue
that executable DSMLs require languages similar to our design,
run-time, input and trace languages. However, in their approach, the
different metamodels must be specified explicitly by the language
engineer, rather than using a generative approach that requires
minimal annotation of the metamodel.

Another approach that aims to define properties on the model
level in a generic way is presented by Klein and Giese [40]. The
authors extend a language for defining structural patterns based
on Story Diagrams [25] to allow for modelling temporal patterns
as well. The resulting language allows to define conditionally
timed scenarios stating the partial order of structural patterns. The
authors argue that their language is more accessible for domain
users, because their language allows decomposition of complex
temporal properties into smaller ones by if-then-else decomposition
and quantification over free variables. Their approach is tailored
to engineers that are familiar with UML class diagrams and
UML object diagrams as their notation is heavily based on the
concepts of these two languages. Furthermore, they explain how
the specification patterns of Dwyer et al. [21] are encoded in their

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

39

time taken (s) states transitions state vector size (B) memory usage (MB)

previous compiler [57] 72.2 2 235 884 20 411 565 244 554.399
current compiler 0.22 35 774 120 704 120 5.049

Table 5
The performance of the generated Promela model for the running example: comparison of this work with previous work [57].

language, but there is no language-inherent support to explicitly
apply them. In our work, we tackle these two issues in the context
of DSM by reusing the notation of domain users for specifying
properties and providing explicit language support for specification
patterns.

Finally, da Costa Cavalheiro et al. [19] present specification
patterns for describing properties over reachable states of graph
grammars. These specification patterns are purely defined on graph
structures (i.e., nodes and edges) and thus are reusable for any mod-
elling language. However, the authors do not discuss integration
with current modelling languages to use such specification patterns
for specific properties.

None of these approaches supports visual, domain-specific syn-
tax for all used models as in our approach. Moreover, no solutions
exist that use a generative approach to define sublanguages similar
to the used DSML.

10 CONCLUSION AND FUTURE WORK

In this paper, we presented a solution in the form of ProMoBox, a
framework that integrates the definition and verification of temporal
properties in discrete-time behavioural DSMLs, whose semantics
can be described as a schedule of graph rewrite rules. Thanks
to the expressiveness of graph rewriting, this covers a very large
class of problems. With ProMoBox, the domain user models not
only the system with a DSML, but also its properties, input model,
run-time state and output trace. The DSML is thus comprised
of five sublanguages, which share domain-specific syntax. The
sublanguages are generated from a single metamodel to keep them
consistent and to avoid duplication, that is annotated to denote
the role of each language concept. The operational semantics
of the DSML is modelled as a transformation and is annotated
with information about input and output. The modelled system
and its properties are transformed to Promela, and properties are
verified with Spin, a tool for explicit state model checking. In
case a counterexample is found, its execution trace is transformed
to the domain-specific level as a trace model, which can be
played out. Thus, the language engineer (whilst modelling a
DSML), and the domain user (whilst modelling and verifying
properties) are shielded from underlying notations and techniques.
The process of the ProMoBox framework is explicitly modelled in
a Formalism Transformation Graph and Process Model. We used
an elevator controller as a running example, and showed how the
five sublanguages can be generated and how properties can be
verified with ProMoBox.

Additionally, we provided a detailed evaluation of the Pro-
MoBox approach by evaluating five research questions. For each
research question that compares to traditional DSM methods
(i.e., RQ1 to RQ5), the ProMoBox approach performed favourably,
confirming the hypotheses presented in the introduction of Sec-
tion 7. A discussion of the scope and limitations of the approach
as required was presented in Section 8

In conclusion, ProMoBox provides a solution for the specifica-
tion and verification of properties in a highly flexible and automated
way, according to DSM principles.

Compared to previous work [20], [57], [60], the following
significant additions were introduced in this paper:

• specific research questions have been added in the intro-
duction of Section 7;

• the background has been extensively explained in Section 2;
• the process is explained extensively using the FTG+PM

models throughout the paper;
• different use cases are presented in Section 3.1 and are

discussed in Section 7;
• the AnnotationTypes DSML has been added in Section 4.1,

to allow the creation of new annotations;
• annotations on the operational semantics have been added

in Section 4.3;
• the compiler to Promela has been improved significantly.

The improvement is discussed in Section 7.3.
• an evaluation has been added in Section 7. In previous

publications, there was no evaluation section;
• a tool for “playing out” a counterexample has been added

in Section 5.6 and Section 6.

An interesting thread for future work is checking different
kinds of properties, such as real-time properties. In [29], [43] the
authors extend the specification patterns of Dwyer et al. with real-
time information. These properties could be mapped to a tool for
verifying real-time systems, such as UPPAAL [5], which allows the
user to specify a system as a timed automaton and specify temporal
properties with time bounds.

