
Intensional changes avoid co-evolution!

Bart Meyers
Universiteit Antwerpen

Middelheimlaan 1
Antwerpen, Belgium

bart.meyers@ua.ac.be

Peter Ebraert
∗

Universiteit Antwerpen
Middelheimlaan 1

Antwerpen, Belgium
peter@ebraert.be

Dirk Janssens
Universiteit Antwerpen

Middelheimlaan 1
Antwerpen, Belgium

dirk.janssens@ua.ac.be

ABSTRACT
Modularization is key to support the maintainability of soft-
ware systems. In some cases, however, maintenance requires
certain modules to evolve together. This phenomenon com-
plicates software maintainability and is commonly referred
to as co-evolution.

In this paper, we tackle co-evolution in the domain of change-
based feature-oriented programming (ChOP). In ChOP, fea-
ture modules – each matching the implementation of one
requirement – are specified as sets of first-class change ob-
jects. Our solution is based on intensional changes: descrip-
tive changes that are automatically evaluated with respect
to the other feature modules before they are applied. We
present a maintenance scenario and use it to show how in-
tensional changes avoid co-evolution.

1. CO-EVOLUTION
Software systems are often the subject to changing require-
ments [15]. As a consequence, these systems have to be
adapted and maintained. Highly modular systems are more
cost-effective when evolved, as in many cases evolution can
be performed locally, only affecting a part of the system [13].
In such systems, the modules are usually loosely coupled,
i.e., the inter-dependencies are kept to a minimum. As a
consequence, the modules themselves are highly cohesive.

Consider the evolution scenario depicted in Figure 1 in which
the modules are represented as rounded rectangles. The ini-
tial version of the system is shown on the left side of the
figure. It consists of only one module: Buffer. Due to
changing requirements, the buffer is extended by a logging
functionality, implemented in the Logging module. The goal
of the logging functionality is to log every action that is
performed when using the system. The modular feature-

∗Dr. Ebraert is funded by the “Agentschap voor Innovatie
door Wetenschap en Technologie” via the Optimma research
project.

oriented implementation of the Buffer ensures that every
functional requirement is implemented in a separate mod-
ule. Moreover, it envisions that the implementation of a
new requirement (such as the need for a logging functional-
ity) only affects one module (Logging) and leaves the other
ones (Buffer) unaffected. As the logging functionality for
a buffer can only be added to a system that implements
the buffer functionality, a dependency arises between the
Logging and Buffer modules. This dependency means that
Logging can only be implemented if Buffer is implemented.
The resulting system is shown in the center of Figure 1.

Buffer Buffer

Logging

Buffer

Logging

Restore

Figure 1: Modular system development: first ver-
sion (left), second version (middle), third version
(right)

After a period of time, yet another requirement arises. Sup-
pose the system is extended by a roll-back functionality and
that this functionality is implemented by the Restore mod-
ule. As shown on the right side of Figure 1, the addition of
the Restore module introduces a new dependency between
the Restore and the Buffer modules. Again, the Buffer

module is not affected by the introduction of the Restore

module. A second dependency between the Logging and Re-

store modules, however, is also introduced. Moreover, when
adding the Restore module, the Logging module must also
be adapted as roll-back actions have to be logged as well.

Functionalities such as logging are named crosscutting as
in practice, they are tightly coupled to other modules and
thus can not be easily modularized [10]. Consequently, the
code implementing crosscutting functionality is often scat-
tered over and tangled across a system, leading to quality,
productivity and maintenance problems [13]. When for ex-
ample a new functionality is implemented, the crosscutting
functionality often has to be adapted as well. This phe-
nomenon is called co-evolution [5]. In this paper, we tackle
this problem in the context of change-based feature oriented
programming (introduced in Section 2). As several case re-
ports claim that co-evolution hinders maintainability [1], we
present a solution which decreases the need for co-evolution

in Section 3. In Section 5 the approach is evaluated by ap-
plying it on a case study. We conclude in Section 6.

2. CHANGE-BASED FEATURE ORIENTED
PROGRAMMING

In Feature-Oriented Programming (FOP), a software sys-
tem is modularized based on the functionalities it provides.
A module that adds a functionality to a software system
is called a feature. In FOP, features are the main devel-
opment entities [16, 17]. The idea of FOP is to produce
software variations by composing the feature modules that
provide the desired combination of functionalities. As a re-
sult of FOP, programmers find it easier to design and com-
pose different variations of their systems. In other words,
FOP enables software product lining. In previous work [9],
we already pointed out that the state-of-the-art approaches
to FOP (E.g. Mixin-layers [18], AHEAD [3], Lifting Func-
tions [16], Composition Filters [4], FeatureC++ [2] and the
aspect-oriented programming (AOP) approaches [13]) lack
expressiveness and hinder the reusability of feature modules.
In that same work, we propose change-based FOP, as an al-
ternative FOP approach that addresses those problems.

