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Abstract

A recent approach to tackle the ever increasing complexity of software intensive systems is Model-
Driven Engineering (MDE) [182]. Development of such complex systems spans a plethora of
different activities, including requirements modelling, analysis, design, testing, etc. for often very
diverse system components and views. This inherent heterogeneity is tackled in Multi-Paradigm
Modelling (MPM) by explicitly modelling all aspects of the system under study at the most
appropriate level(s) of abstraction using the most appropriate modelling language(s) [146, 45].
This includes the explicit modelling of the development processes. In Domain-Specific Modelling
(DSM) [74] the general goal is to provide means for domain users to model systems using concepts
and notations they are familiar with, in their problem domain. Techniques such as metamodelling
and model transformation enable modelling language engineers and domain experts to create
Domain-Specific Modelling Languages (DSMLs) for the domain users. Because syntax and
semantics of DSMLs are precisely defined by means of metamodelling and model transformation,
models can be used for analysis, simulation, optimisation, documentation and even full code
synthesis. According to MPM principles, multiple aspects/views as well as sub-systems are
modelled using distinct, most appropriate DSMLs. This means that not only system modelling,
but also modelling language engineering, becomes part of the development process. Language
engineering is thus a vital part of DSM. This thesis presents contributions in three research areas
of language engineering: verification support for DSMLs, evolution of DSMLs and composition
of DSMLs. An elevator control system is used as a running example throughout the thesis.

Verification support for DSMLs. Verifying whether a model satisfies a set of requirements is
considered to be an important challenge in DSM [65]. It is nevertheless mostly neglected by current
DSM approaches. We present a solution in the form of ProMoBox, a framework that integrates
the definition and verification of temporal properties in discrete-time behavioural DSMLs, whose
semantics can be described as a schedule of graph rewrite rules. Thanks to the expressiveness
of graph rewriting, this covers a very large class of problems. With ProMoBox, the domain user
models not only the system with a DSML, but also its properties, input model, run-time state and
output trace. A DSML is thus comprised of five sublanguages, which share domain-specific syntax.
The sublanguages are generated from a single metamodel, that is annotated to denote the role of
each language concept. The operational semantics of the DSML is modelled as a transformation
and is annotated with information about input and output. The modelled system and its properties
are translated to Promela, and properties are verified with Spin, a tool for explicit state model
checking [89]. In case a counterexample is found, its execution trace is transformed to the domain-
specific level as a trace model, which can be played out. Thus, whilst modelling and verifying
properties, the domain user is shielded from underlying notations and techniques. Following MPM
principles, we explicitly model the ProMoBox framework’s process in a Formalism Transformation



Graph and Process Model [125]. Furthermore, we evaluate ProMoBox to assert that it supports the
specification and verification of properties in a highly flexible and automated way, according to
MPM principles.

Evolution of DSMLs. In software engineering, the evolution of software artifacts is ubiquitous
[131]. In DSM, where modelling languages play a central role, evolution occurs not only at the
level of models, but also at the level of modelling languages [180]. Consequently, support for
(semi-)automated co-evolution of instance models or transformation models is needed. We present
a framework that deals with all possible consequences of language evolution in a DSML relational
ecosystem. We identify consistency and continuity as a goal, meaning that the evolution must
be syntactically correct (i.e., the conformance relation is preserved throughout the system) and
semantically correct (i.e., the system has evolved according to the intended changes). Contrary to
related approaches at the time of this work, we focus on the neglected problem of transformation
co-evolution. We de-construct all possible consequences of evolution in the context of a DSML
relational ecosystem and identify four basic evolution scenarios: model evolution, image evolution,
domain evolution and transformation evolution, which can each be handled (semi-)automatically.
Based on this we define and implement an approach for instance co-evolution and transformation
co-evolution that uses a flexible and modular migration pipeline. Furthermore, we present a feature
diagram of all evolution consequences and an algorithm that forms the backbone of our framework,
describing all possible co-evolution scenarios in detail.

Composition of DSMLs. Current methods for the development of DSMLs require the lan-
guage engineer to develop DSMLs from scratch. Nevertheless, there is a clear need for reuse
of existing languages, or language modules [159]. We use three composition mechanisms from
the metaDepth tool, namely, extension, concepts and templates and investigate whether they are
sufficient to allow composition of modelling languages in a structured way. All three concepts,
abstract syntax, (textual) concrete syntax and (operational) semantics, of a modelling language are
combined using these mechanisms. By using these mechanisms, we aim for general applicability of
our approach, provided that these composition mechanisms are supported. We conclude however,
that only simple composition of semantics can be modelled in a structured way. However, the
combination of the operational semantics of languages can be very complex, but necessary in
Multi-Paradigm Modelling. Hence, heterogeneous systems must be executed correctly, while still
maintaining modularity of languages, to enable reuse, and to allow the combination of languages
as black boxes. A solution is to define semantic adaptation [23] of heterogeneous parts of a
model, which has to be explicitly described. Boulanger et al. developed ModHel’X, a tool for
heterogeneous modelling and semantic adaptation. In ModHel’X, complex semantic adaptations
have to be coded however, which is tedious and error prone. We introduce a DSML with a visual
concrete syntax for modelling such heterogeneous systems. Subsequently, we define a second
DSML with textual syntax to model semantic adaptation. This DSML allows users to specify
the adaptation of data, control and time using a set of rules. Both DSMLs are translated to the
ModHel’X framework.

All solutions presented in this thesis adhere to MPM principles: everything is modelled
explicitly, at the most appropriate level(s) of abstraction, using the most appropriate formalism(s).
As users are exposed to such formalisms, they are shielded from “accidental” complexity by using
generative techniques and automation. The solutions in this thesis illustrate the tool builder’s
approach, as contributions in these thesis are supported by prototype implementations.



Nederlandstalige Samenvatting

Een recente aanpak voor de voortdurende toeneming aan complexiteit in software-intensieve
systemen is modelgedreven ontwikkeling (MDE) [182]. De ontwikkeling van zulke complexe
systemen houdt een groot aantal verschillende activiteiten in, waaronder het modelleren van vereis-
ten, analyse, ontwerp, testen, enz. voor vaak erg verschillende componenten en facetten van een
systeem. Multi-Paradigmatisch Modelleren (MPM) probeert een oplossing te bieden voor deze
inherente heterogeniteit door alle aspecten van het systeem expliciet te modelleren, op het (de)
meest geschikte abstractieniveau(s), in het (de) meest geschikte formalisme(s) [146, 45]. Ook
ontwikkelingsprocessen worden expliciet gemodelleerd. Het belangrijkste doel van Domeinspe-
cifiek Modelleren (DSM) [74] is om domeingebruikers toe te laten om systemen te modelleren
waarbij ze gebruik maken van concepten en notaties uit hun domein, die hen bekend zijn. Met
technieken zoals metamodelleren en modeltransformatie kunnen taalontwikkelaars en domein-
experts domeinspecifieke talen (DSMLs) voor domeingebruikers ontwikkelen. Omdat syntax en
semantiek van DSMLs precies gedefinieerd zijn door gebruik te maken van metamodelleren en
modeltransformatie kunnen modellen gebruikt worden voor analyse, simulatie, optimalisatie, do-
cumentatie en zelfs volledige codegeneratie. Volgens de principes van MPM worden verschillende
aspecten, facetten en subsystemen gemodelleerd in verschillende (meest geschikte) DSMLs. Dit
betekent dat niet alleen het modelleren van het systeem, maar ook het ontwikkelen van de DSML
deel uitmaakt van het ontwikkelingsproces. Taalontwikkeling is dus een essentieel deel van DSM.
In deze thesis worden drie contributies in het onderzoeksdomein van taalontwikkeling behandeld,
namelijk ondersteuning voor verificatie voor DSMLs, evolutie van DSMLs en samenstelling van
DSMLs. Een controlesysteem voor een lift wordt doorheen de thesis gebruikt als voorbeeld.

Ondersteuning voor verificatie voor DSMLs. Verifiëren of een model voldoet aan de vereis-
ten wordt beschouwd als een belangrijke uitdaging in DSM [65]. Desondanks wordt het niet
vaak ondersteund in bestaande DSM-oplossingen. We presenteren een oplossing genaamd Pro-
MoBox: een raamwerk dat de omschrijving en verificatie van temporele eigenschappen integreert
in DSMLs met gedrag in discrete tijd, waarvan de semantiek beschreven kan worden als een
structuur met herschrijfregels voor grafen. Omwille van de expressiviteit van het herschrijven van
grafen beslaat de oplossing een erg grote klasse van problemen. Met ProMoBox modelleert de
domeingebruiker niet alleen het ontwerp van systeem met een DSML, maar ook de eigenschappen,
het invoermodel, de run-time staat en de uitvoer. Een DSML bestaat dus uit vijf subtalen, die
een domeinspecifieke syntax delen. De subtalen worden gegenereerd uit één enkel metamodel,
dat geannoteerd wordt om de rol van elk taalconcept vast te leggen. De operationele semantiek
van de DSML wordt als een transformatie gemodelleerd en wordt geannoteerd met informatie
over invoer en uitvoer. Het gemodelleerde systeem en zijn eigenschappen worden vertaald naar



Promela, en eigenschappen worden geverifieerd met Spin, een programma voor model checking
met expliciete staat [89]. Als er een tegenvoorbeeld wordt gevonden, dan wordt de uitvoer van
het systeem vertaald naar de domeinspecifieke laag als een model dat afgespeeld kan worden. Dit
betekent dat de domeingebruiker tijdens het modelleren en verifiëren van eigenschappen wordt
afgeschermd van onderliggende notaties en technieken. Volgens de principes van MPM modelleren
we het proces van ProMoBox in een formalismetransformatiegraaf en procesmodel [125]. Verder
evalueren we ProMoBox en concluderen we dat het de specificatie en verificatie van eigenschappen
ondersteunt op een erg flexibele en geautomatiseerde manier, eveneens volgens de principes van
MPM.

Evolutie van DSMLs. In softwareontwikkeling is de evolutie van softwareartifacten alomte-
genwoordig [131]. In DSM, waar modelleertalen een centrale rol spelen, komt evolutie niet
alleen voor op het niveau van modellen, maar ook van modelleertalen [180]. Er is dan ook nood
aan (semi-)geautomatiseerde ondersteuning voor co-evolutie van instantiemodellen of transfor-
matiemodellen. We presenteren een raamwerk dat alle mogelijke gevolgen van taalevolutie in een
DSML relationeel ecosysteem behandelt. We definiëren de doelen consistentie en continuïteit, wat
betekent dat de evolutie syntactisch correct moet zijn (de conformantierelatie wordt gerespecteerd
in het systeem) en semantisch correct (het systeem is geëvolueerd volgens bedoelde veranderin-
gen). In tegenstelling tot ander onderzoek concentreren we ons op het grotendeels genegeerde
onderwerp van transformatie co-evolutie. We deconstrueren alle mogelijke consequenties van
evolutie in de context van een DSML relationeel ecosysteem en we identificeren vier basissce-
narios voor evolutie: modelevolutie, beeldevolutie, domeinevolutie en transformatie-evolutie, die
elk een (semi-)automatische oplossing krijgen. Deze oplossingen gebruiken we om een aanpak
te definiëren en te implementeren voor de co-evolutie van instanties en transformaties, via een
flexibele en modulaire pipeline. Vervolgens presenteren we een featurediagram van alle gevolgen
van evolutie en een algoritme dat de ruggegraat vormt van ons raamwerk, dat alle mogelijke
co-evolutiescenarios in detail beschrijft.

Samenstelling van DSMLs. Gewoonlijk starten de taalontwikkelaars van nul af aan bij ont-
wikkeling van DSMLs. Toch is er een duidelijke nood aan hergebruik van bestaande talen of
taalmodules [159]. We gebruiken drie compositiemechanismen van de metaDepth-tool, namelijk
extensie, concepten en sjablonen, en onderzoeken of ze geschikt zijn om op een gestructureerde
manier modelleertalen samen te stellen. Elk van de drie facetten – abstracte syntax, (tekstuele)
concrete syntax en (operationele) semantiek – van een modelleertaal wordt gecombineerd met
deze mechanismen. Door deze mechanismen te gebruiken, mikken we op een generieke toepas-
baarheid van onze aanpak, onder de voorwaarde dat deze mechanismen ondersteund worden. We
besluiten echter dat enkel eenvoudige semantische samenstellingen op een gestructureerde manier
gemodelleerd kunnen worden. Niettemin kan de samenstelling van de operationele semantiek
van talen erg complex, maar ook erg nuttig zijn in MPM. Heterogene systemen moeten correct
uitgevoerd kunnen worden, maar terwijl moet de modulariteit van de samengestelde talen be-
houden blijven, om zo hergebruik en het samenstellen van talen als zwarte dozen toe te laten. Een
oplossing is om expliciet een semantische adaptatie [23] te definiëren tussen heterogene delen van
een model. Boulanger et al. ontwikkelden ModHel’X, een tool voor heterogene modellering en
semantische adaptatie. In ModHel’X moeten semantische adaptaties echter gecodeerd worden, wat
tijdsintensief is en gevoelig voor fouten. Wij presenteren een DSML met visuele concrete syntax
voor het modelleren van zulke heterogene systemen. Vervolgens definiëren we een tweede DSML



met tekstuele concrete syntax voor het modelleren van semantische adaptatie. Deze DSML laat
gebruikers toe om een data-, bestuurs- en tijdsadaptatie te specificeren als een groep van regels.
Beide DSMLs worden vertaald naar het ModHel’X raamwerk.