Moreover, in more complex models, the model checking ap-
proach falls short however because of its computational complexity.
Therefore we aim to investigate a more scalable alternative to model
checking, in the form of test case generation. We believe that the
five sublanguages are highly suitable to address this. A test case
can be encoded as a run-time model and an input model. A trace
model (or a variation thereof representing a trace pattern rather
than a trace) can serve as an oracle. We want to investigate whether
the test case and oracle can be generated from a design model and
a property model, thus requiring the same input as in the current
ProMoBox approach. The test case generation strategy can then be
plugged in, whether it be random selection according to a normal
distribution, search-based testing [53], or a different strategy. Since
testing does not guarantee correctness like model checking does,
running the test case generation phase should return a coverage
report [61]. This coverage report should be presentable at the DSM
level as well, and could include covering every transition in the
transformation schedule, every path in the transformation schedule,
every element in the design model, every element of the input
metamodel, etc. We aim for an equally flexible and automated
approach.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

40

ACKNOWLEDGEMENT

We wish to thank professor Matthew Dwyer for his insights in the
specification patterns, and their true intention.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

41

REFERENCES

[1] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness.
Distributed Computing, 2(3):117–126, 1987.

[2] Charles Ashbacher. ”the unified modeling language reference manual,
second edition”, by james rumbaugh. Journal of Object Technology,
3(10):193–195, 2004.

[3] Marco Autili, Lars Grunske, Markus Lumpe, Patrizio Pelliccione, and
Antony Tang. Aligning qualitative, real-time, and probabilistic property
specification patterns using a structured english grammar. IEEE Trans.
Software Eng., 41(7):620–638, 2015.

[4] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT Press, 2008.

[5] Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson, Paul Petters-
son, and Wang Yi. UPPAAL - a tool suite for automatic verification
of real-time systems. In Rajeev Alur, Thomas A. Henzinger, and
Eduardo D. Sontag, editors, Hybrid Systems III: Verification and Control,
Proceedings of the DIMACS/SYCON Workshop, October 22-25, 1995,
Ruttgers University, New Brunswick, NJ, USA, volume 1066 of Lecture
Notes in Computer Science, pages 232–243. Springer, 1995.

[6] Saddek Bensalem, Vijay Ganesh, Yassine Lakhnech, César Mu noz,
Sam Owre, Harald Rueß, John Rushby, Vlad Rusu, Hassen Saı̈di, N.
Shankar, Eli Singerman, and Ashish Tiwari. An overview of SAL. In
C. Michael Holloway, editor, LFM 2000: Fifth NASA Langley Formal
Methods Workshop, pages 187–196, Hampton, VA, jun 2000. NASA
Langley Research Center.

[7] Jean Bézivin, Fabian Büttner, Martin Gogolla, Frédéric Jouault, Ivan
Kurtev, and Arne Lindow. Model transformations? transformation
models! In Oscar Nierstrasz, Jon Whittle, David Harel, and Gianna
Reggio, editors, Model Driven Engineering Languages and Systems, 9th
International Conference, MoDELS 2006, Genova, Italy, October 1-6,
2006, Proceedings, volume 4199 of Lecture Notes in Computer Science,
pages 440–453. Springer, 2006.

[8] Robert Bill, Sebastian Gabmeyer, Petra Kaufmann, and Martina Seidl.
OCL meets CTL: towards CTL-extended OCL model checking. In Jordi
Cabot, Martin Gogolla, István Ráth, and Edward D. Willink, editors,
Proceedings of the MODELS 2013 OCL Workshop co-located with the
16th International ACM/IEEE Conference on Model Driven Engineering
Languages and Systems (MODELS 2013), Miami, USA, September 30,
2013., volume 1092 of CEUR Workshop Proceedings, pages 13–22.
CEUR-WS.org, 2013.

[9] Frédéric Boulanger, Cécile Hardebolle, Christophe Jacquet, and Do-
minique Marcadet. Semantic adaptation for models of computation.
In Benoı̂t Caillaud, Josep Carmona, and Kunihiko Hiraishi, editors, 11th
International Conference on Application of Concurrency to System Design,
ACSD 2011, Newcastle Upon Tyne, UK, 20-24 June, 2011, pages 153–162.
IEEE Computer Society, 2011.

[10] John Brooke. Sus: A retrospective. J. Usability Studies, 8(2):29–40,
February 2013.