Change-based FOP is based on change-oriented program-
ming (ChOP) [8], which centralizes a change as the main
development entity. Some examples of developing code in a
change-oriented way can be found in most interactive devel-
opment environments: the creation of a class through inter-
active dialogs or the modification of the code by means of
an automated refactoring. This is different from manually
modifying the source code in the sense that the change is
applied in a single step, possibly driven by some parameters
provided by the developer. ChOP goes even further, how-
ever, as it requires all software building blocks to be created,
modified and deleted in a change-oriented way (e.g. adding
a method to a class, removing a statement from a method,
etc).

class Buffer {
 int buf = 0;
 int get() {
 return(buf);
 }
 void set(int x) {
 buf = x;
 }
}

B1

B2

B3

B5

B4

B6

class Buffer {
 int buf = 0;
 int back = 0;
 int get() {
 return(buf);
 }
 void set(int x) {
 back = buf;
 buf = x;
 }
 void restore() {
 buf = back;
 }
}

R1

R2

R3

R4

class Buffer {
 int buf = 0;
 int back = 0;
 int get() {
 logit();
 return(buf);
 }
 void set(int x) {
 logit();
 back = buf;
 buf = x;
 }
 void restore() {
 logit();
 buf = back;
 }
 void logit() {
 print(back);
 print(buf);
 }
}

L1

L5

L6

L2

L3

L4

class Buffer {
 int buf = 0;
 Stack back = Stack new();
 int get() {
 logit();
 return(buf);
 }
 void set(int x) {
 logit();
 back.push(x);
 buf = x;
 }
 void restore() {
 logit();
 buf = back.pop();
 }
 void logit() {
 print(back.top());
 print(buf);
 }
}

M4

M6

M1

M2 M3

M5

class Buffer {
 int buf = 0;
 int get() {
 logit();
 return(buf);
 }
 void set(int x) {
 logit();
 buf = x;
 }
 void logit() {
 print(buf);
 }
}

L1

L4

L2

L3
Logging

B1

B2 B3

L1

L4 L2 L3

B5

B3

B1

B2 B5

B4 B6

Buffer

Figure 2: Buffer: source code (left), change objects
(right)

In comparison with state-of-the-art approaches to FOP, which
allow the specification of features as a set of program build-
ing blocks that might extend or modify existing building
blocks, change-based FOP allows to specify features as sets
of changes that add, modify or delete software building blocks.
This increases the control of how features can be specified
in two ways. (a) Features can express changes down to the
statement level, which is more fine-grained than the state-
of-the-art (usually only allowing the expression down to the

method level). (b) Features can include the deletion of cer-
tain building blocks, which is not supported by the state-of-
the-art on FOP. Another advantage of specifying features by
change objects is that it enables a method for a bottom-up
approach to FOP. Instead of having to specify a complete
design of a feature-oriented application before implement-
ing it (top-down development), change-based FOP allows
the development of such an application in an incremental
way (bottom-up development). Also top-down development
or a combination of top-down and bottom-up approaches –
in which the coarse-grained software structure is made in a
top-down way and the detailed parts are constructed in a
bottom-up way – is supported by change-based FOP. For a
more excessive comparison between change-based FOP and
the state-of-the-art to FOP, we refer to [9].

In the upper right part of Figure 2, the change-based speci-
fication of the Buffer module is shown. Within the Buffer

module (the rounded rectangle), the changes that are in-
stantiated for creating the Buffer are depicted (the labelled
circles). By applying the changes, the source code (the left
part of Figure 2) of the Buffer can be obtained. The change
objects are identified by a unique number: B1 is a change
that adds a class Buffer, B4 is a change that adds an access
of the instance variable buf. In ChOP, the dependencies be-
tween change objects are also maintained: B4 depends on
the change that adds the method to which buf is added
(B3) and on the change that adds the instance variable that
it accesses (B2). The set {B1, B2, B3, B4, B5, B6} forms
the Buffer feature. Note that the resulting source code is
annotated. These annotations represent the causal link be-
tween the source code and the changes that relate to that
code.

