Evolution of Modelling Languages

Bart Meyers
Modelling, Simulation and Design Lab (MSDL)
University of Antwerp
Middelheimlaan 1
B-2020 Antwerp, Belgium
Bart.Meyers@ua.ac.be

ABSTRACT

Over the course of the complete life cycle of complex software-
intensive systems and more importantly of entire product families,
evolution is inevitable. Not only instance models, but also entire
modelling languages are subject to change. This is in particular true
for domain-specific languages. Up to this day, modelling languages
are evolved manually, with tedious and error-prone migration of for
example instance models as result. This position paper discusses
the different evolution scenarios for various kinds of modelling ar-
tifacts, such as instance models, meta-models and transformation
models. Subsequently, evolution is de-composed into four primi-
tive scenarios such that all possible evolutions can be covered. The
pre-requisites for implementing this approach are discussed, show-
ing how a number of these are not yet supported by Fujaba. We sug-
gest that using our structured approach in Fujaba will allow a rel-
atively straightforward implementation of (semi-)automatic model
evolution.

1. INTRODUCTION

In software engineering, the evolution of software artifacts is ubig-
uitous. These artifacts can be programs, data, requirements, docu-
mentation, but also languages. Language evolution applies in par-
ticular to domain-specific modelling (DSM), where domain-specific
languages (DSLs) are specifically designed to minimize accidental
complexity by using constructs closely coupled with their domain.
This results in a reported productivity increase of a factor 5 to 10
[10]. DSLs must be quickly built and used, and grow incremen-
tally. A formal underpinning for DSM is given by multi-paradigm
modelling (MPM) [15].

The high dependence on their domains and the need for instant de-
ployment make DSLs highly susceptible to change. Such an evo-
lution of a language can have substantial consequences, which will
be explained throughout this paper. Early adopters of the model-
driven engineering paradigm dealth with this evolution problem
manually. However, such a pragmatic approach is tedious and error-
prone. Without proper methods, techniques and tools to support
evolution, model-driven engineering in general and domain-specific
modelling specifically will not scale to industrial use.

Hans Vangheluwe
Modelling, Simulation and Design Lab (MSDL)
University of Antwerp
Middelheimlaan 1
B-2020 Antwerp, Belgium
Hans.Vangheluwe@ua.ac.be

MM MM
A .
MM ’ :
A i T; '
; « ,m——i Tim)
1
K;(m) M MA.MM
M(m)

Figure 1: A model and its relations in MPM.

1.1 Modelling Languages

To allow for a precise discussion of language evolution, we briefly
introduce the concepts fundamental to modelling languages, in the
context of multi-paradigm modelling [5].

The two main aspects of a model are its syntax (how it is repre-
sented) and its semantics (what it means).

Firstly, the syntax comprises concrete syntax and abstract syntax.
The concrete syntax describes how the model is represented (in 2D
vector graphical form for example), which can be used for model
input as well as visualization. The abstract syntax contains the
essence of the structure of the model (as an abstract syntax graph),
which can be used as a basis for semantic anchoring. A single
abstract syntax may be represented by multiple concrete syntaxes.
There exists a mapping between a concrete syntax and its abstract
syntax, called the parsing mapping function. There is also an in-
verse mapping, called the pretty printing mapping function. Map-
pings are usually implemented, or can be at least represented, as
model transformations.

Secondly, the semantics of a model are defined by a complete, total
and unique semantic mapping function which maps every model
in a language onto an element in a semantic domain, such as dif-
ferential equations, Petri Nets, or the set of all behaviour traces.
Semantic mapping functions are performed on the abstract syntax
for convenience.

A meta-model is the finite and explicit description of the abstract
syntax of a language. Often, the concrete syntax is also described
by (another) meta-model. Semantics are however not covered by
the meta-model. The abstract syntax of the semantic domain itself
will of course conform to a meta-model in its own right.

Figure 1 shows the different kinds of relations a model m is in-



volved in. Relations are visualized by arrows, “conform to”-rela-
tionships are dotted arrows. The abstract syntax model m con-
forms to its meta-model MM. There is a bidirectional relationship
¥; (parsing mapping function and pretty printing mapping func-
tion) between m and a concrete syntax K;(m). K;(m) conforms to its
meta-model MM;. Semantics are described by the semantic map-
ping function M, and map m to a model M(m). M(m) has syntax
which conforms to MM),;. Additionally, there may be other trans-
formations T; defined for m.