[11] Petra Brosch, Uwe Egly, Sebastian Gabmeyer, Gerti Kappel, Martina
Seidl, Hans Tompits, Magdalena Widl, and Manuel Wimmer. Towards
scenario-based testing of UML diagrams. In Achim D. Brucker and
Jacques Julliand, editors, Tests and Proofs - 6th International Conference,
TAP 2012, Prague, Czech Republic, May 31 - June 1, 2012. Proceedings,
volume 7305 of Lecture Notes in Computer Science, pages 149–155.
Springer, 2012.

[12] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso
Pierantonio. Automating co-evolution in model-driven engineering.
In 12th International IEEE Enterprise Distributed Object Computing
Conference, ECOC 2008, 15-19 September 2008, Munich, Germany,
pages 222–231. IEEE Computer Society, 2008.

[13] Alessandro Cimatti, Sergio Mover, and Stefano Tonetta. Proving and
explaining the unfeasibility of message sequence charts for hybrid systems.
In Per Bjesse and Anna Slobodová, editors, International Conference on
Formal Methods in Computer-Aided Design, FMCAD ’11, Austin, TX,
USA, October 30 - November 02, 2011, pages 54–62. FMCAD Inc., 2011.

[14] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic
verification of finite-state concurrent systems using temporal logic
specifications. ACM Trans. Program. Lang. Syst., 8(2):244–263, 1986.

[15] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Martı́-Oliet, José Meseguer, and Carolyn L. Talcott, editors. All About
Maude - A High-Performance Logical Framework, How to Specify,
Program and Verify Systems in Rewriting Logic, volume 4350 of Lecture
Notes in Computer Science. Springer, 2007.

[16] Benoı̂t Combemale, Xavier Crégut, and Marc Pantel. A design pattern to
build executable dsmls and associated v&v tools. In Karl R. P. H. Leung
and Pornsiri Muenchaisri, editors, 19th Asia-Pacific Software Engineering

Conference, APSEC 2012, Hong Kong, China, December 4-7, 2012, pages
282–287. IEEE, 2012.

[17] James C. Corbett, Matthew B. Dwyer, John Hatcliff, and Robby. A
language framework for expressing checkable properties of dynamic
software. In Klaus Havelund, John Penix, and Willem Visser, editors,
SPIN Model Checking and Software Verification, 7th International
SPIN Workshop, Stanford, CA, USA, August 30 - September 1, 2000,
Proceedings, volume 1885 of Lecture Notes in Computer Science, pages
205–223. Springer, 2000.

[18] Gennaro Costagliola, Andrea De Lucia, Sergio Orefice, and Giuseppe
Polese. A classification framework to support the design of visual
languages. J. Vis. Lang. Comput., 13(6):573–600, 2002.

[19] Simone André da Costa Cavalheiro, Luciana Foss, and Leila Ribeiro.
Specification patterns for properties over reachable states of graph
grammars. In Rohit Gheyi and David A. Naumann, editors, Formal
Methods: Foundations and Applications - 15th Brazilian Symposium,
SBMF 2012, Natal, Brazil, September 23-28, 2012. Proceedings, volume
7498 of Lecture Notes in Computer Science, pages 83–98. Springer, 2012.

[20] Romuald Deshayes, Bart Meyers, Tom Mens, and Hans Vangheluwe.
Promobox in practice : A case study on the GISMO domain-specific
modelling language. In Daniel Balasubramanian, Christophe Jacquet,
Pieter Van Gorp, Sahar Kokaly, and Tamás Mészáros, editors, Proceedings
of the 8th Workshop on Multi-Paradigm Modeling co-located with the 17th
International Conference on Model Driven Engineering Languages and
Systems, MPM@MODELS 2014, Valencia, Spain, September 30, 2014.,
volume 1237 of CEUR Workshop Proceedings, pages 21–30. CEUR-
WS.org, 2014.

[21] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property
specification patterns for finite-state verification. In Mark A. Ardis
and Joanne M. Atlee, editors, Proceedings of the Second Workshop on
Formal Methods in Software Practice, March 4-5, 1998, Clearwater Beach,
Florida, USA, pages 7–15. ACM, 1998.

[22] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns
in property specifications for finite-state verification. In Barry W.
Boehm, David Garlan, and Jeff Kramer, editors, Proceedings of the
1999 International Conference on Software Engineering, ICSE’ 99, Los
Angeles, CA, USA, May 16-22, 1999., pages 411–420. ACM, 1999.

[23] E. Allen Emerson. Temporal and modal logic. In Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics (B), pages
995–1072. MIT Press Cambridge, 1990.

[24] E. Allen Emerson and Edmund M. Clarke. Using branching time temporal
logic to synthesize synchronization skeletons. Sci. Comput. Program.,
2(3):241–266, 1982.