In change-based FOP, crosscutting functionality, such as log-
ging, is represented by a feature that includes changes which
affect (create, modify or remove) software building blocks
scattered over the system. Logging, for instance contains
changes which introduce code statements scattered around
every method in the Buffer class. Figure 2 also presents
the code (in the middle) and the change diagram (bottom
right) of the logging functionality fort the buffer applica-
tion. Note that, while Logging is a crosscutting feature, its
change-based specification remains modularized.

A positive property of ChOP is that the implementation
of crosscutting functionality is actually never scattered over
the software application. All the changes of a feature are al-
ways grouped in one change set, no matter if it implements a
crosscutting functionality or not. It is the application of the
changes that actually produces a software system containing
the scattered building blocks of the crosscutting functional-
ity. This is similar to static weaving as exhibited by several
AOP approaches [12, 11]. The difference is that change ap-
plication operates on change objects, whereas static weaving
typically operates on (byte) code.

The approach, however, still suffers from inconveniences with
respect to co-evolution. Although modularized, the Log-

ging feature still has to be adapted when adding, removing
or changing features. In Figure 3 for example, the changes
L5 and L6 have to be added to the Logging feature when
implementing the Restore feature.

R2

R3

R4

class Buffer {
 int buf = 0;
 int back = 0;
 int get() {
 logit();
 return(buf);
 }
 void set(int x) {
 logit();
 back = buf;
 buf = x;
 }
 void restore() {
 buf = back;
 }
 void logit() {
 print(buf);
 }
}

R1

R2

R3

R4

class Buffer {
 int buf = 0;
 int back = 0;
 int get() {
 logit();
 return(buf);
 }
 void set(int x) {
 logit();
 back = buf;
 buf = x;
 }
 void restore() {
 logit();
 buf = back;
 }
 void logit() {
 print(buf);
 print(back);
 }
} L6

L5

R1

R1
R2

R3 R4

Restore

B1

B2B5

Logging
B1

B2 B3

L1

L4 L5 L6L2 L3

R2B5 R1

Figure 3: Source code of buffer with logging and re-
store functionalities (left), corrected version of the
buffer (middle), change objects of Restore and Log-

ging features (right)

3. INTENSIONAL CHANGES
In order to overcome the issue of co-evolution in the con-
text of change-based FOP, we propose to use intensional
changes. Intensional changes were first introduced in [7].
In this paper, we distinguish between changes (the ordinary
ones) and the intensional changes of which we now briefly
recall the basics. In mathematics, there are two ways of
specifying a set: extensionally or intensionally. A set can
be defined extensionally by explicitly enumerating all ele-
ments of the set. For example, we can define the set E of
all even numbers extensionally as follows:

E = {0, 2, 4, 6, 8, ...}

The same set can also be specified intensionally by means of
a description:

E = {2x | x ∈ N}

The same applies for sets of changes. The Logging feature
can be specified by an extensional set of changes FLogging

which can be applied on any variation of Buffer in order to
add the logging functionality:

FLogging = {L1, L2, L3, L4, L5, L6}
An intensional description of the same Logging feature that
adds logging to a class C could be: FLogging =

{add logit method to C}∪
{add statement print(v) in logit for every inst.var. v in C}∪
{add an invocation to logit in every method of C}

In order to provide tool support for intensional changes,
there is a need for a programming language in which such
changes can be specified. Additionally, it must be possible
to evaluate these specifications so that the corresponding ex-
tension of changes is automatically generated for the desired
product variation. After evaluation, the system is specified
as a set of change objects, obfuscating the use of intensional
changes. A language and evaluator for intensional changes

are presented in [7]. We exemplify this language by speci-
fying the Logging feature in an intensional way. First, the
logit method is added to the Buffer class. This is done by
means of one ordinary change and represented by the tuple:

{(?id, AddMethod,(Buffer, false, logit()),
?timestamp,?user,“Logging”)}

Next, this method is provided with an implementation: for
every attribute of the Buffer class, a print statement has
to be added, effectively resulting in the logit method out-
putting the state of the current Buffer instance. This is
achieved by looking for all AddAttribute changes for Buffer
and inserting an AddStatement change that invokes the logit
method immediately just after:

{c : {(?id, AddStatement, (Buffer, false, logit,
“print(c.parameterList.attribute)”),