Alle oplossingen in de thesis volgen de principes van MPM: alles is expliciet gemodelleerd, op
het meest geschikte abstractieniveau, in het meest geschikte formalisme. De gebruikers van deze
formalismen worden afgeschermd van “incidentele” complexiteit omdat we gebruik maken van
generatieve technieken en automatisering. De oplossingen in deze thesis illustreren de toolbouwer-
benadering, omdat de contributies ondersteund worden door implementatieprototypes.
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CHAPTER 1. INTRODUCTION

1.1 Complexity and Modelling languages

The systems we analyse and design today are characterized by an ever increasing complexity. As
demands on quality grow, development- and production cost must still be kept minimal. A recent
approach to tackle this complexity is Model-Driven Engineering (MDE) [182]. Development of
such complex systems spans a plethora of different activities, including requirements modelling,
analysis, design, testing, etc. for often very diverse system components and views. This inherent
heterogeneity is tackled in Multi-Paradigm Modelling (MPM) by explicitly modelling all aspects
of the system under study at the most appropriate level(s) of abstraction using the most appropriate
modelling language(s) [146, 45]. The goal is to minimize “accidental” (as opposed to “essential”)
complexity [25] by capturing only the essence of a problem.

More specifically, in Domain-Specific Modelling (DSM) [74] the general goal is to provide
means for domain users such as a mechatronics engineers or hospital process managers to model
systems using concepts from their problem domain. Techniques such as metamodelling [108]
and model transformation [46] enable modelling language engineers and domain experts to create
Domain-Specific Modelling Languages (DSMLs) for domain users. DSMLs separate problem
domain knowledge from implementation target (software and/or hardware) domain knowledge.
As syntax and semantics of DSMLs are precisely defined by means of metamodelling and model
transformation, models can be used for analysis, simulation, optimisation, documentation and even
full code synthesis. Often, following MPM principles, multiple aspects/views as well as subsystems
are modelled using distinct DSMLs. These DSMLs are often specifically designed to address a
specific facet of a problem, such as architecture. This implies that not only system modelling,
but also modelling language engineering, becomes part of the development process. In this work,
modelling languages refer to DSMLs rather than general purpose modelling languages, such as
UML, unless stated otherwise. Language engineering is thus an enabler, if not a prerequisite, for
DSM.

The system modelling and language modelling phases are two parallel development processes.
In this thesis, we assume that the domain user is responsible for the system modelling phase,
and that the language engineer and domain expert are responsible for the language modelling
phase. Both development processes may incorporate multiple phases such as analysis, design,
implementation (typically automated as code generation), testing, maintenance, etc., which may
involve new software engineering roles or stakeholders such as a requirements engineer, quality
analyst, usability expert, test engineer, product manager etc. Both phases can follow any design
process, such as the waterfall model, incremental development, etc. In [180], the authors testify
from industry experience how DSM addresses problems for each of the involved stakeholders, from
core developers, to development teams, to top management. However, in this thesis we restrict
ourselves to the assumption that all processes at the language level are undertaken by the language
engineer and domain expert, all processes at the domain-specific system level are undertaken by
the domain user, and that all processes at the platform-specific implementation level are automated
(as defined during the language engineering phase). From a user’s point of view, the goal of DSM
is that systems can be modelled, simulated, analysed, etc. by non-technical domain users.

Since the development process is extended with a language engineering phase, the question
arises under what circumstances it becomes worthwhile to employ DSM. In general, using DSM
yields the best results if systems are considerably better expressed in terms of the problem domain
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1.1. COMPLEXITY AND MODELLING LANGUAGES

rather than general purpose modelling. Moreover, it should be expected that multiple models will
have to be created. At Panasonic, Safa [180] concluded that DSM is particularly useful when
used over the course of longer projects, in an evolving domain. According to the study, the high
customisability and quick development of a DSML enable language engineers to address the
specific problems of the domain users. Using state-of-the-art DSM tools result in a tremendous
benefit in comparison with using general purpose modelling (i.e., UML, for which there was a
mismatch with the available tools, language concepts and evolution support) or assembly language
and C programming.

Anecdotal evidence shows five to ten times productivity increase thanks to DSM [96]. Despite
some positive reports, DSM still lacks mature tools and techniques hampering widespread industry
adoption. In this thesis we address a number of challenges in modelling language engineering, and
provide solutions in the form of tools and techniques. The thesis statement is as follows:
This thesis contributes to the engineering of Domain-Specific Modelling Languages (DSMLs) by
addressing the challenges of defining verification support for DSMLs, evolution support for DSMLs
and composition support for DSMLs.
What follows is a description of the addressed challenges.

The first challenge concerns verification support for DSMLs. In DSM, the general goal is to
provide DSMLs for domain users to model systems in their problem domain. Verifying whether
a model satisfies a set of requirements is considered an important challenge in DSM [65]. It
is nevertheless mostly neglected by current DSM approaches. Verification has been achieved
by translating models to formal representations. Logic-based formulas in formalisms such as
Linear Temporal Logic (LTL) [162] and Computation Tree Logic (CTL) [58] are used to represent
the temporal properties that need to be verified [171]. Currently, domain users need to have a
profound knowledge of some logic to express properties. This violates the principles of MPM.
As with design models, the level of abstraction for specification and verification tasks needs to
be raised to the domain level, as domain users should not be exposed to underlying notations and
techniques [210]. In this sense, DSM should not only address modelling the design of a system,
but also its properties, its environment, its run-time state, and its execution traces, which should all
be modelled at the domain level, in their own DSML.

The second challenge concerns evolution of DSMLs. In software engineering, the evolution
of software artifacts is ubiquitous [131]. Diverse artifacts such as requirements, programs, data,
tests and documentation may evolve. In MDE, where modelling languages play a central role,
evolution occurs not only at the level of models, but also at the level of modelling languages.
This is in contrast with general-purpose programming languages such as C++ where programs
evolve, but not the programming language (or at least, very infrequently and mostly in a backwards
compatible fashion). Language evolution applies in particular to DSMLs, where relatively frequent
changes in the problem domain as well as in the implementation target domain (e.g., due to external
technical or strategic decisions) must be reflected in the respective languages, as shown in an
industrial context by Safa [180]. These changes are necessary to maintain the high coupling
between domain and language. A first problem is the need for rapid development techniques for
DSMLs, as they are created and modified frequently during the life-cycle of the system they are
used for. A second, and far greater problem is that possibly large numbers of modelling artifacts
such as instance models or transformation models become invalid and unusable when a related
DSML is modified/evolved. Early adopters of MDE and DSM dealt with language evolution issues

3



CHAPTER 1. INTRODUCTION

manually [180]. However, this approach, as well as an ad hoc approach to any language change, is
tedious and error-prone [197]. Hence, dealing with evolution requires in-depth knowledge of the
language as a whole. Without a proper scientific foundation, as well as methods, techniques and
tools to support evolution, MDE in general and DSM in particular, cannot live up to its promise of
ten-fold productivity increase [96]. This becomes apparent when projects span longer periods of
time [180]. Since the problem of modelling language evolution was first identified by Sprinkle and
Karsai [187], the general problem has only grown in importance, yet remained largely unsolved at
the time of our research.

The third challenge concerns composition of modelling languages. Current language engineer-
ing methods require the language engineer to start from scratch when developing a new DSML.
This is in contrast with the observation that there are similarities between DSMLs: one might
need a new variant of Petri nets or a different kind of automaton (as there are tens of variants of
these two formalisms), or the combination of a number of formalisms. Therefore, there is a clear
need for reuse of existing languages, or language modules as illustrated in [159]. This need was
emphasised at the 2015 MoDELS conference, where five workshops GEMOC (Globalization of
Modeling Languages), EXE (Executable Modeling), ModComp (Model-Driven Engineering for
Component-Based Software Systems), FlexMDE (Flexible Model-Driven Engineering) and MPM
(Multi-Paradigm Modeling) explicitly addressed the need for language reuse and composition.
Moreover, the composition of models in different languages can be very complex, but necessary
in MPM. Different parts of a system may belong to different technical domains. Also, different
abstraction levels, different aspects of the system, and different phases in a design activity require
different modelling techniques and tools. The combination of semantics (in the form of simulation
or execution) is especially challenging for combined models with heterogeneous behaviour. It is
therefore necessary to deal with the simulation of multi-paradigm, heterogeneous models.

1.2 Background

The necessary background for modelling language engineering is presented in this section.

1.2.1 Modelling Language Engineering

The basis for this thesis can be found in Domain-Specific Modelling (DSM) [96]. DSM is part of
model-driven engineering (MDE). It requires modelling systems using domain concepts, rather
than concepts in the solution domain (i.e., the computing domain). Consequently, systems are
modelled at a higher level of abstraction, and often code is generated from these high-level
models. This means that the development process is split into two tasks: (i) the creation of a
Domain-Specific Modelling Language (DSML) known as engineering a language, by the language
engineer, in consultation with a domain expert, and (ii) modelling the system using this DSML by
a problem domain (but not solution domain) user, referred to as a domain user. Once the DSML is
created, any system in the domain can be modelled in the DSML. Since the challenges addressed
in this thesis are an addition to language engineering, this section will mainly discuss the language
engineering phase (as opposed to the system modelling phase) of the development process. The
topic of modelling languages is developed in the modelling community [73].
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The three main aspects of a DSML, or modelling language in general, are its abstract syntax
(describing the internal structure of a model, as e.g., a typed abstract syntax graph), the concrete
syntax (describing how a model is represented, e.g., in 2D vector graphics or in textual form) and
its semantics (describing what a model means, by e.g., a definition of its execution semantics, or a
translation to a known formalism) [146].

In this thesis, we assume that the abstract syntax is described by a metamodel [108] in the
form of a class diagram [6] or a similar formalism, including additional static semantics specified
as constraints. Static semantics can be described in a constraint language such as the Object
Constraint Language (OCL) [152]). Instance models of the DSML are said to conform to or typed
by the metamodel. In [108] this relation is referred to as a linguistic instance of, and throughout this
thesis, instance (of) will refer to this kind of instantiation. Conformance usually means that there
is a morphism between the instance model and the metamodel. Both can always be represented
as typed, attributed, directed graphs [108], which assumes a discrete (as opposed to continuous)
representation. Models that include continuity can be represented intensionally by a graph as well,
by for example as a model of the structure of the associated mathematical formula, as often done
in Simulink® [128]. In particular, programming code can be represented as a tree (i.e., an abstract
syntax tree), which is a kind of graph.

The abstract syntax is represented by at least one concrete syntax, either textually or graphically
(or a combination of both). Mappings between the abstract syntax and its concrete syntax(es) are
called rendering functions, and their inverses are called parsing functions. These functions are used
by model editors to render (changes of) the model’s abstract syntax, and to parse user’s concrete
syntax edits to abstract syntax. In case of graphical concrete syntax, we use a connection-based
syntax [37] in this thesis. This means that concrete syntax models consist of icons (one kind for
each metamodel class) that are connected by splines (for each metamodel association). The other
class of visual languages proposed by Costagliola et al. [37] is geometric-based syntaxes, where
objects are spatially arranged. The authors consider a textual, string-based representation a special
kind of geometric-based syntax.

Semantics can be described translationally or operationally. Translational semantics provide a
mapping of a model in a given modelling language onto a model in a different modelling language
for which a semantics is available. Operational semantics capture explicitly how a model can be
executed, also called simulating the model, which is effectively mapping a model onto a trace.
In this thesis, semantics are always formalised as transformations, that can transform (an) input
model(s) to (an) output model(s), instances of the same or different languages. Since models are
represented as typed, attributed, directed graphs, a popular way to specify transformations is by
means of graph transformation rules.

1.2.2 Transformation Models

Transformation models can be classified according to their syntax [133]. Endogenous transforma-
tions use the same metamodel for their input and output models, while exogenous transformations
use different metamodels. Unidirectional transformations are transformations from one model to
another, in that specified direction. Bidirectional transformations specify a relation between models,
which can be operationalised in both directions. Out-place transformations or model-to-model
transformations create a new output model, while in-place transformations perform changes on the
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input model itself.
Transformations can be explicitly specified as transformation models [17], in a language that

combines generic transformation concepts such as rules and a rule schedule, and concepts specific
to the languages it transforms.