2. RELATED WORK

In this section other work related to evolution is presented and some
useful concepts are introduced.

2.1 Model Differencing

In order to be able to model evolution in-the-large, one should be
able to model differences between two versions of a model. This
can of course be done by using lexical differencing, as used for text
files, on the data representation of the model. However, the result of
such analysis is often not useful, as (1) the differences occur at the
granularity level of nodes, links, labels and attributes and (2) mod-
els are usually not sequential in nature and equivalences between
models will not be taken into account. Hence, model differencing
should be done at the appropriate level of abstraction. Some useful
research has been done in this area [1, 17, 13, 23, 4]. Existing ap-
proaches typically rely on the abstract syntax graphs (ASGs) of the
two models, and mainly traverse both graphs in parallel. Nodes in
the graphs are matched by matching unique identifiers [1, 17], or
by a number of heuristics [13, 23]. However, no large-scale version
control system that computes the differences between graph-like
models exists yet.

Next to the problem of finding differences, one should be able to
represent them as a model, which we will call the delta model.
There are two kinds of representations: operational and structural
representations. In the operational representation, the difference
between two versions of a model is modelled as the edit oper-
ations (create/read/update/delete) that were performed on the on
one model to arrive at the other [1, 8]. When these operations are
recorded live from a tool, this strategy is quite easy and powerful,
but dependent on that particular tool and hard to visualize. In struc-
tural representations, either the model (or its DOM representation)
is coloured [17, 23, 13, 19] or a designated delta model is created
which can be used by modelling tools as yet another model [4, 20].

2.2 Model Co-Evolution

When the syntax of a modelling language evolves (i.e., the meta-
model evolves), the most obvious side-effect is that its instance
models are not conform to the new meta-model. Therefore, the
co-evolution of models has become a popular research topic. This
research is inspired by evolution in other domains, such as grammar
evolution [18], database schema evolution [2] and format evolution
[12].

It is widely accepted that a model co-evolution (i.e., migration) is
best modelled as a model transformation [24, 11, 20, 9, 7, 22, 21,
3, 8], which we will call the migration transformation. Grushko et
al. write this transformation manually using the Epsilon Transfor-
mation Language (ETL) [7].

Most of the approaches however define some specific operations
as building blocks for evolution, similar to the operational repre-
sentation of model differences. Such operations typically include

Table 1: Evolution operations as presented in [3].
Operation type Operation
Non-breaking Generalize meta-property
operations Add (non-obligatory) meta-class
Add (non-obligatory) meta-property
Extract (abstract) superclass

Breaking and

resolvable Eliminate meta-class
operations Eliminate meta-property

Push meta-property

Flatten hierarchy

Rename meta-element

Move meta-property

Extract/inline meta-class
Breaking and Add obligatory metaclass
unresolvable Add obligatory metaproperty
operations Pull metaproperty

Restrict metaproperty
Extract (non-abstract) superclass

ELITYS

“create meta-class”, “restrict multiplicity on meta-association” or
“rename meta-attribute” and are related to object-oriented refactor-
ing patterns. These operations, which we will call delta operations,
are reusable. Conveniently, migration transformations can be gen-
erated from sequences of delta operations. It is important that any
possible evolution can be modelled, but there is a general consensus
that the proposed sets of delta operations do not suffice. In a very
recent approach, Herrmannsdorfer et al. try to solve this problem
by repeatedly extending their list of delta operations [8]. In addi-
tion, they support customized evolution. This ensures expressive-
ness, but the migration transformation code must be implemented
manually.

Gruschko et al. make a distinction between non-breaking, resolv-
able and unresolvable operations. Non-breaking operations do not
require co-evolution. Inconsistencies caused by resolvable opera-
tions can be resolved by co-evolution. However, model co-evolution
for unresolvable operations requires additional information in order
to execute. For example, when a “create obligated meta-feature”-
operation is performed on a meta-model, then a new feature is cre-
ated for each instance. However, the information about what the
initial value of this feature will be, is unknown, as it differs from
model instance to model instance. As an illustration, the opera-
tions proposed by Cicchetti et al. [3] are shown in Table 1. Note
the similarities with refactoring patterns.