[25] Thorsten Fischer, Jörg Niere, Lars Torunski, and Albert Zündorf. Story
diagrams: A new graph rewrite language based on the unified modeling
language and java. In Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski,
and Grzegorz Rozenberg, editors, Theory and Application of Graph
Transformations, 6th International Workshop, TAGT’98, Paderborn,
Germany, November 16-20, 1998, Selected Papers, volume 1764 of
Lecture Notes in Computer Science, pages 296–309. Springer, 1998.

[26] Robert B. France and Bernhard Rumpe. Model-driven development of
complex software: A research roadmap. CoRR, abs/1409.6620, 2014.

[27] Sebastian Gabmeyer, Petra Kaufmann, and Martina Seidl. A classification
of model checking-based verification approaches for software models.
In Second Workshop on Verification Of Model Transformations (VOLT),
2013.

[28] Jeff Gray, Sandeep Neema, Juha-Pekka Tolvanen, Aniruddha S. Gokhale,
Steven Kelly, and Jonathan Sprinkle. Domain-specific modeling. In Paul A.
Fishwick, editor, Handbook of Dynamic System Modeling. Chapman and
Hall/CRC, 2007.

[29] Volker Gruhn and Ralf Laue. Patterns for timed property specifications.
Electr. Notes Theor. Comput. Sci., 153(2):117–133, 2006.

[30] Esther Guerra, Juan de Lara, Dimitrios S. Kolovos, and Richard F.
Paige. A visual specification language for model-to-model transformations.
In Christopher D. Hundhausen, Emmanuel Pietriga, Paloma Dı́az, and
Mary Beth Rosson, editors, IEEE Symposium on Visual Languages and
Human-Centric Computing, VL/HCC 2010, Leganés-Madrid, Spain, 21-25
September 2010, Proceedings, pages 119–126. IEEE Computer Society,
2010.

[31] Esther Guerra, Juan de Lara, Manuel Wimmer, Gerti Kappel, Ange-
lika Kusel, Werner Retschitzegger, Johannes Schönböck, and Wieland
Schwinger. Automated verification of model transformations based on
visual contracts. Autom. Softw. Eng., 20(1):5–46, 2013.

[32] Esther Guerra, Paloma Dı́az, and Juan de Lara. Visual specification of
metrics for domain specific visual languages. Electr. Notes Theor. Comput.
Sci., 211:99–110, 2008.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

42

[33] David Harel. Statecharts: A visual formalism for complex systems. Sci.
Comput. Program., 8(3):231–274, 1987.

[34] Markus Herrmannsdoerfer, Sebastian Benz, and Elmar Juergens. Cope
- automating coupled evolution of metamodels and models. In 23rd
European Conference on Object-Oriented Programming (ECOOP), pages
52–76, 2009.

[35] Gerard J. Holzmann. The model checker SPIN. IEEE Trans. Software
Eng., 23(5):279–295, 1997.

[36] Franz Huber, Bernhard Schätz, Alexander Schmidt, and Katharina Spies.
Autofocus: A tool for distributed systems specification. In Bengt Jonsson
and Joachim Parrow, editors, Formal Techniques in Real-Time and Fault-
Tolerant Systems, 4th International Symposium, FTRTFT’96, Uppsala,
Sweden, September 9-13, 1996, Proceedings, volume 1135 of Lecture
Notes in Computer Science, pages 467–470. Springer, 1996.

[37] Bilal Kanso and Safouan Taha. Temporal constraint support for OCL.
In Krzysztof Czarnecki and Görel Hedin, editors, Software Language
Engineering, 5th International Conference, SLE 2012, Dresden, Germany,
September 26-28, 2012, Revised Selected Papers, volume 7745 of Lecture
Notes in Computer Science, pages 83–103. Springer, 2012.

[38] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling:
Enabling Full Code Generation. John Wiley & Sons, March 2008.

[39] Chris F. Kemerer. An empirical validation of software cost estimation
models. Commun. ACM, 30(5):416–429, 1987.

[40] Florian Klein and Holger Giese. Joint structural and temporal property
specification using timed story scenario diagrams. In Matthew B.
Dwyer and Antónia Lopes, editors, Fundamental Approaches to Software
Engineering, 10th International Conference, FASE 2007, Held as Part
of the Joint European Conferences, on Theory and Practice of Software,
ETAPS 2007, Braga, Portugal, March 24 - April 1, 2007, Proceedings,
volume 4422 of Lecture Notes in Computer Science, pages 185–199.
Springer, 2007.

[41] Alexander Knapp, Stephan Merz, and Christopher Rauh. Model checking
- timed UML state machines and collaborations. In Werner Damm and
Ernst-Rüdiger Olderog, editors, Formal Techniques in Real-Time and
Fault-Tolerant Systems, 7th International Symposium, FTRTFT 2002, Co-
sponsored by IFIP WG 2.2, Oldenburg, Germany, September 9-12, 2002,
Proceedings, volume 2469 of Lecture Notes in Computer Science, pages
395–416. Springer, 2002.