A rule schedule of a transformation language is generic, and allows the modelling of how
different rules are scheduled. Rules consist of a left-hand side (LHS) containing a pattern rep-
resenting a condition, and a right-hand side (RHS) containing a pattern representing an action
(elements can be created, removed or updated). LHS and RHS are generic language constructs that
can contain elements, each displayed as a different shape of container. The contained elements
form graph patterns that reuse concrete syntax taken from the input and output language. When a
rule is evaluated, a match for the LHS is searched for in the input model. If a match is found, the
RHS is applied to the input model, thus changing it. If the rule fails to match, the input model
is left untouched. Depending of the outcome (failure or application), the next rule according to
the rule schedule is evaluated. Rule schedules may be implicit. For example, when executing the
transformation, a random matching rule may be applied.

A process called RAMification to generate such a rule-based domain-specific transformation
language for given input and output DSMLs is presented by Kühne et al. [110]. The name
RAMification for the process of generating a domain-specific transformation language is an
abbreviation of its three stages to generate a pattern language (for LHS) and action language (for
RHS) from the DSML:

1. Relaxation: the metamodel is relaxed by removing constraints in order to allow the creation
of partial models, to uniquely identify elements across the different parts (LHS/RHS) of a
rule;

2. Augmentation: each element in the metamodel is augmented with a label, and with an option
whether subtypes should be potential match candidates. Other augmentations can be used to
influence the matching process [110] but are not relevant for this thesis;

3. Modification: for (attributes of) elements of the LHS, conditions over values are specified
because the LHS pattern essentially models a condition or constraint that must be met.
Similarly, for elements of the RHS, assignments of values are specified.

Since the result of the RAMification transformation is a language definition with metamodel and
concrete syntax model, the language engineer can adapt the concrete syntax model to make rules
more appealing. The three stages of the RAMification process are explained more in detail using
the running example in Section 1.3.

The RAMification process is implemented as a transformation that takes a DSML metamodel
and concrete syntax model as input and a metamodel and concrete syntax model of the trans-
formation language as output. This is called the RAMification transformation [110]. Since
transformations themselves are explicitly modelled, and written in a modelling language, trans-
formation models conform themselves to a transformation language, that has abstract syntax and
concrete syntax. Consequently, transformation models can be transformed in their own right, or
can be generated. The transformations that have transformation models as input and/or output are
called higher order transformations (HOTs). Similarly, abstract syntax and concrete syntax of a
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Figure 1.1: A model and its relations in the context of MDE.

language are modelled as metamodels (in the class diagram language) and concrete syntax models
(in e.g., an icon language) respectively, and can thus be transformed as well.

1.2.3 A DSML Relational Ecosystem

Figure 1.1 shows the different kinds of relations involving a DSML. We call this the relational
ecosystem of the DSML. A relational ecosystem can be studied as a whole, e.g., to investigate
evolution of artifacts. Relations are visualised by arrows, “conforms to”-relationships are dotted
arrows. The instance model m conforms to a metamodel MMLang, the abstract syntax model
of the DSML Lang. There is a rendering function κi between m and a concrete syntax κi(m)
model. The inverse of κi is a parsing function πi so that πi(κi(m)) = m. The index i highlights
the fact that multiple concrete representations may be used. κi(m) conforms to a metamodel
MMCS_κi , the explicit model of the concrete syntax language (such as the set of all 2D vector
graphics drawings). Semantics can be described transformationally or operationally. Both are
included in Figure 1.1. Transformational semantics are described by the semantic mapping [[.]]TS ,
and maps m to a model [[m]]TS in the semantic domain. This semantic domain is a different
modelling language with its own syntax en semantics. Similar to m conforming to MMLang,
[[m]]TS conforms to MMSemDom. Operational semantics are described by the semantic mapping
[[.]]OS . It is an in-place, endogenous transformation that iteratively makes changes to a model to
thus producing an execution behaviour. Additionally, transformations Tj may be defined for m.
The index j highlights the fact that multiple general transformations (e.g., for synthesis, migration,
abstraction/refinement, normalisation, optimisation, etc. [133]) may exist.

Assuming that a modelled system consists of models in an appropriate language and explicit
relations between these models, we posit that the relational ecosystem of any modelled system
can be mapped on (multiple instances of) Figure 1.1. Multiple models m can exist in a system,
typically all conforming to the same metamodel MMLang . Each model can be mapped on Figure 1.1
separately. Note that Tj(m) or [[m]]TS can themselves be seen as a model m in Figure 1.1, to
which possibly relations such as T and [[.]]TS apply. Since languages are explicitly modelled the
metamodel MMLang of a DSML is an artifact that is part of the modelled system in its own right.
Thus, MMLang itself can be seen as an m in Figure 1.1, having a metamodel in its own right. Note
that programs can also be considered as models, with an abstract syntax tree, a concrete syntax
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and a semantic mapping to, for instance, machine code or an operational semantics in the form of
an interpreter.

In conclusion, Figure 1.1 describes any explicitly modelled system. Although the statement
that all modelled systems can be mapped to the above diagram cannot be formally proved, we are
confident that it holds, based on our experience with DSM. We assume Figure 1.1 describes any
explicitly modelled relational ecosystem, thus allowing us to identify or relate challenges in this
thesis.

1.2.4 Formalism Transformation Graph and Process Model (FTG+PM)

It has become clear that the DSM process involves different models (e.g., domain-specific mod-
els, metamodels, transformation models, etc.) in various modelling formalisms (DSMLs, class
diagrams, transformation languages, etc.) that each serve a specific purpose in the DSM process.
Indeed, in accordance with MPM principles multiple modelling languages may be used to tackle
complex problems. MPM approaches use multiple modelling languages and deal with their consis-
tency and interaction. This means that the MDE process for development and/or execution of the
modelled system becomes more complex as well, and is highly customised.

The Formalism Transformation Graph and Process Model (FTG+PM) [125] captures the MDE
process by explicitly modelling it. The FTG+PM consists of the Formalism Transformation Graph
(FTG) and its complement, the Process Model (PM), and models all kinds of activities in the
MDE lifecycle such as requirements development, domain-specific design, verification, simulation,
analysis, calibration, deployment, code generation, and execution. The FTG describes in an explicit
and precise way formalisms, and their relationships, as transformations between models in these
formalisms. The PM specifies an MDE process using these formalisms and transformations, and
can be used as a basis for process enactment. Figure 1.2 shows a FTG+PM of the DSM process.

The FTG depicts (domain-specific) formalisms as labelled rectangles. Transformations (in the
broad sense of the word) between models in those formalisms are depicted as labelled small circles.
Formalisms can be connected to transformations by arrows that depict formalisms as in- and output
of these transformations: executing a transformation takes instances of incoming formalisms as
input, and creates instances of outgoing formalisms as output.

The PM is specified in the UML Activity Diagram 2.0 language [153]. The ovals (actions)
in the Activity Diagram correspond to executions of the transformations declared in the FTG.
Labelled rectangles (data objects) in the PM correspond to models that are consumed or produced
by actions, and are instances of the formalisms in the FTG with the same label. Thin arrows in the
PM indicate data flow, while thick arrows indicate control flow. Similar to the models, the arrows
must also have corresponding arrows in the FTG, meaning that their input and output nodes must
correspond. We also use Activity Diagrams control flow constructs for a PM such as joins and
forks, represented by horizontal bars, and decisions, represented by diamonds. (Executions of)
transformations can be automatic (shaded) or manual (white). The meaning of the FTG+PM is
presented in depth in [125].

We use the FTG+PM in the context of DSM, to describe both the language engineering phase
and the system modelling phase, while the FTG+PM was up to now only used for the latter [149].
Since languages are created in the language engineering phase and are later used in the system
modelling phase, they need to appear on both the PM and FTG side. To this end, we extend the
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Figure 1.2: A FTG (left) and PM (right) of the DSM process.

FTG+PM language with the operationalise relationship. Using the operationalise relationship, a
metamodel and concrete syntax model can be put into operation as a language, meaning models that
conform to the language can be created. A tool can automate this as compilation or interpretation
of the metamodel and concrete syntax model, possibly by generating a (syntax-directed) language-
specific editing environment. Note the box around metamodel and concrete syntax model to denote
that they are operationalised together to form a language (semantics is not yet included in the
box). Similarly, a transformation model can be put into operation by compiling or interpreting it,
meaning it becomes executable, often to give semantics to a language. In the process model of
Figure 1.2 all activities from the top up to the CreateOS activity are performed by the language
engineer, and the remaining two activities are performed by the domain user.

More in detail, the language engineer first creates a metamodel in the CreateMM activity. Then
he creates a concrete syntax model in the CreateCS activity as well as a mapping specifying the
bidirectional relationship between both (note that this is not visible in Figure 1.2), which results
in a DSML definition. Then, he/she RAMifies the DSML in the automatic RAMify transformation.
The resulting RAMDSML is part of the DSMLTransformation language. This is the language of
the OperationalSemantics transformation model, which is subsequently created in the CreateOS
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activity. This concludes the creation of a DSML. Next, the domain user models a system in the
CreateInstance activity. He/she can simulate this model, by executing the operational semantics in
the Simulate activity, resulting in a new DSML instance.

Note that relationships between artifacts might become visible when following links transitively.
For example, in the PM, one might expect that in the PM the OperationalSemantics model should
be input to the Simulate activity. The OperationalSemantics model is however not literally an
input of Simulate. Instead, the Simulate transformation in the FTG is an operationalisation of the
OperationalSemantics model. Thus, the Simulate activity in the PM is implicitly related to the
OperationalSemantics model.

1.2.5 Tools for Domain-Specific Modelling

The following tools for domain-specific modelling are used in this thesis.

AToM3

AToM3 stands for A Tool For Multi-Formalism and Metamodelling and supports syntax-directed
modelling [46]. In AToM3, abstract syntax, concrete syntax and semantics of a language can be
modelled explicitly. The tool supports metamodelling and model transformation, and supports the
generation of domain-specific modelling environments. Models have graphical connection-based
concrete syntax [37]. Geometric-based concrete syntax can be emulated by using action code that
is triggered by various events (e.g., creation, movement, etc. of an element, or saving the model).
However, this action code, in the form of Python code, is not explicitly modelled. Since models are
represented as graphs, model transformation is performed through graph transformation, and rules
inherit the concrete syntax of the DSML(s) that are to be transformed. However, RAMification
is not implemented in this tool, so HOTs are not directly supported. The transformation of
metamodels is in practice not supported, as parts of the metamodelling language is not explicitly
modelled. A detailed explanation of AToM3 be found in [47].

AToMPM

The successor of AToM3 is AToMPM. AToMPM stands for A Tool for Multi-Paradigm Modelling
and is presented in [126]. AToMPM improves on AToM3 by supporting a complex rule scheduling
language, RAMification, multiple concrete syntaxes for a single abstract syntax and collaborative
modelling. Still under development, it aims to tackle many other challenges found in other DSM
tools by explicitly modelling an action language, textual syntax, model management, debugging,
tool behaviour and user interaction. Additionally, the tool has a Web-based user interface.

metaDepth

metaDepth [42] is a tool for textual modelling language engineering and modelling that allows
the definition of the three aspects of a language: abstract syntax, concrete syntax and semantics.
Abstract syntax is modelled using the metaDepth default textual syntax, which can be used
on any metalevel. Domain-specific textual concrete syntax can be optionally modelled using
a designated language, which enables assigning the metamodel and each metaclass a syntactic
template indicating how their instances are represented. Models conforming to TextualSyntax
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are compiled to ANTLR grammars1, with appropriate semantic actions to create the model in
memory [43]. metaDepth integrates the Epsilon family of model management languages2. Hence,
behavioural semantics are defined with an in-place transformation using the Epsilon Object
Language (EOL) [105], a language similar to OCL extended with imperative constructs to create
objects and variables, and assign values. Moreover, Epsilon includes the Epsilon Generation
language (EGL) for template-based code generation. Epsilon includes a number of other languages,
each with their own purpose including a rule-based transformation language ETL. Only EOL
and EGL are used in this thesis. The use of Epsilon means that HOTs are not supported in
metaDepth. metaDepth allows deep metamodelling [42], to abandon the rigid metamodel/model
architecture, by using potency. We do not make use of this feature in this thesis. Nevertheless, top
level metamodels cannot be easily transformed since the metamodelling language is not explicitly
modelled.