?timestamp, ?user, “Logging”)
after c} |
{∀c : (AddAttribute(c) ∧ c.parameterList.class = Buffer)}}

This is an intensional change since it quantifies over all at-
tributes. Note that the query part is found on the last line.
The two parts mentioned so far basically construct the log-
ging infrastructure. What is left to do is to make sure that
the logit method is actually called from every method in
the Buffer class. This is achieved by finding all AddMethod
changes for Buffer and once more inserting an AddState-
ment change immediately after:

{c : {(?id, AddStatement, (Buffer, false, ?m, “logit()”),
?timestamp, ?user, “Logging”)

after c} |
{∀c : (AddMethod(c) ∧ c.method =?m ∧

c.parameterList.class = Buffer)}}

The intensional change construct is similar to the aspect
construct from AOP, in which some code (the advice) is
described to be woven in at a described set of places (the
pointcut). The difference between both is that an AOP as-
pect is applied to source code, while an intensional change
is applied to a transformation (i.e., the changes). This can
be illustrated by the following example. An aspect looks
like: “add some statement at all places where some method
is called”, while an intensional change rather is: “add some
statement at all places where some method call is added”.

3.1 Intensional change evaluation
An intensional change can be applied to a software program
p in order to apply the changes described by that inten-
sional change to p. This application consists of two phases.
First, the intensional change needs to be evaluated with re-
spect to the set of all changes that produce p whenever they
are applied. The result of this evaluation is the set of tu-
ples that specify the changes that correspond to the inten-
sional change. This step produces an enumeration of changes
which are all applied on p in the second step.

As an example, consider a software program implement-
ing a buffer composed of the features Buffer, Restore and

Logging. The application of Logging as it is specified by
means of intensional changes evaluates to the extension of
the change set {L1, L2, L3, L4, L5, L6} (bottom right of Fig-
ure 3), while the application on the same Logging feature
in a composition the features Buffer and Logging evaluates
to the extension of the change set {L1, L2, L3, L4} (bottom
right of Figure 2). The order in which the features are spec-
ified in a composition determines the outcome of the eval-
uation of intensional changes. This is due to the growing
change set on which the intensional changes are evaluated.

The resulting enumeration of changes represents the out-
come of the first step of the application of intensional changes.
The second step consists of applying all the changes of the
enumeration. The application of the AddMethod change, for
instance, results in a Buffer containing an empty logit

method. The application of all changes results in source
code that implements the functionality specified by the in-
tensional changes. In the following section, we show how we
can use intensional changes in order to avoid co-evolution.

4. FOTEXT
We have implemented both the change cut language and the
change cut model in ChEOPS – a proof-of-concept imple-
mentation of ChOP [8]. Some experiments were conducted
in ChEOPS to validate that intensional changes decrease the
need for change-based feature modules to co-evolve. The
following section elaborates on those experiments and tries
to demonstrate that change-based FOP supports the modu-
larization of crosscutting functionality and that intensional
changes make such modules even more robust against co-
evolution.

FOText

Print InfoWindowCompress EditFile

Copy-Cut-
PasteSelectAll FindSaveOpen

Help

Save
AsNew Quit

Logging

Figure 4: FODA diagram of FOText

Figure 4 presents the FODA diagram of the FOText appli-
cation. In its original form [14], the FOText application con-
tains all the grey features. Features such as: New, Quit, Open,
Save, SaveAs, Print, Help, InfoWindow and all Edit features
are self explanatory. File, New and Quit are mandatory fea-
tures and must consequently be included in every product
variation. All other features are optional and – if required –
can be safely omitted from a variation.

We implement FOText in a standard object-oriented way by
using the VisualWorks for Smalltalk IDE that was instru-
mented with the ChEOPS tool to capture our development
operations as first-class change entities. At the beginning of
the development of a new feature, we inform the IDE of its
name. By doing that, ChEOPS is capable of automatically
classifying changes in feature modules.

For the sake of simplicity, we introduce an artificial feature,
Base, which is the basic feature that needs to be included
in every FOText variation. It consists of the changes that

should always be included in a composition: FOText, File,
New and Quit. It provides the main functionality: a basic
word processor that provides a window to type text and a
menu with two choices: new and quit – which are respec-
tively introduced by the New and Quit features.

We present an evolution scenario in which we extend FOText

with the Compress and the Logging features. The Logging

feature is a feature that adds logging behavior to the text ed-
itor. The Compress feature provides the ability to compress
text files before they are saved, and decompresses them be-
fore they are opened. Both are crosscutting functionalities
and involve changes that depend on many FOText features.