3. EVOLUTION FOR MPM

‘While model co-evolution as described above implements automa-
tion to some extent, there are other artifacts that might have to co-
evolve. This section presents an exhaustive survey of possible evo-
lutions and co-evolutions.

3.1 Syntactic Evolution

To get a general idea of the consequences of evolution, let us go
back to Figure 1. When MM evolves, all models m have to co-
evolve, which was discussed in Section 2.2. However, as the rela-
tions of Figure 1 suggest, the evolution of MM might affect other
artifacts. First, similar to m, (the domain and/or image of) transfor-
mations such as k;, 7; and M might no longer conform to the new
version of the metamodel. As a consequence, they too have to co-
evolve. This makes all relations (syntactically) valid once again,
which means that the system is syntactically consistent again. In



short, meta-model evolutions can only be useful when both their
model instances and related transformation models can co-evolve.

However, there are more scenarios. Firstly, it is possible that the
meta-model changes in such a way that the co-evolved models be-
come structurally different, for example by removing a language
construct. This means that each transformation defined for each
co-evolved model has to be re-executed. The resulting co-evolved
models can also be structurally different, so a chain of required
evolution transformation executions may be required.

Secondly, changes made to one meta-model can reflect on another
meta-model. For example, when a meta-element is added to a meta-
model, a new meta-element is often also added to the meta-model
of the concrete syntax(es) in order to be able to visualize this new
construct. A similar effect can occur between any two related (by
transformation) meta-models. In this sense, a chain of meta-model
changes is again possible.

Thirdly, until now, we only discussed meta-model evolution as the
driving force. Evolution of other artifacts, such as instance models
and transformation models should also be taken into account. The
case of the evolution of a model is trivial: related models can co-
evolve by executing the respective transformations. Note however
that a co-evolved model may be a meta-model, so that might trigger
a number of co-evolutions of its own.

The case of the evolution of a transformation model can get com-
plicated. In many cases though, the evolved transformation simply
has to be executed again on each model it is defined for. However,
this would restrict a transformation evolution to remain compliant
to its source and target metamodels, which is not always what we
want. For example, it might be possible that a new language is cre-
ated by mapping rules for each language construct of an existing
language. This is in particular convenient for creating a concrete
syntax. On top of this, there are two additional special cases of
transformation evolution. Firstly, the evolution of the parsing map-
ping function or the pretty printing mapping function requires the
other one to co-evolve in order to maintain a meaningful relation
between abstract and concrete syntax. Such a co-evolution can be
generalized to any bidirectional transformation. Secondly, the evo-
lution of the semantic mapping function requires a means to reason
about semantics in order to trigger co-evolution, which brings us to
the concept of semantic evolution.

3.2 Semantic Evolution

As mentioned above, semantics of a model are defined by its se-
mantic mapping function to a semantic domain. Some analysis
can be performed on models in this semantic domain (for example:
check for a deadlock in a Petri Net). The results of this analysis
can be considered a property of the model, or P(m). A semantic
mapping function is constructed in such a way that some proper-
ties Pys(m) hold both for a model and for its image under the se-
mantic mapping (i.e., the intersection of both property sets). These
common properties have to be maintained throughout evolution.
An evolution is a semantic evolution if some of these properties
change. This typically happens when the requirements of a system
change.

In general, when a model m in a formalism whose semantics is
given by semantic mapping function M evolves to m’, then Py (m’)
must be exactly Pys(M(m)) modulo the intended semantic changes.
In general, when two versions of a system are (a) equal modulo

MM MM; MM MM
A D AT AL @
. . N . AMMI
' K : ' : |
' F ' v
: S : : @ MM,
' T ; U ' T U 'A
m—T 5Tm) m——L T |

MM,
AN amm,
;A
P L MM,
T @ 1

1
y
o,
FAp—
4

(©) (d)

Figure 2: Co-evolution in (a) model evolution, (b) image evolu-
tion, (¢) domain evolution and (d) transformation evolution.

their intended syntactic and semantic changes and (b) syntactically
consistent, then the evolution of the system is continuous. Only
continuous evolutions are deemed correct (and meaningful).