Discussion

Each of these three tools can be used for DSM, but each has its own advantages and drawbacks.
Many of the (dis)advantages stem from the usability of the tools. AToMPM, still under development,
currently suffers from low usability. Nevertheless, AToMPM is designed to model visual concrete
syntax explicitly, including action code. In the current version, the latter is unfortunately not
yet implemented. According to MPM principles, metamodels and transformations are modelled
explicitly and are conform to a modelled language, thus allowing metamodel transformations and
higher order transformations. AToM3 lacks this language manipulation support, but is otherwise
easier to use, and models are easier to manipulate and debug. Its transformation language is
notably less expressive, as it lacks explicit rule scheduling. AToM3 is used if an advanced concrete
syntax is desired (heterogeneous modelling) as geometric-based concrete syntax can be emulated
easily. AToMPM and AToM3 are very comparable otherwise. metaDepth is textual, and thus
allows for quick prototyping and debugging, as it does not require reopening and editing dialog
boxes, reloading transformations, etc. Additionally, the support of Epsilon allows advanced model
manipulation, in only a few lines of code.

As a conclusion, throughout this thesis, AToM3 is used in case visual concrete syntax is
important, AToMPM is used in case of advanced language manipulation is required, and metaDepth
is used for textual modelling (although this a side-effect rather than a goal in this thesis), quick
prototyping, and code generation.

1.3 Running Example

The running example that is used throughout this thesis is a DSML for elevator controllers. Our
DSML enables modelling a building with floors, elevators and buttons. Additionally, it defines the
step-wise (discrete-time) behaviour of an elevator system, such as moving up or down to a different
floor, closing or opening elevator doors, or pressing buttons. The example is inspired by an elevator
controller model used to illustrate model checking in [134]. A similar “Elevator Control System”
is presented Strobl and Wisspeintner [191] where it is used to demonstrate AutoFocus, a tool for

1http://www.antlr.org/
2http://www.eclipse.org/epsilon/
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Figure 1.3: Relational ecosystem of the Elevator DSML.
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doors_open : boolean
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Figure 1.4: The metamodel of the Elevator controller DSML that serves as the running example
throughout this thesis.

modelling embedded systems [90]. Although embedded systems modelling is not the focus of this
thesis, the work illustrates the complexity of elevator controllers.

The Elevator DSML will also be called the Elevator language, Elevator or the abbreviated
E (often in Figures) throughout this thesis. Elevator and its relations are shown in Figure 1.3.
Its abstract syntax MME is defined by means of a metamodel. Its concrete syntax MMvis is
defined by means of an icon language. Its semantics are defined in two ways: operational semantics
[[.]]OS , and transformational semantics [[.]]PN by mapping to the Petri net formalism. The diagram
represents the Elevator relational ecosystem. Multiple concrete syntaxes MMvis and MMxml (a
XML representation) can be used. From instance models e, Java code can be generated. Deadlock
analysis can be carried out on the Petri net representation of e, yielding a result in the Boolean
domain: true or false. Concrete syntax for Java and Petri nets is explicitly included in the diagram,
because all languages, including programming languages, can be considered modelling languages,
if abstract syntax, concrete syntax and semantics are explicitly modelled. In the remainder of this
section, a number of artifacts from Figure 1.3 are presented, as they will be used throughout the
thesis.

Figure 1.4 shows the metamodel of the Elevator language. Elevators move between Floors.
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Figure 1.5: The concrete syntax model of the Elevator controller DSML that serves as the running
example throughout this thesis.

responding to Button press requests. A Button requests exactly one Floor.Floors are ordered by the
next association and a derived attribute nr representing the Floor number. At any time, an Elevator
is at exactly one Floor, modelled by the currentfloor association. An ElevatorButton is a button
inside an Elevator, allowing a passenger to request going to a certain Floor. At every Floor, there
can be an UpButton to request to go up and a DownButton to request to go down. An Elevator can
have its doors open (in that case it cannot move) and has a direction (up or down).

A concrete syntax model for the Elevator language in the form of icons and arrows is shown in
Figure 1.5. For every element of E, there is exactly one associated Icon or Link. An icon/arrow
inside a dashed box with a class or association name beneath it associates that concrete visual
syntax with the corresponding abstract syntax. An icon consists of graphical elements, and text
elements. This model defines the appearance of instance elements and how these appearances
can change (i.e., text content of text elements, or colours or transparency of graphical elements)
in concert with their associated abstract syntax, by implementing specific rendering and parsing
functions. In this way, as shown in the code fragment connected to all ButtonIcons, a button
instance icon has a white fill which will turn light blue if the associated button instance’s attribute
value for pressed is true, i.e., when the button is lit. If the elevator is going up (going_up is true),
then only the upward arrow is visible. If going_up is false, only the downward arrow is visible.
Whether or not the doors are open is also visualised.

Figure 1.6 shows an instance model with three floors, one elevator and seven buttons, that
uses the concrete syntax. As defined in the concrete syntax model, pressed buttons have a blue
fill, and they are connected to the floor they request. On the middle floor, a button is pressed by
someone requesting to go down, and inside the elevator the button to go to the top floor has been
pressed. The elevator is currently at the bottom floor. Its doors are open and its current direction is
down. Note how all elements, including the links, conform to the metamodel of Figure 1.4. For
simplicity, we limit ourselves to models with only one elevator. A system with multiple elevators
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Figure 1.6: An Elevator model, instance of the Elevator DSML.

Figure 1.7: Rule schedule of the operational semantics of the Elevator example.

is considerably more complex and would not contribute significantly to explaining the approaches
presented in this thesis.

Figure 1.7 shows the transformation model [[.]]OS specifying the operational semantics, that
uses the instance model as input. This model is a rule schedule, and determines how different
rules are scheduled. Rules consist of a left-hand side (LHS) containing a model pattern, and a
right-hand side (RHS) containing an action. When a rule is evaluated, a match for the LHS pattern
is searched for in the input model. If a match is found, the RHS is applied to the input model,
thus changing it in-place. In the case that the rule was applied, and an outgoing success link in
the schedule (depicted as a black arrow) is followed. If no match is found, the input model is
unchanged and an outgoing notApplicable link (depicted as a grey arrow) is followed. Execution
starts at openDoor_up, since it has the isStart flag set (depicted as a bold line of the rule).

Inspired by a real elevator controller, the following rules implement how the elevator changes
floors (one at a time), and opens and closes its door to honour the requests of users (modelled
as pressed buttons). Three rules implementing this behaviour are shown in Figure 1.8. When a
request for a floor is made for a different floor than the elevator’s current floor, the doors close so
that the elevator can start moving. This is modelled in the closeDoor rule shown in Figure 1.8. The
LHS shows the pattern denoting an elevator with open door on a floor. Its direction is greyed out
as it is not relevant to match this pattern, i.e., it will match any direction. The pattern also shows a
lit button (any subtype of Button, hence the icon of the abstract Button class is shown) on another
floor, corresponding to the condition described above. The number labels on the top left of each
pattern element serve as the relationship between LHS and RHS. Elements in the RHS with the
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Figure 1.8: Three rules taken from the operational semantics of the Elevator example.

same label, are the same elements. The action in the RHS here denotes that none of the matched
elements are changed, except for the doors_open attribute value of the elevator. Further rules in
the transformation denote that the elevator passes all floors that are requested on its path (which is
either up or down), and opens its door when the elevator’s direction corresponds to the direction
requested on that floor. The case where the elevator is moving up (i.e., changes its currentfloor link)
is shown in the moveUp rule. Note that the LHS contains not only a pattern, but also a constraint,
stating that the requested floor (with label 0) must have a higher floor number than the current floor
(with label 1). Related rules (not depicted) are moveDown (the dual of moveUp), moveUp_last
(where the lit button is on the next floor), and moveDown_last (the dual of moveUp_last). Pressed
buttons unlight when the door opens at a requested floor and the elevator goes in that direction in
the openDoor_up rule (in the case the elevator is going up) and its dual, the openDoor_down rule.
The elevator only changes its direction if there are no more requests on its path. This can be seen
in the changeToUp rule, which contains a negative application condition (NAC) (visualised as a
dashed box) in addition to its LHS. A NAC is evaluated the same way as a LHS, but the rule will
not be applied if a match is found. Hence, the rule will be applied if a button is pressed at a higher
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floor (modelled in the LHS), but not if a button on a lower floor is lit at the same time (modelled in
the NAC), i.e., in its current path. Note that, if the elevator is at a lower floor and is going up, it
can pass by a floor where one has requested to go down without stopping, as the elevator is going
in the opposite direction, and vice versa.

The first rule that is applicable to the instance model of Figure 1.6 is the changeToUp rule.
The LHS Elevator pattern element is bound to the only elevator in the instance model, and the
currentfloor with label 3 and the Floor with label 1 are bound to the currentfloor link to the bottom
Floor. Additionally, pattern elements with label 2, 4 and 5 can be bound to the middle Floor and lit
DownButton with request link in between. An alternative match for pattern elements with label
2, 4 and 5 can be found as the top Floor and lit ElevatorButton with request link in between. No
match for the NAC can be found since the elevator is at the bottom floor and going down, thus
no buttons are in the elevator’s path. Consequently, the rule matches and the RHS can be applied,
in which case only pattern element 0 that is bound to the node in the instance graph changes an
attribute value (i.e., in the elevator, going_up is set to true).

If no rule is applicable, the transformation terminates. This means that the operational semantics
implement the behaviour in response to the initially pressed buttons. Unlike in a realistic scenario,
buttons can not be pressed during execution. One could incorporate this behaviour in [[.]]OS ,
by adding a rule in which a button is pressed. This however mixes input to the system, with its
reactive behaviour, and can therefore be considered bad practice. Rather, this should be modelled
separately in an input language.

Note that if the rules are scheduled differently, i.e., if the move rules are scheduled before the
change direction rules, the NACs in the change direction become superfluous. We use this [[.]]OS
in the running example, to be able to showcase support for NACs where necessary.

As can be seen from Figure 1.8 the modelling language for rules is composed from some generic
language constructs for LHS, RHS and NAC, each displayed as a different shape of container.
They include a constraint or action, and domain-specific language constructs that borrow syntax
from the DSML. As stated before, this language can be generated using a transformation that takes
the DSML metamodel and concrete syntax model as input and the metamodel and concrete syntax
model of the transformation language as output, called the RAMification transformation [110]:

1. Relaxation: the metamodel is relaxed in order to allow for patterns which are partial models:
constraints on lower multiplicities in the metamodel are removed, abstract classes are made
concrete so they can be instantiated (see also the buttons used in rules of Figure 1.8), and
global constraints are removed. For example, Buttons and FloorButtons become instantiable,
and a Button does not need to be connected to a Floor in a pattern (but does in a model
conform to the Elevator metamodel);

2. Augmentation: each class and association in the metamodel is augmented with a label
attribute for pattern binding (its concrete syntax is a label in the top left corner of the icon
or next to the link), and each class with subclasses is augmented with a Boolean attribute
denoting whether subtypes should be matched. Other augmentations can be used to influence
the matching process [110] but are not relevant in the context of this thesis;

3. Modification: for elements of the LHS, the type of each attribute is changed to the type
Condition because the LHS pattern essentially models a condition or constraint that must be
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Figure 1.9: A metamodel for the Petri net formalism.

met. For example, a lit button in a LHS has pressed == True as value of its pressed attribute.
Similarly for elements of the RHS the type is changed to Action, which allows assigning
new values to attributes. For example, a lit button can be turned off in the LHS by setting
pressed = False as value of its pressed attribute.

Since the result of the RAMification transformation is a language definition with metamodel and
concrete syntax model, the language engineer can adapt the concrete syntax model to make rules
more appealing. An example of this is shading the elevator direction or doors grey in the icon to
denote that there is no constraint on the respective attribute values.

A second transformation [[.]]PN is defined to represent the transformational semantics to Petri
nets [160]. The Petri net formalism is a simple language for modelling non-deterministic discrete
distributed systems. Because of its simplicity, it can be subjected to a wide range of analysis
techniques, such as verifying whether the system can deadlock (as shown in Figure 1.3). Therefore,
it is often useful to map a DSML to a well-supported language such as Petri nets.

A metamodel for the Petri net formalism is shown in Figure 1.9. It consists of Places that
can be connected by arcs to Transitions and vice versa. Places can hold a number of tokens. The
semantics of Petri nets can be easily described informally. A Petri net structure is a collection
of Places and Transitions connected with arcs. There is an initial configuration, with a specified
number of tokens in each Place. A Transition is said to be enabled if all of its incoming Places
(i.e., Places with an arc to the Transition) have a tokens value of at least 1. The Petri net is simulated
by firing a randomly chosen enabled Transition. This means that the tokens value of all incoming
Places is decreased by 1, and the tokens value of all outgoing Places is increased by 1. This results
in a new configuration, after which again a randomly chosen enabled Transition is fired, and so on.