[42] Alexander Knapp and Jochen Wuttke. Model checking of UML 2.0
interactions. In Kühne [45], pages 42–51.

[43] Sascha Konrad and Betty H. C. Cheng. Real-time specification patterns.
In Gruia-Catalin Roman, William G. Griswold, and Bashar Nuseibeh,
editors, 27th International Conference on Software Engineering (ICSE
2005), 15-21 May 2005, St. Louis, Missouri, USA, pages 372–381. ACM,
2005.

[44] Thomas Kühne. Matters of (meta-)modeling. Software and System
Modeling, 5(4):369–385, 2006.

[45] Thomas Kühne, editor. Models in Software Engineering, Workshops and
Symposia at MoDELS 2006, Genoa, Italy, October 1-6, 2006, Reports
and Revised Selected Papers, volume 4364 of Lecture Notes in Computer
Science. Springer, 2007.

[46] Thomas Kühne, Gergely Mezei, Eugene Syriani, Hans Vangheluwe, and
Manuel Wimmer. Explicit transformation modeling. In Sudipto Ghosh,
editor, Models in Software Engineering, Workshops and Symposia at
MODELS 2009, Denver, CO, USA, October 4-9, 2009, Reports and
Revised Selected Papers, volume 6002 of Lecture Notes in Computer
Science, pages 240–255. Springer, 2009.

[47] Xuandong Li, Jun Hu, Lei Bu, Jianhua Zhao, and Guoliang Zheng. Con-
sistency checking of concurrent models for scenario-based specifications.
In Andreas Prinz, Rick Reed, and Jeanne Reed, editors, SDL 2005: Model
Driven, 12th International SDL Forum, Grimstad, Norway, June 20-23,
2005, Proceedings, volume 3530 of Lecture Notes in Computer Science,
pages 298–312. Springer, 2005.

[48] Levi Lucio, Sadaf Mustafiz, Joachim Denil, Bart Meyers, and Hans
Vangheluwe. The Formalism Transformation Graph as a Guide to
Model Driven Engineering. Technical Report SOCS-TR2012.1, School of
Computer Science, McGill University, March 2012.

[49] Raphaël Mannadiar. Multi-Paradigm Modelling Approach to the Foun-
dations of Domain-Specific Modelling. PhD thesis, McGill University, 6
2012.

[50] The Mathworks. Model verification using
simulink control design and simulink verification
blocks. http://www.mathworks.com/help/slcontrol/ug/
model-verification-using-simulink-control-design-and-simulink-verification-blocks-.
html. Accessed: December 2015.

[51] The Mathworks. Simulink - simulation and model-based design. http:
//nl.mathworks.com/products/simulink/. Accessed: May 2015.

[52] Thomas J. McCabe. A complexity measure. IEEE Trans. Software Eng.,
2(4):308–320, 1976.

[53] Phil McMinn. Search-based software test data generation: a survey. Softw.
Test., Verif. Reliab., 14(2):105–156, 2004.

[54] Stephan Merz. An introduction to model checking. In Stephan Merz and
Nicolas Navet, editors, Modeling and Verification of Real-Time Systems -
Formalisms and Software Tools, pages 81–116. ISTE Publishing, 2008.

[55] Bart Meyers, Joachim Denil, Frédéric Boulanger, Cécile Hardebolle,
Christophe Jacquet, and Hans Vangheluwe. A DSL for explicit semantic
adaptation. In Christophe Jacquet, Daniel Balasubramanian, Edward Jones,
and Tamás Mészáros, editors, Proceedings of the 7th Workshop on Multi-
Paradigm Modeling co-located with the 16th International Conference
on Model Driven Engineering Languages and Systems, MPM@MoDELS
2013, Miami, Florida, September 30, 2013., volume 1112 of CEUR
Workshop Proceedings, pages 47–56. CEUR-WS.org, 2013.

[56] Bart Meyers, Joachim Denil, István Dávid, and Hans Vangheluwe. Auto-
mated testing support for reactive domain-specific modelling languages.
In Proceedings of the 2016 ACM SIGPLAN International Conference on
Software Language Engineering, SLE 2016, pages 181–194, New York,
NY, USA, 2016. ACM.

[57] Bart Meyers, Romuald Deshayes, Levi Lucio, Eugene Syriani, Hans
Vangheluwe, and Manuel Wimmer. ProMoBox: A framework for
generating domain-specific property languages. In Software Language
Engineering, volume 8706 of Lecture Notes in Computer Science, pages
1–20. Springer International Publishing, 2014.

