
Abstract and Concrete Syntax Migration of
Instance Models

Antonio Cicchetti1, Bart Meyers2, and Manuel Wimmer3

1 Mälardalen University, MRTC, Väster̊as, Sweden
antonio.cicchetti@mdh.se

2 University of Antwerp, Belgium
bart.meyers@ua.ac.be

3 Vienna University of Technology, Austria
wimmer@big.tuwien.ac.at

Abstract. In this paper, we present a solution for the TTC 2010 model
migration case study. Firstly, we present a modular approach to mi-
grate the instance models’ abstract syntax. Secondly, the problem of
co-evolution of diagrammatical information such as icon positions and
bend points of edges is identified and a solution specific to this case
study is presented. Our solution implemented using ATL and Java.

Key words: Metamodel evolution, model co-evolution, inplace model
transformations, model merging

1 Goal and approach

This paper presents a solution to the TTC 20104 model migration case study.
This case study explores the consequences an evolution of a modelling language
can have with respect to its instance models. In particular, these models must be
migrated so that (i) they conform to the new language, and (ii) their semantics
are preserved. The presented language evolution is UML 1.4 Activity Graphs to
UML Activity Diagrams 2.2. The main goal of the case study is shown in the
diagram of Figure 1. In our approach, a structured migration process is pursued
by first modelling the evolution ∆ itself into manageable parts, followed by a
migration of each part resulting in a migration transformation M . The explicit
breakdown of ∆ helps us in understanding the evolution and finding a correct,
semantically preserving migration M .

After migrating a model m using M , the diagrammatical information of m is
lost. Specific to this case study, this results in a model m′ for which the original
positions of the icons are lost. This makes the migrated models less readable,
as people tend to arrange the model icons in a way that is natural to them.
Therefore, we decided to migrate the concrete syntax information or diagram
model as well. Figure 2 shows the new diagram that includes this second goal.
Apart from migrating models m as in Figure 1, the diagram model mCS must
4 http://planet-research20.org/ttc2010/

2 A. Cicchetti, B. Meyers, and M. Wimmer

MM

m

1.4 MM

m'

2.2

M

conform to conform to

Δ

Fig. 1: The model migration case study with the evolution ∆ and the migration
M .

also be migrated by a migration transformation MCSinst. The concrete syntax
can be obtained by so-called rendering, which can be considered a transformation
in which the user adds diagrammatical information, such as icons (at the level of
the language concepts) and positions of these icons (at the level of the language
concept instances). As suggested in Figure 2, we can make some assumptions for
this case study: (i) the metamodels of the diagram model mCS and its migrated
counterpart m′CS are the same: MMGMF−notation – GMF notation 1.0.2, and (ii)
the rendering transformation itself must not be migrated, as in this case study, it
is part of the GMF-based graphical editor which has evolved itself too (captured
as the evolution ∆CS , from render1.4 to render2.2). So in this case study, the
migration of the concrete syntax MMCSinst can be derived from the evolution
∆ and ∆CS (which in practice evolved together), and does not have to take a
change of the metamodel MMGMF−notations into account. In conclusion, in this
case study the concrete syntax co-evolution is simplified. However, this solution
can start a discussion about the general topic of concrete syntax co-evolution.

MMGMF-notation

Δ CS

m m'
M CSCS

conform to conform to

render1.4 render2.2

MM

m

1.4 MM

m'

2.2

M

conform to conform to

Δ

concrete syntax

abstract syntax

CSinst

Fig. 2: MMCSinst, The co-evolution of the concrete syntax instances.

Abstract and Concrete Syntax Migration 3

2 Solution

In this section, we present an overview of our solution for the case study, con-
sisting of the two parts: migration of instance models and migration of diagram
models.

2.1 Instance Model Migration

As stated before, we structurally tackle the problem of instance model migration
by starting off from the metamodel evolution and model co-evolution, as in the
following:

metamodel evolution detection that is the old and new versions of the meta-
model are compared in order to synthesise the evolution it has been subject
to. This will result in a breakdown into manageable evolutionary steps;

modular migration creation for every evolutionary step, a migration activ-
ity is created (typically in the form of a transformation rule).

Our solution is based on the manual declaration of evolutionary steps; such
choice guarantees that the intentions of the metamodel developer are fully cap-
tured. It is worth noting that the same result could be obtained by a tool record-
ing the changes made by the user. In any case, in general the metamodels are
remarkably smaller and more manageable than model instances, which makes
even the manual specification of the evolution an acceptable effort if compared
to verifying the migration correctness of existing instances.