The transformation [[.]]PN is an exogenous out-place transformation, creating a new model
conform to the Petri net formalism, from an Elevator model. Like [[.]]OS , this transformation
assumes the presence of only one Elevator. A selection of semiformal rules of the transformation
is shown in Figure 1.10. The schedule is not shown, but specifies that all rules are executed once
for every match of the LHS. The following rules are shown:

— the system rule has an empty LHS, and it is only executed once. It generates a fairness loop
between system (the reactive behaviour of the elevator controller) and environment (the user
pressing buttons);

— the button rule transforms Buttons to two Places representing the Button being off (not pressed)
or on (pressed). A place-antiplace pattern is used: at any time, exactly one of these Places
has one token. A transition from on to off is added by a different rule (not shown) because it
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Figure 1.10: The [[.]]PN transformation (partial).

involves other places as well. Place and Transition names are given corresponding to the Button
id, thus establishing an name-based link between the Button and its Petri net counterpart;
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Figure 1.11: The generated Petri net of the Elevator instance model.

— the elevator rule transforms an Elevator to two place-antiplace patterns: one for the going_up
attribute, and one for the doors_open attributes. Again, the transitions between the places and
antiplaces are generated by another rule;

— the floor rule transforms each Floor to a place in the floor rule. Its tokens value is 1 if the
Elevator is on that Floor;

— the next_down_per_button rule implements that an elevator can go down if the Elevator’s
going_up and doors_open attributes are both false, and a Button is pressed on a lower Floor.
This semiformal rule builds on previous rules. It assumes that all greyed-out Petri net elements
are available (i.e., they are part of the LHS as well), and they are matched by name according
to their associated Elevator counterparts. The rule creates a Transition and arcs for every Button
that is on a lower Floor;

— the next_down_no_press rule implements an extra condition for changing floors: no Button
can be pressed that requests the Floor that is left.

The result of transforming the Elevator instance of Figure 1.6 to Petri nets is shown in
Figure 1.11. This model now supports analysis. For instance, if deadlock analysis is performed in
Pipe2, a tool for Petri net modelling and analysis [21], the tool determines that no deadlock can
be found. However, it is clear that the resulting Petri net is not as easily understandable as the
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domain-specific model, thus illustrating the advantage of using DSM.
All models shown in this section are AToMPM models, except for metamodels (which are

modelled in the UML tool MagicDraw as they are too large for visually nice representation in
AToMPM) and Petri net instances (which are modelled in the Petri net tool Pipe2 as this tool
supports analysis of Petri nets – the necessary code generator to Pipe2’s format PNML is not
included in Figure 1.3, for simplicity). None of the other modelling artifacts displayed in Figure 1.3
are further explained, as they are not explicitly used in this thesis. More languages and models,
with their own specific purposes, can be introduced in the Elevator relational ecosystem according
to the user’s needs and preferences by establishing their relationship with E. Figure 1.3 represents
one example of the Elevator DSML in relationship to other modelling artifacts.

Throughout the thesis, the adjective traditional will mean according to the state of the art as
described in Chapter 1.

1.4 Research Questions, Contributions and Assumptions

After presenting the necessary background, research questions can be asked that follow from
the problem description in Section 1.1. Three challenges in modelling language engineering
were identified: verification for modelling languages, evolution of modelling languages, and
composition of evolution languages. We presented the following thesis statement:
This thesis contributes to the engineering of Domain-Specific Modelling Languages (DSMLs) by
addressing the challenges of defining verification support for DSMLs, evolution support for DSMLs
and composition support for DSMLs.

We narrow down these challenges to the context of DSM as presented in Section 1.2. We
assume that modelling languages are defined explicitly as described above, by a metamodel, a
concrete syntax model (either textual or visual) and semantics (operational or translational) as a
transformation. These executable transformations have discrete-time semantics.

The challenge of verification for modelling languages leads to the following research question:
RQ 1. Can we find a general MPM solution to support the specification of (temporal) properties,
as well as their verification? This solution should include support for verifying these properties.
The user should only be exposed to domain-specific concepts. The solution should weigh as little
as possible on the lightweight DSM process, and should be an extension of the existing DSM
techniques for design languages.

The challenge of evolution of modelling languages leads to the following research question:
RQ 2. What is a solution according to MPM principles for dealing with the consequences of
language evolution?

To address the challenge of composition of modelling languages, we selected two complimen-
tary research threads. The third research question takes a syntactic approach:
RQ 3. Can we extend generic model composition mechanisms, inspired by generic programming,
to the composition of DSMLs, in its three aspects, namely, abstract syntax, (textual) concrete
syntax and (operational) semantics?
The fourth research question concentrates on the semantics of modelling languages:
RQ 4. What is a solution according to MPM principles for dealing with execution of heterogeneous
modelling and semantic adaptation?
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The contributions of this thesis are the answers to these research questions. The goal for all
contributions is to adhere to MPM principles: everything should be modelled explicitly, at the
most appropriate level(s) of abstraction, using the most appropriate formalism(s). As users should
only be exposed to such formalisms, they are shielded from “accidental” complexity through the
use of generative techniques and automation. This manifests itself in the tool builder’s approach of
this thesis, as contributions in these thesis are supported by prototype implementations.

1.5 Outline of the Thesis

The thesis is organised as follows. Chapter 2 presents an approach to support the specification
of temporal properties, as well as their verification to answer research question RQ 1. Chapter 3
discusses evolution of DSMLs, and presents a solution for research question RQ 2. Chapter 4
answers the research questions RQ 3 and RQ 4, by presenting a solution for the composition of
DSMLs. Chapter 5 concludes this thesis.

Appendix A presents an Elevator implementation that will serve as a basis for comparison
in Chapter 2. Appendix B lists all evolution operations and Appendix C presents a prototype
implementation in metaDepth, both in de context of Chapter 3.
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CHAPTER 2
Verification for Domain-Specific Modelling

Languages

Abstract. In Domain-Specific Modelling (DSM) the general goal is to provide Domain-Specific
Modelling Languages (DSMLs) for domain users to model systems using concepts and notations
they are familiar with, in their problem domain. Verifying whether a model satisfies a set of
requirements is considered to be an important challenge in DSM, but is nevertheless mostly
neglected. We present a solution in the form of ProMoBox, a framework that integrates the
definition and verification of temporal properties in discrete-time behavioural DSMLs, whose
semantics can be described as a schedule of graph rewrite rules. Thanks to the expressiveness
of graph rewriting, this covers a very large class of problems. With ProMoBox, the domain user
models not only the system with a DSML, but also its properties, input model, run-time state and
output trace. A DSML is thus comprised of five sublanguages, which share domain-specific syntax,
and are generated from a single metamodel. Generic transformations to and from a verification
backbone ensure that the domain user is shielded from underlying notations and techniques. We
explicitly model the ProMoBox framework’s process in the chapter. Furthermore, we evaluate
ProMoBox to assert that it supports the specification and verification of properties in a highly
flexible and automated way.
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2.1 Introduction

In Domain-Specific Modelling (DSM) [74] the general goal is to provide means for domain
users to model systems in their problem domain. Techniques such as metamodelling and model
transformation enable users to create Domain-Specific Modelling Languages (DSMLs) that can
be used by domain users. Current DSM techniques allow users to model at the domain level and
simulate the model, optimise the model, transform it to other formalisms, synthesise code, generate
documentation, etc.

Verifying whether a model satisfies its requirements is an important challenge in DSM [65], but
is nevertheless mostly neglected by current DSM approaches. Verification has been achieved by
translating models to formal representations. Logic-based formulas in formalisms such as Linear
Temporal Logic (LTL) [162] and Computation Tree Logic (CTL) [58] are used to represent the
temporal properties that need to be verified [171]. These temporal properties can be verified using
e.g., model checking techniques [34]. Currently, domain users need to have a profound knowledge
of some logic to express properties. This violates the principles of MPM. As with design models,
the level of abstraction for specification and verification tasks needs to be raised to the domain
level, as domain users should not be exposed to underlying technologies [210]. In this sense, DSM
should not only address modelling the design of a system, but also its properties, its environment,
its run-time state, and its execution traces, which should all be modelled at the domain level, in
their own DSML.

Some dedicated property DSMLs and tools have been defined. For example, a visual formalism
called TimeLine, developed at Bell Labs, allows users to specify temporal constraints, which are
automatically translated to LTL [185]. Such approaches result in very suitable tools and languages,
but a high development effort is required. Moreover, in the context of DSM, a DSML is highly
prone to change during the development cycle, thus additional effort is required to keep verification
tools synchronised with the DSML.

Some modelling languages are of such a nature that they can be used with minor modifications
for defining system designs as well as properties. The Mathworks’ Simulink® language for
specifying the behaviour of dynamic systems as block diagrams [128] can be reused for specifying
properties, by simply adding an “assertion block” [127]. Although strictly speaking not a DSML,
Petri nets [168], used to specify the behaviour of concurrent systems, can also be used to express
temporal properties to which execution traces conform [166], i.e., the execution trace of a system
that is modelled as a Petri net. This provides an elegant solution, as the language, and possibly its
semantics, can be re-used. This is not possible for all design DSMLs.

Other approaches offer visual and generic modelling languages for specifying properties [100],
but do not offer a domain-specific syntax, which is essential in DSM. In conclusion, no general
DSM approaches exist today that provide dedicated support for verification as part of the DSML
engineering process.

Problem statement. No general DSM solution exists for specifying properties at a domain-
specific level, matching the domain-specific level at which design models are specified. Further-
more, such domain-specific property specification requires a means to automatically verify whether
a system design satisfies these properties.

Main research question.
RQ 1. Can we find a general MPM solution to support the specification of (temporal) properties,
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as well as their verification? This solution should include support for verifying these properties.
The user should only be exposed to domain-specific concepts. The solution should weigh as little
as possible on the lightweight DSM process, and should be an extension of the existing DSM
techniques for design languages.

The scope of this work is providing support for the definition and verification of temporal
properties for any discrete-time behavioural DSML, for which the semantics can be described as a
schedule of graph rewrite rules. Thanks to the expressiveness of graph rewriting, this covers a very
large class of problems. In the following, the notions of verification, properties and DSML are
within this scope. More detailed, the following research questions are posed:

— RQ 1.1. What languages are needed at the domain-specific level for specifying and verifying
properties?

— RQ 1.2. How can these languages be generated from a specification of a design DSML?

— RQ 1.3. How can the verification activity, in this case by model checking, that uses these
languages, be automated?

— RQ 1.4. What effort is required to enable verification support for a traditional DSM solution?

— RQ 1.5. Does the use of the presented approach result in a similar model checking time as its
non-domain-specific counterpart?

— RQ 1.6. What is the impact of changes of/to different components of the approach?

— RQ 1.7. What are the assumptions and limitations of the approach?

In this chapter, ProMoBox is presented, a DSML engineering framework that aims to pull
up property specification and verification tasks to the domain level. The contribution of the
ProMoBox framework can be split in three parts. Firstly, it supports generic languages for
modelling all artifacts that are needed for specifying and verifying properties that matches the
level of specification used for design models. Secondly, it includes a fully automated method to
specialise and integrate these generic languages into a given design DSML. Finally, it provides
a fully automated bi-directional mapping to a suitable verification backbone for model checking
(temporal) properties. Flexibility and automation are key in ProMoBox. ProMoBox supports
definition and verification of temporal properties for any discrete-time behavioural DSML, for
which the semantics can be described as a schedule of graph rewrite rules.

This chapter introduces the ProMoBox framework using the elevator controller running example
presented in Section 1.3. In fact, the running example is inspired by an elevator controller
model used to illustrate model checking [134]. This chapter shows a mapping to the Spin model
checker [89] and LTL as verification backbone in detail. An informal evaluation of the ProMoBox
framework is presented, to determine whether the ProMoBox approach fulfills its promises of
flexibility and automation. We evaluate the model checking time of the running example, review
the modelling process of ProMoBox, and discuss the impact of changes to any of the ProMoBox
components. This includes replacing the mapping to Spin and LTL by a mapping to Groove [169]
and CTL, to determine whether the ProMoBox approach fulfills its promises of flexibility and
automation.

The chapter sets the stage in Section 2.2, where the necessary background is given on the
subjects of DSM, running example, process modelling with FTG+PM (see Section 1.2.4), temporal

25



CHAPTER 2. VERIFICATION FOR DOMAIN-SPECIFIC MODELLING LANGUAGES

Figure 2.1: Verification of properties.

logic and model checking. In Section 2.3, the ProMoBox approach is presented. Section 2.4
discusses the mapping to a verification backbone. Section 2.5 shows how we applied ProMoBox to
our Elevator DSML, and demonstrates how properties are checked and how a counterexample can
be produced. In Section 2.6, the ProMoBox framework is evaluated. Section 2.7 discusses related
work, and Section 2.8 concludes the chapter and gives some directions for future work.