[58] Bart Meyers and Hans Vangheluwe. A framework for evolution of
modelling languages. Sci. Comput. Program., 76(12):1223–1246, 2011.

[59] Bart Meyers, Manuel Wimmer, Antonio Cicchetti, and Jonathan Sprinkle.
A generic in-place transformation-based approach to structured model
co-evolution. ECEASST, 42, 2011.

[60] Bart Meyers, Manuel Wimmer, and Hans Vangheluwe. Towards domain-
specific property languages: The ProMoBox approach. In Proceedings
of the 2013 ACM Workshop on Domain-specific Modeling, pages 39–44.
ACM New York, NY, USA, 2013.

[61] Joan C. Miller and Clifford J. Maloney. Systematic mistake analysis of
digital computer programs. Commun. ACM, 6(2):58–63, 1963.

[62] Pieter J. Mosterman. Hybrid Dynamic Systems: A Hybrid Bond Graph
Modeling Paradigm and its Application in Diagnosis. PhD thesis,
Vanderbilt University, 1997.

[63] Pieter J. Mosterman and Hans Vangheluwe. Computer automated multi-
paradigm modeling: An introduction. Simulation, 80(9):433–450, 2004.

[64] Sadaf Mustafiz, Joachim Denil, Levi Lucio, and Hans Vangheluwe. The
FTG+PM framework for multi-paradigm modelling: an automotive case
study. In Cécile Hardebolle, Eugene Syriani, Jonathan Sprinkle, and
Tamás Mészáros, editors, Proceedings of the 6th International Workshop
on Multi-Paradigm Modeling, MPM@MoDELS 2012, Innsbruck, Austria,
October 1-5, 2012, pages 13–18. ACM, 2012.

[65] Object Management Group. Object constraint language version 2.4.
Technical report, OMG, 2014.

[66] Object Management Group. OMG Unified Modeling Language Version
2.5. Technical report, OMG, March 2015.

[67] Patrizio Pelliccione, Paola Inverardi, and Henry Muccini. CHARMY: A
framework for designing and verifying architectural specifications. IEEE
Trans. Software Eng., 35(3):325–346, 2009.

[68] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977, pages 46–57. IEEE Computer Society, 1977.

[69] Elham Ramezani, Dirk Fahland, and Wil M. P. van der Aalst. Where
did I misbehave? diagnostic information in compliance checking. In
Alistair P. Barros, Avigdor Gal, and Ekkart Kindler, editors, Business
Process Management - 10th International Conference, BPM 2012, Tallinn,
Estonia, September 3-6, 2012. Proceedings, volume 7481 of Lecture Notes
in Computer Science, pages 262–278. Springer, 2012.

[70] Wolfgang Reisig and Grzegorz Rozenberg, editors. Lectures on Petri
Nets I: Basic Models, Advances in Petri Nets, the volumes are based on
the Advanced Course on Petri Nets, held in Dagstuhl, September 1996,
volume 1491 of Lecture Notes in Computer Science. Springer, 1998.

[71] Arend Rensink. Explicit state model checking for graph grammars.
In Pierpaolo Degano, Rocco De Nicola, and José Meseguer, editors,
Concurrency, Graphs and Models, Essays Dedicated to Ugo Montanari
on the Occasion of His 65th Birthday, volume 5065 of Lecture Notes in
Computer Science, pages 114–132. Springer, 2008.

[72] Matteo Risoldi. A Methodology For The Development Of Complex Domain
Specific Languages. PhD thesis, University of Geneva, 2010.

[73] José Eduardo Rivera, Francisco Durán, and Antonio Vallecillo. Formal
specification and analysis of domain specific models using maude.
Simulation, 85(11-12):778–792, 2009.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://www.mathworks.com/help/slcontrol/ug/model-verification-using-simulink-control-design-and- simulink-verification-blocks-.html
http://www.mathworks.com/help/slcontrol/ug/model-verification-using-simulink-control-design-and- simulink-verification-blocks-.html
http://www.mathworks.com/help/slcontrol/ug/model-verification-using-simulink-control-design-and- simulink-verification-blocks-.html
http://nl.mathworks.com/products/simulink/
http://nl.mathworks.com/products/simulink/

43

[74] José Eduardo Rivera, Esther Guerra, Juan de Lara, and Antonio Vallecillo.
Analyzing rule-based behavioral semantics of visual modeling languages
with maude. In Dragan Gasevic, Ralf Lämmel, and Eric Van Wyk,
editors, Software Language Engineering, First International Conference,
SLE 2008, Toulouse, France, September 29-30, 2008. Revised Selected
Papers, volume 5452 of Lecture Notes in Computer Science, pages 54–73.
Springer, 2008.