We broke down the evolution into eleven evolutionary steps. For each step,
the ATL migration rule is given. In the first two steps, a short explanation
is given for the migration action; for the other rules, the migration is just a
straightforward replacement of corresponding instances:

1. ActivityGraph, StateMachine, and CompositeState are merged into Activity.
Subvertex and partition containers are merged into groups container to the
new class ActivityGroup;
migrate TopCompositeState, migrate SubCompositeStates

2. Transition becomes ActivityEdge with two subclasses, ControlFlow and Ob-
jectFlow. In case of a surrounding ObjectFlowState, the transition becomes
ObjectFlow, otherwise ControlFlow;
migrate Transition ControlFlow, migrate Transition ObjectFlow

3. StateVertex and State are merged into ActivityNode;
migrate State

4. Pseudostate(kind:initial) becomes InitialNode;
migrate PseudoState Initial

5. Pseudostate(kind:join) becomes JoinNode;
migrate PseudoState Join

6. Pseudostate(kind:fork) becomes ForkNode;
migrate PseudoState Fork

4 A. Cicchetti, B. Meyers, and M. Wimmer

7. Pseudostate(kind:junction) is split into DecisionNode and MergeNode;
migrate PseudoState Junction

8. FinalState becomes ActivityFinalNode;
migrate FinalState

9. ActionState becomes OpaqueAction;
migrate ActionState

10. Partition becomes ActivityPartition as subclass of ActivityGroup;
migrate Partitions

11. Guard becomes ValueSpecification and the contained BooleanExpression be-
comes the subclass of ValueSpecification called OpaqueExpression.
migrate Guard

2.2 Concrete Syntax Migration

The concrete syntax of UML models is not standardized like the abstract syntax.
In our solution we used the Eclipse UML 2 tool suite5, which includes a graphical
editor for UML 2 models. The diagrammatical information this editor can read
and write will be the target platform for migrating the concrete syntax of a
model. On the other hand however, the Activity Graph 1.4 source models cannot
be read by the UML 2 tool. Because we only want to use Eclipse, we built a
simple UML 1.4 editor using GMF, that allows creating a model and position
icons. The Activity Graph 1.4 example visualized by our simple editor is shown
in Figure 3. After migration, the diagram model should be visualized in Eclipse
as in Figure 4.

In order to obtain the correct result, the icon positions and bend points of
edges must be preserved after migrating the abstract syntax as explained in
Section 2.2. This requires a simple copying of the coordinates and bend points.
However, it must be made sure that the copying of this information is done to
the right element, a not obvious task given the exploitation of UUIDs. In other
words, the graphical arrangement is saved in a XMI-like document by referring
to model elements through UUIDs, whereas the ATL transformation is agnostic
of them as working at the metamodel level. Therefore, trace information has to
be created in order to link elements of the old diagram and the corresponding
migrated ones of the new diagram. In particular, when the co-adapting ATL
transformation is executed, a simple trace model is filled in with a list of (source,
target) pairs storing the links between elements of the old and new metamodel
instances.

In our solution, this is done by simply adding the code that creates the
trace model in the ATL transformation. In fact, the addition of such code can
also be done automatically, by using a transformation that adapts the ATL
transformation. Because the input and output models of this transformation
are transformations themselves, such a transformation is called a higher order
transformation. Due to time limitations, we did not implement this higher order

5 http://www.eclipse.org/projects/project_summary.php?projectid=modeling.

emf

Abstract and Concrete Syntax Migration 5

Fig. 3: The original model visualized by the simple GMF editor.

Fig. 4: The migrated model visualized by Eclipse UML 2.

6 A. Cicchetti, B. Meyers, and M. Wimmer

transformation yet. It would improve automation, as well as clearly separating
the code for creating the traceability model from the code for creating the mi-
grated model. This lowers accidental complexity, increasing the overall quality
(readability, maintainability, etc.) if the transformation models.

From the migrated instance model, the original instance model, the original
diagram model and the trace model, the new diagram model can be automati-
cally generated. For each element in the migrated instance model, its concrete
syntax is generated by tracing back to the original element(s) using the trace
model. The corresponding concrete syntax information which is obtained by us-
ing the href fields that point to the instance model elements are copied in the
migrated diagram model. This approach is shown in Figure 5, where the links
from the original diagram model to the migrated diagram model are shown from
top to bottom.

3 Conclusion and Discussion

In our solution we presented a structured way of migrating the instance model
by splitting up the evolution into manual parts. For every evolution step that
emerges, (a) simple migration rule(s) can be created. The total migration trans-
formation is implemented in ATL.