2.2 Background

This section presents the prerequisites, additional to the background given in Section 1.2, to discuss
the ProMoBox framework.

2.2.1 Temporal Properties

Properties allow us to encode questions we want to ask the modelled system, with an answer that
is yes or no (i.e., property satisfied or not). Examples are: (a) Are there algebraic loops in my
block diagram?, or (b) If I press a button in an elevator, will the elevator eventually reach the
corresponding floor? Useful properties are extracted from requirements, and it can be verified
whether a model of a system satisfies these properties. The general verification process is shown
in the Process Model (PM) of Figure 2.1, where a formal model and properties are fed into
a verification engine. If no counterexample is found, the system satisfies the property. If a
counterexample is found, it needs to be visualised in a domain-specific notation, so the user may
correct the formal model, after which the verification process can be restarted.

We distinguish two kinds of properties: structural properties and temporal properties. Structural
properties are evaluated statically on the structure of a model, e.g., on the abstract syntax graph.
Structural properties can be expressed in e.g., a constraint language like the Object Constraint
Language (OCL) [152]. Example (a) can be expressed in OCL. Temporal properties are defined in
terms of time, i.e., on paths of program execution, or execution traces.

One such way to express temporal properties is using Linear Temporal Logic (LTL) [162], as
done in the ProMoBox approach. LTL is built up from propositions (e.g., ψ and φ), on which the
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following temporal operators can be applied (yielding expressions that are also propositions): 2ψ
(globally ψ), 3ψ (finally ψ), #ψ (next ψ), and ψ U φ (ψ until φ). The logic operators ∨, ∧, ¬ and
→ can be used in formulas, and operator precedence can be enforced by brackets. Throughout this
chapter we will use ψ W φ (“weak until”) which can be defined as (ψUφ) ∨ 2ψ. Knowing the
syntax of LTL is not mandatory for understanding this chapter, but the interested reader can find a
complete summary of the syntax and semantics of LTL in [57].

Another temporal logic is Computation Tree Logic (CTL) [58], that reasons about execution
tree branches rather than single traces. Its syntax is similar to LTL, including the use of propositions,
logic operators and brackets. It differs however in the temporal operators used: AGψ, EGψ,
AFψ, EFψ, AXψ, EXψ, A[ψ U φ], E[ψ U φ] where the A in the operator means “for all paths”,
and E means “there exists at least one path”. The G (globally), F (finally), X (next), and U
(until) correspond to the LTL operators. Similarly to LTL, a “weak until” operator is defined as
A[ψW φ] = ¬E[¬φU(¬ψ ∧ ¬φ)] and E[ψ U φ] = ¬A[¬φW (¬ψ ∧ ¬φ)]

The logic operators ∨, ∧, ¬ and→ can be used in LTL and CTL formulas.
Using LTL or CTL, temporal properties such as those in example (b) can be expressed. It

is an example of a liveness property (something must eventually happen). The other class of
temporal properties is the class of safety properties (something should not happen). There is a
slight difference in verifying liveness and safety properties, as in order to find a counterexample in
case of a liveness property, it must be shown that the proposition that must eventually happen is
not present in traces with possibly infinite length.

2.2.2 Model Checking

Verifying whether a model satisfies a temporal property can be done in several ways. Some tech-
niques for verification include manually inspecting the model, using testing techniques, symbolic
execution, model checking, etc. In the ProMoBox approach we focus on model checking. Model
checking is an automated approach, where it is determined whether a model satisfies a property by
exhaustively searching for a counterexample, which takes the form of an execution trace. If no
such counterexample is found, it is certain that the model satisfies the property.

Advantages of model checking include that it is a fully automated method, and that the outcome
is reliable (unlike for i.e., testing techniques). It has some major drawbacks however: the search
space has to be finite, and large search spaces are infeasible to analyse. As the verification time as
well as the required memory easily suffers from combinatorial explosion, the approach only allows
a limited number of variables in the modelled system. This means that although model checking
is in itself fully automated, often a manual abstraction step is required to make the technique
applicable to a model [7]. Throughout this chapter, two tools for model checking will be used.

Spin [89] is a tool that allows users to write system descriptions in a textual programming
language called Promela, encode properties in LTL, and verify whether the system description
satisfies these properties. The default verification algorithm visits every possible state of the
system description by building the state space explicitly. This is a directed graph with state
vectors as nodes and statement executions as transitions. By traversing this complete state space a
conclusive answer to the satisfaction of an LTL formula can be produced. Spin’s main application
is the verification of concurrent systems. Although very powerful, writing system descriptions in
Promela and LTL formulas requires a background in programming and logic, skills that domain
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users do not necessarily have. In our approach, we intend to leverage the power of Spin, without
having to expose its technicalities (i.e., its languages and interface) to domain users.

Groove[169] is a tool for specifying rule-based transformations on systems described as typed
graphs. A type graph can be defined (much like a metamodel), and graphs can conform to the
type graph. Similar to our view on model transformation, transformations consist of rules that,
if matched, manipulate the graph. Rules are scheduled using an imperative language. Groove
excels in its feature of verification of temporal logic properties written in LTL and CTL, which
is typically not available in a domain-specific modelling tool. Groove is used in this chapter to
evaluate the impact of replacing the verification backbone (i.e., Spin).

2.3 The Languages of ProMoBox

The state of the art in verification for DSM is illustrated in Figure 2.2. The diagram is divided
into the domain layer where models are domain-specific, and the lower layer where artifacts are
represented as logic formulas or code whose creation requires a significant theoretical background.
A DSML has been developed, and systems can be modelled conform to the DSML. Transformations
can be defined for simulating or translating this model, for generating documentation or platform-
specific code. Note that these activities are not shown in Figure 2.2, as it exclusively focuses on
the verification activity. Step 1 of Figure 2.2 consists of creating the formal model for verification.
A transformation is shown that automatically compiles any model that conforms to the DSML to a
formal representation (in this case Promela, a textual pml file), bridging the DSM layer and formal
methods layer (step 1). While the DSML and model are usable by non-technical domain users,
the necessary LTL-formulas (ltl files in the lower “formal methods” layer) for verification are
not easily usable by domain users. In step 2 the formal model is executed in Spin, performing the
actual model checking. In case of a counterexample, a trail-file representing the output trace is
generated by Spin. This presents a second problem: understanding the trail also requires a similar
theoretical background. In conclusion, the problem with the current state of the art in verification
is that the DSM user still has to work in the formal methods layer. The goal of ProMoBox is to
fully pull up the user experience, which was hitherto limited to the construction of system design
models (and did not include requirements or property models), to the DSM layer, with a minimal
increase in user effort.

This section presents the architecture of the ProMoBox framework. As ProMoBox builds on
DSM, it consists of a language engineering phase and a system modelling phase. This section
focuses on the language engineering phase. The system modelling phase is discussed in Section 2.5.
The different models of the framework are discussed, and it is explained how the framework can
be applied to a DSML, and how it relates to the existing model checking tool Spin. The Elevator
case is used as a running example.

2.3.1 Outline of the ProMoBox Approach

The ProMoBox framework presented in this chapter builds on our earlier work [136, 138, 49].
ProMoBox stands for “Properties and (design) Models developed (Boxed) in concert”. The
language engineering support of ProMoBox consists of the following three parts.
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Figure 2.2: Verification in Domain-Specific Modelling.

Figure 2.3: Property verification with ProMoBox and Spin.

The first part is the definition of five sublanguages. According to MPM principles everything
should be modelled using the most appropriate formalisms. Therefore, ProMoBox replaces the
traditional DSML with five sublanguages (each DSMLs) for modelling all artifacts that are needed
to specify and verify properties [136]. The five sublanguages are the following:

— A design language for design modelling as supported by traditional DSMLs. With this language,
the static structure (i.e., language concepts that do not change at run-time) of the system is
modelled. In case of Elevator, this includes all Elevator concepts, without the currentfloor
association, nor the doors_open, going_up and pressed attributes;

— A run-time language for run-time state representation. The design language always includes
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all elements of the design language, plus dynamic state information that can change at run-
time. Run-time instances are always associated with a design instance with the same static
structure. One design instance possibly has multiple run-time instances corresponding with it,
representing all possible states of the model. Note that in traditional DSM, the DSML often
includes run-time concepts, meaning that no distinction is made between static structure and
dynamic state. The running example was also presented including dynamic state information
in Section 1.3. In fact, the metamodel shown in Figure 1.4 is the same as Elevator’s run-time
language;

— An input language to model event-based input (to model the environment in which the system
operates). This language represents a stream of events. In ProMoBox, an input model is always
an extensional stream of events. No explicit time delays are supported (as the LTL-based
temporal properties also do not support this) but can be primitively emulated by adding empty
events, each representing a time step. In case of Elevator, the input language only consists of a
sequence of button presses;

— A trace language for state-based output representation (to model an execution trace of the
system or verification counterexample). An execution trace is a sequence of run-time states
connected with transitions that represent execution steps (i.e., operational semantics’ rule
executions). The trace language can be used to represent execution traces of a simulation.
A trace model is usually generated by a simulator or as a counterexample by a verification
too. It can be generated manually as well for e.g., modelling an oracle for a test case. In the
Elevator case, this is a sequence (in terms of operational semantics steps) of run-time states
with references to e.g., move_up, open_doors, etc. (see Figure 1.7).

— A property language for property specification (to model temporal or structural properties).
The properties language allows the user to define temporal properties, which are properties on
the behaviour of systems. Properties are represented by temporal and structural operators over
propositions. These propositions are patterns that can be matched or not matched (resulting in
true or false) on a run-time state or static structure of a system. Since properties reason about
state and model, all language constructs of the design language and run-time language are
included in the property language. In the Elevator case, a property can express that whenever a
button is pressed, the elevator should eventually reach the corresponding floor.

The second part is the generation of these five sublanguages. As the traditional DSML is
replaced by five languages (i.e., DSMLs), it would be time consuming to keep these intimately
related sublanguages presented above consistent. Therefore, a fully automated method generates
these sublanguages from a single DSML specification, keeping the five sublanguages consistent
by construction. If necessary, simplifications are made in the DSML’s metamodel, to address the
scalability issues of model checking as described in Section 2.2.2. We extend metamodelling and
model transformation languages with annotations, to add necessary information for every language
construct and to introduce a conceptual simulation step. This additional information enables the
fully automatic generation of the five sublanguages and necessary transformations between the
sublanguages, thus minimising the effort of the language engineer. Each of the sublanguages
is built from a DSML-independent template, and domain-specific language concepts. By using
templates and a generative approach, the ProMoBox framework becomes configurable for various
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Figure 2.4: FTG+PM of language engineering with ProMoBox.

DSMLs.

The third part is the mapping to and from a verification backbone. A verification backbone
based on the Spin model checker [89] is directly pluggable to DSM environments. Properties in
ProMoBox are translated to LTL and a Promela model is generated that includes a translation
of the domain-specific system specification, its initial state, the environment, and the rule-based
operational semantics of the system. The verification results (in case of a counterexample) are
translated back to the domain level. Note that ProMoBox assumes the correctness of the operational
semantics, in order to adequately verify the system.

The Elevator ProMoBox is illustrated in Figure 2.3. When using the ProMoBox approach,
only the grey models in Figure 2.3 need to be modelled by hand, the white models are generated.
Note that only a minimal number of models needs to be created by hand thanks to the generative
character of ProMoBox. All manually created models are at the DSM layer, meaning that modellers
do not need to take a look “under the hood”. This is exactly the intent of DSM.

The remainder of this section explains language engineering with ProMoBox in detail. As
the ProMoBox approach as presented in Figure 2.3 involves a significant number of modelling
artifacts and transformation steps, the FTG+PM of Figure 2.4 serves as a process-oriented view on
ProMoBox and will serve as a guide throughout this section. To put all artifacts in the FTG+PM
(i.e., languages, models and transformations) in perspective, they are marked with a specification
level:
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— (T) tool-specific: an artifact marked (T) (e.g., a language for metamodelling) is defined by the
DSM tool, and implemented by a DSM tool builder. As ProMoBox builds on DSM, it is a
prerequisite for ProMoBox;

— (F) framework-specific: an artifact marked (F) (e.g., a transformation generating the five
sublanguages from an annotated DSML) is defined by the ProMoBox approach. One who aims
to implement the ProMoBox framework will have to define this artifact, but once defined it can
be used for any DSML ProMoBox;

— (L) language-specific: an artifact marked (L) (e.g., annotating a metamodel) is defined by a
language engineer when defining a DSML using ProMoBox;

— (A) application-specific: an artifact marked (A) (e.g., the model shown in Figure 1.6) is defined
by a domain user who instantiates the DSML to model a system. Since this section discusses
the language engineering phase, application specific artifacts will only appear in Section 2.5
discussing the system modelling phase;

— (P) property-specific: an artifact marked (P) (e.g., a model of a property or its counterexample)
is defined by a domain user who models a property. Similar to application specific artifacts,
property specific artifacts will only appear in Section 2.5.