[75] Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos, and Fiona Polack.
The epsilon generation language. In Ina Schieferdecker and Alan Hartman,
editors, Model Driven Architecture - Foundations and Applications, 4th
European Conference, ECMDA-FA 2008, Berlin, Germany, June 9-13,
2008. Proceedings, volume 5095 of Lecture Notes in Computer Science,
pages 1–16. Springer, 2008.

[76] Per Runeson and Martin Höst. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software
Engineering, 14(2):131–164, 2009.

[77] Laurent Safa. The practice of deploying DSM Report from a Japanese
appliance maker trenches. In Jeff Gray, Juha-Pekka Tolvanen, and
Jonathan Sprinkle, editors, Sixth Object-Oriented Programming, Systems,
Languages and Applications Workshop on Domain-Specific Modeling,
pages 185–196. University of Jyväskylä, October 2006.

[78] Carolyn B. Seaman. Qualitative methods in empirical studies of software
engineering. IEEE Trans. Software Eng., 25(4):557–572, 1999.

[79] Margaret H. Smith, Gerard J. Holzmann, and Kousha Etessami. Events
and constraints: A graphical editor for capturing logic requirements
of programs. In 5th IEEE International Symposium on Requirements
Engineering (RE 2001), 27-31 August 2001, Toronto, Canada, pages
14–22. IEEE Computer Society, 2001.

[80] Frank Strobl and Alexander Wisspeintner. Specification of an elevator
control system – an autofocus case study. Technical Report TUM-I9906,
Technische Univerität München, 1999.

[81] Sagar Sunkle and Vinay Kulkarni. Cost estimation for model-driven
engineering. In Robert B. France, Jürgen Kazmeier, Ruth Breu, and Colin
Atkinson, editors, Model Driven Engineering Languages and Systems
- 15th International Conference, MODELS 2012, Innsbruck, Austria,
September 30-October 5, 2012. Proceedings, volume 7590 of Lecture
Notes in Computer Science, pages 659–675. Springer, 2012.

[82] Eugene Syriani. A Multi-Paradigm Foundation for Model Transformation
Language Engineering. PhD thesis, McGill University Montreal, Canada,
2011.

[83] Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner Hansen,
Simon Van Mierlo, and Hüseyin Ergin. Atompm: A web-based modeling
environment. In Yan Liu, Steffen Zschaler, Benoit Baudry, Sudipto Ghosh,
Davide Di Ruscio, Ethan K. Jackson, and Manuel Wimmer, editors, Joint
Proceedings of MODELS’13 Invited Talks, Demonstration Session, Poster
Session, and ACM Student Research Competition co-located with the
16th International Conference on Model Driven Engineering Languages
and Systems (MODELS 2013), Miami, USA, September 29 - October
4, 2013., volume 1115 of CEUR Workshop Proceedings, pages 21–25.
CEUR-WS.org, 2013.

[84] Dániel Varró. Automated formal verification of visual modeling languages
by model checking. Software and System Modeling, 3(2):85–113, 2004.

[85] Gergely Varró, Katalin Friedl, and Dániel Varró. Adaptive graph pattern
matching for model transformations using model-sensitive search plans.
Electr. Notes Theor. Comput. Sci., 152:191–205, 2006.

[86] Willem Visser, Matthew B. Dwyer, and Michael W. Whalen. The hidden
models of model checking. Software and System Modeling, 11(4):541–555,
2012.

[87] Faiez Zalila, Xavier Crégut, and Marc Pantel. Leveraging formal
verification tools for DSML users: A process modeling case study. In
Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications
of Formal Methods, Verification and Validation. Applications and Case
Studies - 5th International Symposium, ISoLA 2012, Heraklion, Crete,
Greece, October 15-18, 2012, Proceedings, Part II, volume 7610 of
Lecture Notes in Computer Science, pages 329–343. Springer, 2012.

[88] Faiez Zalila, Xavier Crégut, and Marc Pantel. Formal verification
integration approach for DSML. In Ana Moreira, Bernhard Schätz,
Jeff Gray, Antonio Vallecillo, and Peter J. Clarke, editors, Model-Driven
Engineering Languages and Systems - 16th International Conference,
MODELS 2013, Miami, FL, USA, September 29 - October 4, 2013.
Proceedings, volume 8107 of Lecture Notes in Computer Science, pages
336–351. Springer, 2013.

[89] Paul Ziemann and Martin Gogolla. OCL extended with temporal logic. In
Manfred Broy and Alexandre V. Zamulin, editors, Perspectives of Systems
Informatics, 5th International Andrei Ershov Memorial Conference, PSI
2003, Akademgorodok, Novosibirsk, Russia, July 9-12, 2003, Revised

Papers, volume 2890 of Lecture Notes in Computer Science, pages 351–
357. Springer, 2003.