We first implement the Logging feature and specify it by
means of intensional changes. Its specification consists of
three parts, each corresponding to one intensional change.
First, a logit method is added to every class of FOText.
Afterwards, each of those methods is filled with statements
that each print the value of one instance variable. Finally,
an invocation of the logit method is added to every method
of every class in FOText.

Second, we implement the Compress feature as an enumer-
ation of changes that (1) removes the statements from the
saveas method that invoke the functionality for saving a
file to disk, (2) adds a dedicated method savenow for sav-
ing, (3) adds statements to savenow that compress the text
contents, (4) adds statements to savenow that save the com-
pressed text and (5) takes similar actions for decompressing
a file when opening it.

Feature # changes Feature # changes
Base 130 SaveAs 88
Save 65 Open 101
Copy Cut Paste 72 Find 86
SelectAll 89 Print 182
Help 137 InfoWindow 159
Logging 3 Compress 151

Table 1: FOText changes

Table 1 presents an overview of the change objects that are
instantiated for expressing the FOText features. Note that,
while Compress is added after Logging, its implementation
does not require Logging to be adapted. In order to validate
that the compress functionality is also logged, we compose
some variations of the text editor.

We now present two compositions in which we include Log-

ging. The first composition consists of a variation of the
viewer version of FOText (which is composed of the Base and
Open features) and which has logging capabilities. The com-
position contains 412 changes, of which 182 were changes
generated by the application of the 3 intensional changes
that specified the Logging feature.

The second composition contains all the features of FOText
including Compress and Logging. This composition consists
of 1672 change objects of which 541 changes are express-
ing Logging. The reason for the higher number of logging
changes is that it requires more changes to add Logging to a
composition that contains more instance variables and meth-

ods as Logging is supposed to log the values of all instance
variables whenever any method is invoked. Note that this
composition does log the compress behavior without requir-
ing extra effort from the developer.

These two compositions show how features that contain in-
tensional changes evaluate to different change sets depend-
ing on the context in which they are applied without having
to adapt their implementation. This principle shows how
intensional changes can be used to (1) avoid co-evolving fea-
ture modules and (2) modularize crosscutting functionality
in reusable modules without giving up on flexibility when it
comes to software composition.

5. EVALUATION
Intensional changes allow for developers to describe sets of
changes instead of enumerating them. This is what one
wants when implementing a crosscutting functionality. The
description of an intensional change is evaluated with re-
spect to a change set in order to produce the corresponding
extension of the intensional change. Consequently, an inten-
sional change can be reused in different compositions, as it
will basically evaluate to the right extension anyway. This
makes an intensional change more flexible than an ordinary
change collection. Consequently, the intensional changes al-
low our approach to FOP to be more robust against changes
in the feature composition

Drawbacks of the intensional changes are fourfold. First
they require an additional change cut language and evalu-
ation step, making them somewhat more complex than or-
dinary changes. A second drawback is that an intensional
change cannot be obtained by logging a developer or differ-
entiating between source code files, but must always be spec-
ified by a developer. Thirdly, intensional changes complicate
debugging, as they evaluate differently in different composi-
tions. Finally, while the order of the features within a com-
position was not important before the intensional changes
were included in the model, it now has become important
as it influences the way the intensional change is evaluated.
In [6], we hint at how the second issue could be overcome.

6. CONCLUSION
We started this paper by explaining that the implementa-
tion of crosscutting functionalities is usually scattered over
modular software and that this poses problems when the
software evolves. When modules are added, modified or
removed, the crosscutting functionalities must usually be
adapted too. The phenomenon of multiple software mod-
ules that need to evolve together is called co-evolution. This
phenomenon hinders software maintainability and should be
avoided whenever possible.

We present our solution in the context of feature-oriented
programming (FOP), in which software building blocks are
encapsulated in features which better match the specifica-
tion of requirements. Change-based FOP is a state-of-the-
art approach to FOP which proposes to specify features as
sets of first-class change objects which can add, modify or
delete building blocks to or from a software system. Advan-
tages of change-based FOP over standard FOP include an
increased control of how features are specified and that it
makes a bottom-up approach to FOP possible.