The Process Model on the right side of the FTG+PM shown in Figure 2.4 starts with two manual
traditional DSM tasks of creating a metamodel in the CreateMM activity as well as specifying a
concrete syntax model (CreateCS). This results in an :AnnotatedMetamodel instance (rather than
a Metamodel instance, yet still without annotations) and a :ConcreteSyntax instance. Then, the
specific activities of the ProMoBox, further explained in the remainder of this section, are outlined.
In Section 2.3.2, we define how metamodels can be annotated (the AnnotateMM activity, resulting
in E′ in Figure 2.3) to define the relationship with the five sublanguages. In Section 2.3.3, we
discuss the sublanguages in detail and how they are generated from the annotated metamodel
(the AnnotateMM activity). In Section 2.3.4, we present how to use these languages to create
the annotated operational semantics which fine-tunes the behavioural semantics of the DSML
ProMoBox (the CreateOS activity). In Section 2.3.5 we divert from the main FTG+PM track
to give insight in how to migrate DSMLs, as created following the traditional process shown in
Figure 1.2, to ProMoBox.

2.3.2 Defining a ProMoBox

In parallel with the :CreateCS activity, metamodel elements need to be annotated manually in the
:AnnotateMM activity in Figure 2.4.

The metamodel elements (classes, associations and attributes) can be annotated with:

— rt: run-time, annotates a dynamic concept that serves as output (e.g., a state variable);

— ev: an event, annotates a dynamic concept that serves as input and output (e.g., a button press);

— tr: a trigger, annotates a static concept that also serves as input and output (e.g., a key stroke –
not available in the Elevator case).

These annotations are explicitly modelled as annotation types in the annotations model of Fig-
ure 2.7 which is shown in Figure 2.5. Technically, each annotation type represents sublanguage
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Figure 2.5: The annotations model of the ProMoBox framework.

membership, visualised by checked boxes in Figure 2.5. An annotation on a metamodel element
denotes in which sublanguage the element becomes available (i.e., included in the sublanguage’s
metamodel). For example, if an association is annotated with rt, it will be included in the run-time
metamodel, the trace metamodel and the property metamodel, but not in the design metamodel
and the input metamodel. We say for such an element, that it is (for example) part of the run-time
metamodel. In case of annotations on an attribute, their containing class inherits the annotation’s
behaviour. Associations are treated similarly; their source and target classes inherit annotations if
present. Subclasses inherit annotations from their superclasses.

The annotations model of Figure 2.5 can be extended with more annotation types, and will be
automatically incorporated by the ProMoBox framework. An annotation type must adhere to the
following rules:

— an annotation type should result in at least one inclusion in a sublanguage’s metamodel;

— if an annotation type denotes inclusion in the design metamodel, then it must denote inclusion
in the run-time metamodel as well;

— if an annotation type denotes inclusion in the input metamodel, then it must denote inclusion in
the run-time metamodel as well;

— if an annotation type denotes inclusion in the run-time metamodel, then it must denote inclusion
in the property metamodel as well.

The first annotation type of Figure 2.5 defines the case where no annotation is applied to a
metamodel element. In that case, the concept is not part of the input language.

If multiple annotations are applied to an element, the union of all sublanguage memberships is
taken. This union has to adhere to the above rules.

As shown in Figure 2.6, in the case of Elevator and its metamodel of Figure 1.4, all language
concepts are static, except for the currentfloor association, and the doors_open, going_up and
pressed attributes. The values of currentfloor, doors_open and going_up can change at run-time
when the operational semantics transformation Figure 1.7 is applied. Therefore, the rt annotation
is used, meaning that they will be part of the run-time, trace and property metamodel. The pressed
attribute is annotated with ev, and can thus also serve as input. In fact, it will be the only metamodel
element that appears in the input language.

As shown in Figure 2.4, from an annotated metamodel and a concrete syntax model, the fully
automatic GenerateLanguages transformation generates a metamodel and a concrete syntax model
for each of the five sublanguages, and for the RAMified sublanguages (so that the sublanguages
can be used in transformations), resulting in a total of 10 languages.
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Elevator

<<rt>>doors_open : boolean
<<rt>>going_up : boolean

Button

<<ev>>pressed : boolean

ElevatorButton FloorButton

DownButtonUpButton

Floor

nr : int

requests1 *

elevator_button

*

1

currentfloor<<rt>>

1

*

next
0..1

0..1

Figure 2.6: The annoted metamodel of the Elevator example.

The ProMoBox approach requires fully manual annotation of the metamodel. Afterwards
the operational semantics are modelled. Nevertheless, the annotation phase can be partially
automated by analysing the operational semantics model. This requires a different process than
the one shown in Figure 2.6, where first the traditional modelling phase as shown in Figure 1.2
is completed, so that the operational semantics model is available before the annotation phase is
started. The operational semantics’ rules can subsequently be analysed to distinguish dynamic
language elements from static language elements. Elements that change in the RHS of a rule are
dynamic elements. However, it cannot be automatically determined whether a language element is
part of the run-time language or part of the input language. Consequently, a manual annotation
phase is still required. Following the process model shown in Figure 2.6, the annotations can
be used to automatically define constraints on the transformation language of the operational
semantics (or on any transformation language). Using these constraints, the user can be prohibited
from changing static language elements in the transformation. The generation of these constraints
can be incorporated in the RAMification process. This is however not included in the ProMoBox
approach.

2.3.3 Generating the ProMoBox Languages

The five ProMoBox sublanguages are generated from an annotated metamodel and a concrete syntax
model using a template-based approach. The fully automatic GenerateLanguages transformation
of Figure 2.4 of one language and its RAMified counterpart is depicted in Figure 2.7.

Design, Run-time, Input and Output Languages

The design, run-time, input and trace languages are generated in a similar fashion. As for the
abstract syntax, the metamodel is first filtered producing an ordinary metamodel in the FilterMM
transformation. In this transformation, all language elements that are according to the annotations
model not part of the to be generated language are removed, taking into account that annotations
on attributes or associations are inherited by the related classes. From the elements that remain,
remaining annotations are removed, so that the result is an ordinary metamodel.
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Figure 2.7: FTG (left) and PM (right) of generating one of the five sublanguages.

Then, depending on the to be generated language, a predetermined metamodel template is
added to the metamodel in the MergeMM transformation. All templates have an Element class,
with an attribute id, to which an inheritance relationship is created from all DSML-classes of the
metamodel. This id will be used to link elements between different models. The result is the
metamodel of the sublanguage.

Figures 2.8 through 2.12 show the generated metamodels of the Elevator DSML. The template
elements are shaded. The template of the design language and the trace language consist of only
one abstract element-class. The remainder of the metamodel are the DSML-specific elements,
if they were annotated to be part of the language. This way, the dynamic elements currentfloor,
doors_open, going_up and pressed do not appear in the design language Ed, but do appear in
the run-time language Er. The design instance of the elevator system with three floors is shown
in Figure 2.9, from which dynamic concepts are excluded. In the input language, the template
models an Environment as an Event list containing InputElements. In Ei, a series of inputs can
consist of button presses. For now, we assume that at most one button can be pressed in the same
event (the empty Event indicates that there is no input at that time). If the language engineer
decides that more than one or exactly one button can be pressed at the same time, he can create a
variant of this template (see also Section 2.6.3). The template of the trace language Et consists of
a Trace of States and Transitions. This language is able to express a sequence of system states and
the intermediate operations that caused the state change (rule_executions, rule applications in the
operational semantics E[[.]], and/or an input events). The output of E[[.]], or the counterexample
in verifications are instances of Et. Due to the possibly large number of elements in such an
execution trace, an instance of Et is stored in textual form, and can be interpreted or “played out”
by showing step-by-step an instance of the run-time language Er.

The concrete syntax model of each of these languages is generated in a similar way. As
depicted in Figure 2.7, the original concrete syntax model is filtered in the :FilterCS transformation.
All icons and links of classes and associations that are not part of the to be generated metamodel are

35



CHAPTER 2. VERIFICATION FOR DOMAIN-SPECIFIC MODELLING LANGUAGES

DesignElement

id : String

ElevatorButton FloorButton

DownButtonUpButton

Elevator

ButtonFloor

nr : int

requests1 1

elevator_button

*

1

next

0..1

0..1

Figure 2.8: Metamodel of the Elevator design language Ed.

Figure 2.9: An instance of Ed modelling the design of Figure 1.6.

Elevator

doors_open : boolean
going_up : boolean

RunTimeElement

id : String

Button

pressed : boolean

ElevatorButton FloorButton

DownButtonUpButton

Floor

nr : int

requests1 *

elevator_button

*

1

currentfloor

1

*

next

0..1

0..1

Figure 2.10: Metamodel of the Elevator run-time language Er.

removed. Additionally, all concrete syntax elements such as text elements that contain references to
attributes that are not part of the to be generated concrete syntax model are removed as well. Then,
the template is added in the :MergeCS transformation, adding icons and links of respective template
classes and associations. This results in a concrete syntax model, with a complete mapping to the
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Button

pressed : boolean

Event

current : boolean

ElevatorButton

InputElement

id : String
Environment

DownButton

FloorButton

UpButton

currentEvent
10..1

event

{ordered}

*1 element *1

nextEvent
0..10..1

Figure 2.11: Metamodel of the Elevator input language Ei.

Transition

rule_execution : RuleExecution [*]
input_event : Event [*]

Elevator

doors_open : boolean
going_up : boolean

Button

pressed : boolean

ElevatorButton

id : String

TraceElement

FloorButton

DownButtonUpButton

Floor

nr : int

Trace State

requests1 *

nextState1 0..1

nextTransition 0..11

currentState

0..11

elevator_button

*

1

state

{ordered}

*1

currentfloor

1

*

element

*

1

next

0..1

0..1

Figure 2.12: Metamodel of the Elevator trace language Et.

abstract syntax model.
The result of the generation process for one sublanguage is an ordinary metamodel and concrete

syntax model, thus fully compliant with the DSM tool.

Property Language

The property language Ep deserves special attention as it is the pivotal language of the ProMoBox,
and its metamodel is generated in a slightly different way to the four other sublanguages, as shown
in Figure 2.7 due to the decision node.

After filtering the metamodel according to annotations, an additional transformation (RAMification)
is executed that produces a pattern language, suited for transformation languages [110, 193] as
explained in Section 1.3. This language can however also be used to express structural patterns
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Elevator

doors_open : Condition = return True
going_up : Condition = return True

StructuralPattern

name : String
condition : Condition = return True
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PropertyElement

id : String
label : String
condition : Condition = return True

Button

pressed : Condition = return True
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nr : Condition = return True

BoundedExistence
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Figure 2.13: Metamodel of the Elevator Property Language Ep.

for properties as the same principle of pattern matching is re-used in this context. At the bottom
of Figure 2.13 the RAMified DSML elements are shown. All attribute types are now conditions,
abstract classes are now concrete classes, and lower bounds of multiplicities are relaxed to 0.