4. DE-CONSTRUCTING EVOLUTION

As discussed in the previous section, there are infinitely many pos-
sible co-evolution scenarios. Nevertheless, these scenarios can al-
ways be broken down into a few basic ones. Figure 2 shows the
possibilities. Again, arrows are transformations and dotted arrows
are “conforms to”-relationships. Dashed arrows denote a (semi-
)automatic generation. Each diagram starts from a bold relation
between two meta-models MMp and MM;, modelled as a transfor-
mation T of models m.

4.1 Model Evolution

Figure 2 (a) shows model evolution. Some model m evolves to m’.
In step 1 (the only step), a delta model Amis constructed (either
automatically or manually) that models the evolution of m to m’.
This means that m’ = m + Am. The evolution itself is typically
represented as a migration transformation, namely E. The equation
mg =m + Am = m’ is valid. As previously discussed, because
m evolved to m’, every transformation T must be executed again,
resulting in T(m’), conform to MM,;.

4.2 Image Evolution

Image evolution is shown in Figure 2 (b). Suppose that a meta-
model MM evolves to MMp. In step 1 a delta model AMM; is
constructed to represent the difference between MM; and MMy In
step 2 a migration transformation E is generated out of AMM]j. The
execution of E co-evolves models T(m) to T(m)g, so that they con-
form to the new meta-model MMj. Moreover, the execution trans-
formation T has to result in valid models (i.e., conform to MMj).
As a consequence, T has to co-evolve to a new transformation T’
(as in step 3), which is able to transform every possible m that con-
forms to MMp, to T(m)g. The diagram presents a solution for the



Figure 3: Set representation of domain-evolution. The evolu-
tion E(D) does not map onto D’ exactly. For m’, the constraint
T’ = ToE~! does not hold!

generation of this T”: for every m, T'(m) = E(T(m)) holds, or in
short, T’ = E o T. The co-evolution T’ can be simply composed out
of Tand E.

4.3 Domain Evolution

Figure 2 (c) shows domain evolution, where MMp evolves. The
artifacts that co-evolve are similar to image evolution. This time
however, T can be expressed as T" =T o E~'. So, in this case,
an inverse transformation E~! needs to be constructed. Unfortu-
nately, this equation does not hold for the entire domain D’, as
shown in Figure 3. The migration transformation E projects the
entire domain D to E(D), but it is possible that E(D) # D’. For m
in Figure 3 it may be possible possible to construct E~! such that
T’(mg) = T(E~! (ng)) holds. However, for m’, which is an element
of D\ E(D), this is not possible. Nevertheless, T° must apply to
its entire domain D, so the equation T” = T o E~! can not be used
for all possible models conform to MMpy.

4.4 Transformation Evolution

Figure 2 (d) shows transformation evolution. The requirements of
a system can change, resulting in the adjustment of the (desired)
properties of a model. If transformations evolve according to a
delta model AT, it is possible that they only have to be executed
once again. In this case, the changes on the transformation are
limited: the image of T’ must conform to MM;. As previously
discussed, other artifacts might possible co-evolve. In this case, a
migration transformation E must be composed from which a delta
model AMM,; can be constructed.

4.5 Evolution Scenario Amalgamation

Using a combination of these four scenarios, all possible evolu-
tions can be carried out. Note however that the problem of Fig-
ure 3 applies, so automated co-evolution is not always possible.
The so-called unresolvable changes can be classified as models in
E(D) \ D’. On the other hand, the transformation has to support
the models in D’ \ E(D). We call this the projection problem. In
general, the projection problem arises when domg (T) € dom(T).