Bart Meyers Bart Meyers is a research engi-
neering at the strategic research centre Flanders
Make vzw in Leuven (Belgium), where he con-
ducts research on model-based systems engi-
neering. Before, Bart Meyers was a postdoctoral
researcher in the department of Mathematics and
Computer Science at the University of Antwerp
(Belgium). He obtained his Ph.D. in 2016 in
the University of Antwerp. Since 2009, he is a
member of the Antwerp Systems and Software
Modelling Lab (AnSyMo) research group. His

research interests are in the field of language engineering in the context
of domain-specific modelling. More specifically, he investigates domain-
specific property languages and, more recently, product line engineering.
His research is directed towards generative approaches, supported by
core model-driven engineering techniques metamodelling and model
transformation. He has written papers that were accepted at the Interna-
tional Conference on Software Language Engineering (SLE) and were
published in the Science of Computer Programming journal (SCP). In
2014 and 2015, he was the co-organiser of the summer school Domain-
Specific Modelling Theory and Practice, when it was held in Antwerp
(http://www.dsm-tp.org). Contact him at bart.meyers@flandersmake.be,
or visit http://msdl.cs.mcgill.ca/people/bart/.

Hans Vangheluwe Hans Vangheluwe is a Pro-
fessor in the Antwerp Systems and software
Modelling (AnSyMo) group within the department
of Mathematics and Computer Science at the
University of Antwerp in Belgium, an Adjunct
Professor in the School of Computer Science
at McGill University, Montreal, Canada and an
Adjunct Professor at the National University of
Defense Technology in Changsha, China. An-
SyMo is an Associated Lab of Flanders Make, the
strategic research centre for the Flemish manu-

facturing industry. In a variety of projects, often with industrial partners,
he develops and applies the model-based theory and techniques of Multi-
Paradigm Modelling (MPM) in application domains as diverse as waste
water treatment and automotive software. He is an Associate Editor of
ACM’s Transactions on Modeling and Computer Simulation (TOMACS),
of the International Journal of Critical Computer-Based Systems, and of
the International Journal of Adaptive, Resilient and Autonomic Systems.
He is the chair of the EU COST Action Multi-Paradigm Modelling for
Cyber-Physical Systems (MPM4CPS). Contact him at hv@cs.mcgill.ca,
or visit http://msdl.cs.mcgill.ca/people/hv/.

Joachim Denil Joachim Denil is currently a post-
doctoral researcher at the Antwerp Systems and
software Modelling (AnSyMo) group in the Uni-
versity of Antwerp. AnSyMo is an Associated
Lab of Flanders Make, the strategic research
centre for the Flemish manufacturing industry.
He received his Ph.D. in computer science and
his B.Sc. and M.Sc. in Electronics from the
university of Antwerp. He received his B.Sc. in
computer Science from the Free University of
Brussels. Joachim also pursued post-doctoral

research at McGill University on the Canada-wide NECSIS project.
His main research interest is the design of software-intensive and
cyber-physical systems, in particular multi-paradigm modelling, em-
bedded system design, simulation-based design, etc. Contact him at
joachim.denil@uantwerpen.be, or visit http://msdl.cs.mcgill.ca/people/
joachim/.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://www.dsm-tp.org
http://msdl.cs.mcgill.ca/people/bart/
http://msdl.cs.mcgill.ca/people/hv/
http://msdl.cs.mcgill.ca/people/joachim/
http://msdl.cs.mcgill.ca/people/joachim/

44

Rick Salay Rick Salay is a research associate
in the Department of Computer Science at the
University of Toronto and currently a visiting
researcher at the Antwerp Systems and Software
Modelling Lab at the University of Antwerp, His
visit is funded by Flanders Make, the strategic
research centre for the Flemish manufacturing
industry. He received a B.A.Sc. and M.A.Sc.
in Systems Design Engineering from University
of Waterloo (1991) and a Ph.D. in Computer
Science from the University of Toronto (2010).

His research focus is on developing formal theories about non-formal
concepts such as modeler intent and modeler uncertainty in order
to provide a foundation for tool support that will help software engi-
neering practitioners. He regularly serves on program committees for
software engineering conferences and workshops. Prior to his Ph.D.,
he had a 15 year career in advanced software product development
holding various senior software design roles, most recently as chief
architect at InSystems Technologies Inc. (now Oracle). Contact him at
rsalay@cs.toronto.edu, or visit http://www.cs.toronto.edu/∼rsalay.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2859946

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://www.cs.toronto.edu/~rsalay