We introduce a buffer application that consists of three func-
tionalities: base, restore and logging. We then show that
even a feature that is notoriously difficult to modularize,
such as logging, can easily be modularized in change-based
FOP. Afterwards, we used the same application to demon-
strate that in some cases, even a cleanly separated module
of crosscutting functionality has to co-evolve when another
one is added to the application. As co-evolution hinders
maintainability, we present a solution that is based on in-
tensional changes: descriptive changes that can evaluate to
an extension of changes. We used the application scenario
in order to exemplify intensional changes and showed how
they assist in avoiding co-evolution.

We evaluate our solution by implementing a text editor in
our proof-of-concept implementation of intensional changes.
It consists of 14 features and is extended with two extra
features. We show how implementing a feature by means
of intensional changes avoids that feature to co-evolve when
another feature is added. We present two variations of the
text editor and explain that the those variations provide the
desired functionality without requiring extra effort from the
developer.

7. REFERENCES
[1] B. Adams. Co-evolution of Source Code and the Build

System: Impact on the Introduction of AOSD in
Legacy Systems. PhD thesis, Ghent University,
Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium),
May 2008. ISBN 978-90-8578-203-2.

[2] S. Apel, T. Leich, M. Rosenmüller, and G. Saake.
Featurec++: On the symbiosis of feature-oriented and
aspect-oriented programming. In R. Glück and M. R.
Lowry, editors, GPCE, volume 3676 of Lecture Notes
in Computer Science, pages 125–140. Springer, 2005.

[3] D. S. Batory. A tutorial on feature oriented
programming and the ahead tool suite. In GTTSE,
pages 3–35, 2006.

[4] L. Bergmans and M. Akşit. Composing crosscutting
concerns using composition filters. Comm. ACM,
44(10):51–57, 2001.

[5] T. D’Hondt, K. D. Volder, K. Mens, and R. Wuyts.
Co-evolution of object-oriented software design and
implementation. In SACT Symposium Proceedings.
Kluwer Academic Publishers, 2000.

[6] P. Ebraert. A bottom-up approach to program
variation. PhD thesis, Vrije Universiteit Brussel, 2009.

[7] P. Ebraert, T. D’Hondt, T. Molderez, and
D. Janssens. Intensional changes: Modularizing
crosscutting features. In ACM, editor, Proceedings of
the 25th Annual ACM Symposium on Applied
Computing, 2010.

[8] P. Ebraert, J. Vallejos, P. Costanza, E. Van
Paesschen, and T. D’Hondt. Change-oriented software
engineering. In ICDL ’07: Proceedings of the 2007
international conference on Dynamic languages, pages
3–24, New York, NY, USA, 2007. ACM.

[9] P. Ebraert, J. Vallejos, Y. Vandewoude, Y. Berbers,
and T. D’Hondt. Flexible features: Making feature
modules more reusable. In Proceedings of the 24th
Annual ACM Symposium on Applied Computing, 2009.

[10] T. Elrad, M. Aksit, G. Kiczales, K. Lieberherr, and

H. Ossher. Discussing aspects of aop. Communications
of the ACM, 44(10):33–38, October 2001.

[11] K. Gybels and J. Brichau. Arranging language
features for more robust pattern-based crosscuts. In
AOSD ’03: Proceedings of the 2nd international
conference on Aspect-oriented software development,
pages 60–69, New York, NY, USA, 2003. ACM.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of aspectJ.
In Proceedings of the European Conference on
Object-Oriented Programming, Lecture Notes in
Computer Science,, volume 2072, pages 327 – 353.
Springer Verlag, 2001. http://aspectj.org.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Akşit and
S. Matsuoka, editors, 11th Europeen Conf.
Object-Oriented Programming, volume 1241 of LNCS,
pages 220–242. Springer Verlag, 1997.

[14] J. Liu, D. Batory, and S. Nedunuri. Modeling
interactions in feature oriented software designs. In
S. Reiff-Marganiec and M. Ryan, editors, FIW, pages
178–197. IOS Press, 2005.

[15] T. Mens and S. Demeyer. Software Evolution.
Springer, 2008.

[16] C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. Lecture Notes in Computer Science,
1241:419–434, 1997.

[17] Y. Smaragdakis and D. Batory. Implementing reusable
object-oriented components. In In the 5th Int. Conf.
on Software Reuse (ICSR 98, pages 36–45. Society
Press, 1998.

[18] Y. Smaragdakis and D. Batory. Mixin layers: An
object-oriented implementation technique for
refinements and collaboration-based designs. ACM
Transactions on Software Engineering and
Methodology (TOSEM), 11(2):215–255, 2002.