S. PRE-REQUISITES FOR EVOLUTION

Following the discussion above, the proposed approach depends on
a few more general techniques. Many of these pre-requisites are

currently not supported by Fujaba. As a consequence, implement-
ing all forms of evolution is currently not feasible in practice in
Fujaba. The following pre-requisites (in order of priority) are nec-
essary or at least useful for implementing evolution:

o higher order transformation: the automatic generation of mi-
gration transformations out of delta models requires support
for higher order transformations, which are transformations
that take other transformations as input and/or output. This
is not supported by Fujaba, as the transformation language
is not modelled explicitly (i.e., the meta-model is not avail-
able). There are several other uses for higher order transfor-
mation, in and out of the context of evolution, which are not
discussed here [3, 16, 14], making higher order transforma-
tion a valuable feature in any MDE-tool;

e model differencing: in order to support automated evolution
on a industrial level, it must be possible to generate delta
models out of two versions of a model. Moreover, it is de-
sirable that the activity of meta-modelling does not have to
change in order to support automated evolution. The Fujaba
Difference Tool Suite uses the SiDiff framework to calculate
and visualize the difference between two models’ XMI doc-
uments [19]. A so-called Difference Viewer Plugin shows a
coloured difference model in Fujaba;

e transformation inversing: in order to automatically co-evolve
a transformation in domain evolution, the inverse of the mi-
gration transformation is needed. In Fujaba this is implicitly
featured by providing the possibility to implement bidirec-
tional transformations using Triple Graph Grammars (TGGs)
in MoTE [6]. However, in that case, one is restricted to the
use of bidirectional transformation with triple graph gram-
mars. It remains an open question whether TGGs are expres-
sive enough to obtain the inverse of the migration transfor-
mation (which may for example delete elements).

e representation of semantics: as not only the syntax but also
semantics of a modelling language evolves, there must be
a way to represent these semantic changes. A more precise
means to reason about semantics preservation (through prop-
erties?) is needed.

If all of these pre-requisites are implemented in Fujaba, a frame-
work for evolution can be relatively easily implemented.

6. CONCLUSIONS

Extensive adoption of model-driven engineering is obstructed by
the lack of support for automated evolution. Especially in domain-
specific modelling, modelling languages are used while under de-
velopment or under ceaseless change. When such languages evolve,
support for (semi-)automated co-evolution must be available. To
this day, research has been done only to support model co-evolution
for meta-model evolution. Transformations or semantics are not yet
taken into account.

We addressed this problem by de-constructing all possible (co-)evo-
lution processes into four basic scenarios, which can be combined.
We showed that the co-evolution of transformations can be prob-
lematic, because a transformation always needs to be able to trans-
form all possible elements in its domain.



We discussed the pre-requisites for an implementation of automated
evolution. It turns out that, in order to implement support for evo-
lution, a number of pre-requisites, such as higher order transforma-
tion, model differencing, transformation inversing and semantics
represention, have to be dealt with. Like all other current tools, Fu-
jaba only supports a few of these, with higher order transformation
as major absentee.

7. ACKNOWLEDGMENTS

We would like to thank Tihamér Levendovszky for the fruitful dis-
cussions on the subject of this paper.

8. REFERENCES

[1] M. Alanen and I. Porres. Difference and union of models,
2003.

[2] J. Banerjee, W. Kim, H.-J. Kim, and H. F. Korth. Semantics
and implementation of schema evolution in object-oriented
databases. SIGMOD Rec., 16(3):311-322, 1987.

[3] A. Cicchetti, D. D. Ruscio, R. Eramo, and A. Pierantonio.
Automating co-evolution in model-driven engineering. In
EDOC ’08: Proceedings of the 2008 12th International
IEEE Enterprise Distributed Object Computing Conference,
pages 222-231, Washington, DC, USA, 2008. IEEE
Computer Society.

[4] A. Cicchetti, D. D. Ruscio, and A. Pierantonio. A metamodel
independent approach to difference representation. Journal
of Object Technology, 6(9):165-185, 2007.

[5] H. Giese, T. Levendovszky, and H. Vangheluwe. Summary of
the workshop on multi-paradigm modeling: Concepts and
tools. In T. Kiihne, editor, Models in Software Engineering
Workshops and Symposia at MoDELS 2006, volume 4364 of
LNCS, pages 252-262. Springer-Verlag, October 2006.