In order to keep the concrete syntax information of a model, the diagram
model is also migrated. For this case study, this includes the preservation of
icon positions and bend points. These can be simply preserved by copying them.
However, in order to find the right elements for the copied information, a trace
model is needed that links elements from the original instance model to the
migrated instance model. This trace model is created by a part of the migration
transformation.

The complexity of concrete syntax migration When looking at Figure 2,
in this case study the concrete syntax migration was simplified in two ways: the
concrete syntax metamodel remains the same (i.e., MMGMF−notation) and the
evolution of the editor does not have to be taken into account, as it is done
manually. In the more general case of concrete syntax migration however, these
assumptions cannot be made. In general, the migration of concrete syntax will
entail two migration actions:

– the migration of the concrete instance models. We have done this for this
case study. In the more general case however, the metamodels need not
be the same. As a result, the diagram model will have to migrated across
two dimensions: the conformance with the abstract syntax model, and the
conformance with its metamodel;

– the migration of the rendering transformation. This can be considered the
migration of the “editor”.

Abstract and Concrete Syntax Migration 7

m
 <top xsi:type="minuml1:CompositeState" xmi:id="_rlXf4UChEd-YJrCZVUY1aQ" name="top">
 <subvertex xsi:type="minuml1:Pseudostate" xmi:id="_rlXf4kChEd-YJrCZVUY1aQ"
 name="Start" outgoing="_rlYuBEChEd-YJrCZVUY1aQ"/>
 <subvertex xsi:type="minuml1:ActionState" xmi:id="_rlYG8EChEd-YJrCZVUY1aQ"
 name="Request service" partition="_rlZVGUChEd-YJrCZVUY1aQ"
 outgoing="_rlYuBUChEd-YJrCZVUY1aQ" incoming="_rlYuBEChEd-YJrCZVUY1aQ"/>

mCS
 <children xmi:type="notation:Shape" xmi:id="_tDxFsV0rEd-ZgJrRuQbiQg" type="3002" fontName="Segoe UI">
 <children xmi:type="notation:DecorationNode" xmi:id="_tDxFs10rEd-ZgJrRuQbiQg" type="5001"/>
 <element xmi:type="minuml1:ActionState" href="original_model.minuml1#_rlYG8EChEd-YJrCZVUY1aQ"/>
 <layoutConstraint xmi:type="notation:Bounds" xmi:id="_tDxFsl0rEd-ZgJrRuQbiQg" x="85" y="38"/>
 </children>

 <trace:TraceLink ruleName="migrate_ActionState">
 <sourceElements href="original/original_model.xmi#_rlYG8EChEd-YJrCZVUY1aQ"/>
 <targetElements href="TEST.uml#_IVZy0GTrEd-uxbCHrUGDcw"/>
 </trace:TraceLink>

trace

href

href

 <node xmi:type="uml:InitialNode" xmi:id="_IVaZ4GTrEd-uxbCHrUGDcw"
 name="Start" outgoing="_IVbA8GTrEd-uxbCHrUGDcw"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_IVZy0GTrEd-uxbCHrUGDcw"
 name="Request service" inPartition="_IVZLwWTrEd-uxbCHrUGDcw"
 outgoing="_IVbA8WTrEd-uxbCHrUGDcw" incoming="_IVbA8GTrEd-uxbCHrUGDcw"/>

m'

href

 <children xmi:type="notation:Shape" xmi:id="_mKwn-1r5Ed-_MrehtbkB5w" type="3002" fontName="Segoe UI">
 <children xmi:type="notation:DecorationNode" xmi:id="_mKwn_Vr5Ed-_MrehtbkB5w" type="5001"/>
 <element xmi:type="minuml1:ActionState" href="TEST.uml#_IVZy0GTrEd-uxbCHrUGDcw"/>
 <layoutConstraint xmi:type="notation:Bounds" xmi:id="_mKwn_Fr5Ed-_MrehtbkB5w" x="85" y="38"/>
 </children>

m'CS

href

or
ig
in
al

di
ag
ra
m

m
od
el

or
ig
in
al

in
st
an
ce

m
od
el

<
<
A
T
L
>
>

tr
ac
e

m
od
el

<
<
A
T
L
>
>

m
ig
ra
te
d

in
st
an
ce

m
od
el

<
<
Ja
va
>
>

m
ig
ra
te
d

di
ag
ra
m

m
od
el

Fig. 5: The models are linked through trace links.