[6] H. Giese and R. Wagner. Incremental model synchronization
with triple graph grammars. In O. Nierstrasz, J. Whittle,

D. Harel, and G. Reggio, editors, Proc. of the 9th
International Conference on Model Driven Engineering
Languages and Systems (MoDELS), Genova, Italy, volume
4199 of Lecture Notes in Computer Science (LNCS), pages
543-557. Springer Verlag, 10 2006.

[7] B. Gruschko, D. Kolovos, and R. Paige. Towards
synchronizing models with evolving metamodels. In
Proceedings of the International Workshop on Model-Driven
Software Evolution at IEEE European Conference on
Software Maintenance and Reengineering (ECSMR), 2007.

[8] M. Herrmannsdoerfer, S. Benz, and E. Juergens. Cope -
automating coupled evolution of metamodels and models. In
Proceedings of the 23rd European Conference on
Object-Oriented Programming (ECOOP), pages 52-76,
2009.

[9] J. Hoessler, J. Soden, Michael, and H. Eichler. Coevolution
of models, metamodels and transformations. Models and
Human Reasoning, pages 129-154, 2005.

[10] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling:
Enabling Full Code Generation. John Wiley & Sons, March
2008.

[11] R. Limmel. Coupled Software Transformations (Extended
Abstract). In First International Workshop on Software
Evolution Transformations, Nov. 2004.

[12] R. Lammel and W. Lohmann. Format Evolution. In Proc. 7th
International Conference on Reverse Engineering for
Information Systems (RETIS 2001), volume 155 of
books@ocg.at, pages 113-134. OCG, 2001.

[13] Y. Lin, J. Gray, and F. Jouault. Dsmdiff: A differentiation
tool for domain-specific models. European Journal of
Information Systems, 16(4, Special Issue on Model-Driven
Systems Development):349-361, 2007.

[14] B. Meyers and P. Van Gorp. Towards a hybrid transformation
language: Implicit and explicit rule scheduling in story
diagrams. Sixth International Fujaba Days, September 18-19
2008.

[15] P.J. Mosterman and H. Vangheluwe. Computer automated
multi-paradigm modeling: An introduction. In
SIMULATIONSO, volume 9, pages 433-450, 2004.

[16] O. Muliawan. Extending a model transformation language
using higher order transformations. Reverse Engineering,
Working Conference on, 0:315-318, 2008.

[17] D. Ohst, M. Welle, and U. Kelter. Differences between
versions of uml diagrams. SIGSOFT Softw. Eng. Notes,
28(5):227-236, 2003.

[18] M. Pizka and E. Jurgens. Automating language evolution. In
TASE ’07: Proceedings of the First Joint IEEE/IFIP
Symposium on Theoretical Aspects of Software Engineering,
pages 305-315, Washington, DC, USA, 2007. IEEE
Computer Society.

[19] M. Schmidt and T. Gloetzner. Constructing difference tools
for models using the sidiff framework. In ICSE Companion
"08: Companion of the 30th international conference on
Software engineering, pages 947-948, New York, NY, USA,
2008. ACM.

[20] J. Sprinkle and G. Karsai. A domain-specific visual language
for domain model evolution. Journal of Visual Languages
and Computing, 15, April 2004.

[21] S. Vermolen and E. Visser. Heterogeneous coupled evolution
of software languages. In MoDELS ’08: Proceedings of the
11th international conference on Model Driven Engineering
Languages and Systems, pages 630-644, Berlin, Heidelberg,
2008. Springer-Verlag.

[22] G. Wachsmuth. Metamodel adaptation and model
co-adaptation. In E. Ernst, editor, Proceedings of the 21st
European Conference on Object-Oriented Programming
(ECOOP’07), volume 4609 of Lecture Notes in Computer
Science, pages 600-624. Springer-Verlag, July 2007.

[23] Z. Xing and E. Stroulia. Umldiff: an algorithm for
object-oriented design differencing. In ASE °05: Proceedings
of the 20th IEEE/ACM international Conference on
Automated software engineering, pages 54—65, New York,
NY, USA, 2005. ACM.

[24] J. Zhang and J. Gray. A generative approach to model
interpreter evolution. In OOPSLA Workshop on
Domain-Specific Modeling, pages 121-129, 11 2004.
Vancouver, VC.