Next, the template for property languages is added to the metamodel, resulting in the metamodel
of Figure 2.13. PropertyElement, the superclass of all DSML classes, includes a general condition,
a label for inter-pattern matching similarly to [110, 193] and an id for inter-model traceability
similar to the four other sublanguages. The template consists of a property Specification, which
can be composed of the following three language constructs:

— The quantification of the formula by (i) forAll or exists clause(s), and (ii) corresponding
structural pattern(s). The modeller can choose to model a property for all elements that match
a given structural pattern. This structural pattern is evaluated on the design model, and can thus
not refer to run-time concepts, because the match set must be static. Consequently, the property
must be satisfied for all, or for one (depending on the quantifier) match(es) of the structural
pattern. The resulting matches can be re-used as bound variables in the property, if they have
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property scope LTL formula

Absence
Meaning:
ψ is false
Type: safety

Globally 2(¬ψ)

Before ρ 3ρ→ (¬ψ U ρ)

After σ 2(σ → 2(¬ψ))

Between σ and ρ 2((σ ∧ ¬ρ ∧3ρ)→ (¬ψ U ρ))

After σ until ρ 2(σ ∧ ¬ρ→ (¬ψW ρ))

Existence
Meaning:
ψ becomes true
Type: liveness

Globally 3(ψ)

Before ρ ¬ρW (ψ ∧ ¬ρ)

After σ 2(¬σ ∨3(σ ∧3ψ))

Between σ and ρ 2(σ ∧ ¬ρ→ (¬ρW (ψ ∧ ¬ρ)))

After σ until ρ 2(σ ∧ ¬ρ→ (¬ρ U (ψ ∧ ¬ρ)))

Bounded
existence (2)
Meaning:
ψ becomes true
at most 2 times
Type: safety

Globally (¬ψW (ψW (¬ψW (ψW 2¬ψ))))

Before ρ 3ρ→ ((¬ψ∧¬ρ) U (ρ∨((ψ∧¬ρ) U (ρ∨((¬ψ∧¬ρ) U (ρ∨
((ψ ∧ ¬ρ) U (ρ ∨ (¬ψU ρ)))))))))

After σ 3σ → (¬σ U (σ∧(¬ψW (ψW (¬ψW (ψW 2¬ψ))))))

Between σ and ρ 2((σ∧3ρ)→ ((¬ψ∧¬ρ) U (ρ∨ ((ψ∧¬ρ)U(ρ∨ ((¬ψ∧
¬ρ) U (ρ ∨ ((ψ ∧ ¬ρ)U(ρ ∨ (¬ψ U ρ))))))))))

After σ until ρ 2(σ → ((¬ψ∧¬ρ)U (ρ∨((ψ∧¬ρ)U(ρ∨((¬ψ∧¬ρ)U (ρ∨
((ψ ∧ ¬ρ)U(ρ ∨ (¬ψW ρ) ∨2ψ)))))))))

Universality
Meaning:
ψ is true
Type: safety

Globally 2(ψ)

Before ρ 3ρ→ (ψ U ρ)

After σ 2(σ → 2(ψ))

Between σ and ρ 2((σ ∧ ¬ρ ∧3ρ)→ (ψ U ρ))

After σ until ρ 2(σ ∧ ¬ρ→ (ψW ρ))

Precedence
Meaning:
φ precedes ψ
Type: safety

Globally ¬ψW φ

Before ρ 3ρ→ (¬ψ U (φ ∨ ρ))

After σ 2¬σ ∨3(σ ∧ (¬ψW φ))

Between σ and ρ 2((σ ∧ ¬ρ ∧3ρ)→ (¬ψ U (φ ∨ ρ)))

After σ until ρ 2(σ ∧ ¬ρ→ (¬ψW (φ ∨ ρ)))

Response
Meaning:
φ responds to ψ
Type: liveness

Globally 2(ψ → 3φ)

Before ρ 3ρ→ (ψ → (¬ρ U (φ ∧ ¬ρ))) U ρ
After σ 2(σ → 2(ψ → 3φ))

Between σ and ρ 2((σ ∧ ¬ρ ∧3ρ)→ (ψ → (¬ρ U (φ ∧ ¬ρ))) U ρ)

After σ until ρ 2(σ ∧ ¬ρ→ ((ψ → (¬ρ U (φ ∧ ¬ρ)))W ρ)

Table 2.1: List of temporal properties (adapted from [55]).
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the same label. Quantification patterns can be nested, or can contain a temporal or structural
pattern.

— The temporal pattern, based on Dwyer’s specification patterns [55]. The available temporal
patterns are listed in Table 2.1. The temporal pattern allows the user to specify a pattern over
a given scope, e.g., “the absence of an occurrence of ψ, after the occurrence of σ”, or “an
occurrence of ψ is responded to by an occurrence of φ, between occurrences of σ and ρ” (with
proposition variables ψ, φ, σ and ρ). Over 90% of the properties that were investigated by
Dwyer et al. can be expressed in this simple framework [55]. Six patterns are supported, to
express the absence, existence, bounded existence, universality response or precedence for
given proposition(s). Additionally, a scope can be defined: is the pattern applicable globally, or
after, before, in between or after until the occurrence of given proposition(s). The patterns and
scopes are shown as template classes in Figure 2.13. In total up to four proposition variables
can be used in a temporal pattern, and we implement them as structural patterns, that represent
patterns on the state of the system at run-time. Table 2.1 shows each pattern and its type: safety
or liveness property. A safety property is a property where something should not happen, and a
liveness property is a property where something should happen eventually. The latter is verified
in a different way, as such properties could be violated when the system can enter a loop that
excludes the proposition that should happen. The LTL formula is shown for every temporal
pattern. Some of them can be confusing to come up with manually, e.g., existence of ψ before
ρ, in which the case where ρ never occurs should be incorporated in the formula. Other LTL
formulas are long and contain a high parenthesis depth, such as the bounded existence patterns.
Note that these formulas do not yet include quantification and structural patterns, so they can
easily end up being more complex.

— The structural pattern, based on PaMoMo [79, 80], for both design (when used in a quantifi-
cation pattern) as well as run-time (when used in a temporal pattern) models. Only a small
part of PaMoMo’s expressiveness is included in the property language, but this suffices for
defining most properties. The basic pattern is an AtomicPattern, which contains the DSML
elements. Just like PropertiesElement, a StructuralPattern, can hold a condition, which returns
true by default. Note that two types of structural patterns exist: static patterns that define
patterns on a design model and dynamic patterns that define patterns on a run-time model. The
former are used in quantifier patterns, the latter are used in temporal pattern propositions. The
distinction is made using the dynamic attribute. This could have been modelled explicitly by
adding StaticStructuralPattern and DynamicStructuralPattern as subclasses of StructuralPattern,
each referring to their respective DSML elements. Since this would require duplicating the
structural pattern elements and DSML elements, a constraint in metamodel of Ep enforces the
use of correct patterns instead.

Apart from being RAMified, the concrete syntax model is generated in a similar way as the
other sublanguages. The concrete syntax template for property languages consists of a combination
of natural language and containers denoting visual, DSML patterns. The language engineer could
choose to change the concrete syntax according to his or her preference to e.g., icons denoting the
temporal patterns, by changing the concrete syntax model.

Figure 2.14 shows a property for the Elevator DSML. The visual, domain-specific syntax is
very similar to the concrete syntax of the rules in Figure 1.7. It is combined with a textual syntax
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Figure 2.14: The reachesFloor instance of Ep: for any floor, after a button is pressed, the elevator
will eventually open its doors on that floor.

Figure 2.15: FTG+PM of operational semantics usage with ProMoBox.

to define temporal operators. A quantification pattern is used to denote that this property must
be valid for all matches of the pattern, i.e., for all floors. Its structural pattern (visualised by a
container) binds a Floor of the design model of Figure 2.9 to the pattern element with label 0.
On the right an existence pattern (the Elevator will reach the previously bound Floor) with lower
temporal boundary (after a Button is pressed that requests the previously bound Floor) is shown.

2.3.4 Operational Semantics Annotation

ProMoBox makes input and output explicit in its sublanguages. Whereas the traditional Simulate
transformation of Figure 1.2 has a DSML instance as input (i.e., the model in its initial state),
and produces a DSML instance (i.e., the model in its final state), the Simulate transformation in
ProMoBox takes a run-time model (initial state, generated or manually created from the design
model) and an input model (input events) as input, and generates a run-time model (the final
state) and a trace model (simulation trace) as shown in Figure 2.15. The transformation rules are
restricted in that they can only change run-time elements of the model, and can only use design
elements for matching. This restriction guides the language engineer in creating a correct model
of the operational semantics. Moreover, since information about input and output needs to be
incorporated in the semantics of the language, the operational semantics of Figure 1.7 need to be
annotated. More specifically, the operational semantics have to define when (i.e., at what point
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Figure 2.16: Annotated rule schedule of the operational semantics of the Elevator example.

in the rule schedule) a new input event is applied to the system, and a new state is added to the
execution output trace. Different semantics are possible.

Perhaps the most straightforward semantics would be to read an event from the input envi-
ronment and add the state to the output trace, following each successful rule execution of the
operational semantics. This however implies a direct correlation between the rules of the op-
erational semantics and a conceptual “time step” (i.e., an abstraction of a significant period of
time) of the semantics, while this is not necessarily so. In the Elevator example, it makes sense to
consider moving up or opening the doors to be interpreted as a conceptual time step, but maybe
not changing the direction, as this happens on a much smaller time time-scale than the elevator
movement. Time-scale abstraction is hence appropriate [145]. Also, a more complex conceptual
step might need more than one rule to express it, causing semantically inconsistent states in
between. For example, the rule that opens the doors also immediately unlights the corresponding
button. Suppose this would be modelled in two rules, then the language engineer might want to
avoid adding the state to the trace that is in between those two actions.

To be able to distinguish between rules we introduce annotations for rule schedules, that
allow determining the points when input is read and output is written. The CreateOS activity of
Figure 2.4 includes the traditional modelling of the operational semantics and an annotation of
the rule schedule. Two new language constructs are used in Figure 2.16: the input star and the
Boolean attribute conceptualStep that allows full or dashed transitions.

When the schedule arrives in an input star, the next input event is read, and the currentEvent
link (see Figure 2.11) is pointed to the next input event, if available. The input star thus models the
interleaving between input language and run-time language. This cooperation between heteroge-
neous models is modelled using principles of semantic adaptation (which is extensively discussed
in Section 4.3), where data (in this case button presses), time (in this case the conceptual time
steps) and control (in this case determined by the rule schedule) of one formalism is adapted to
the other [24, 135]. The input star can be translated to a generated rule implementing this. The
rule links all elements in the input event by id to elements of the run-time model and propagates
changes to the run-time model. The corresponding element in the run-time model can always be
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found because all elements of the input model are also present in the run-time model. Note that
using metamodel annotations on classes would require the input language to be changed in order
to be of full use. Because dynamically created class instances would not be addressable by id, the
events should consist of patterns to indicate what part of the model receives input (i.e., what button
is lit). To that end, the DSML elements in the input language would have to be RAMified similarly
to the property language, and structural pattern elements might have to be added. We choose not to
do this to keep the input language simple, and because there are no additional limitations to our
approach. After executing the input star, the successful link is modelled if the read event was not
empty, or the notApplicable link if the event was empty.

Transitions in an annotated rule schedule can have as a side-effect that the current state
is appended to the output trace (transition arrow with full line), or not (transition arrow with
dashed line). By default, notApplicable transitions are dashed and successful transitions are full.
Appending the current state to the output trace can be implemented as a rule Append that can
be generated from the annotated metamodel. A transition with a full line can be translated to a
traditional transition by replacing it with a transition of the same type to Append (a new reference
to Append for each transformed transition), followed by a notApplicable and successful link to
the target. The translation from an annotated transformation model to a traditional transformation
model is defined as a higher order transformation, that serves as the translational semantics of the
annotated transformation.

In the example of Figure 2.16, output is written after every successful rule application, except
after reading input. Input is read after every successful rule application, except for the rules that
change the direction. Note that the bottom input star keeps reading input events until something
has changed (i.e., a non-empty event was applied).

2.3.5 Migrating to ProMoBox Compliance

Throughout this section, we have assumed that the language engineer can start modelling a language
from scratch. In this section, we will focus on how to simplify an available, traditionally modelled
DSML and how to migrate this DSML to make it compatible with the ProMoBox approach.

Simplification

In some cases, the metamodel needs to be simplified manually to address scalability issues of
model checking. We investigated this simplification step by applying the ProMoBox approach to
a DSML for gestural interaction [49]. Together with annotating the metamodel and operational
semantics model, this is the only manual task that needs to be performed in comparison with
traditional DSML language design. As explained in Section 2.2.2, it is common practice to improve
efficiency in model checking by reducing the search tree by abstracting the model [7]. To this end,
we limit annotated metamodels with the following constraints:

— attribute abstraction: strings and floating point variables cannot be used as dynamic variables,
although they can be used as static variables. Such variables need to be simplified to Booleans
or integers, to decrease the domain size of the variable. Composite types, such as lists or maps,
are not supported. The user may choose to model a number of attributes that represents an
array, but this is not recommended as the number of variables is best kept as small as possible;
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— integer limitation: integer values are restricted to a maximum of [0..255] (byte in Promela) or
[−215 − 1..215 − 1] (short in Promela), depending on the user’s choice when compiling the
model;

— association limitation: associations in the metamodel can be instantiated a maximum number
of times, depending on the user’s choice when compiling the model;

— dynamic class limitation: similarly, classes in the metamodel (i.e., classes must be part of the
design metamodel) can be instantiated a maximum number of times.

Note that these constraints make the number of distinct states of the DSML (i.e., instances of its
run-time language) finite. This is essential in order to be able to analyse the entire state space, as
done by explicit-state model checkers such as Spin.

Although the above constraints guarantee a finite state space, its size should be limited as much
as possible to keep the memory usage low and execution time short when executing Spin’s model
checking algorithm. In addition to adhering to these constraints, following some guidelines has a
direct impact on the performance:

— avoid dynamic classes: it is not recommended in ProMoBox to include dynamic instantiation
of classes in the DSML as it severely reduces efficiency by increasing the state space as Promela
does not support dynamic instantiation;

— limit variables: it is good practice to limit the number of variables, especially integer attributes
and dynamic associations (i.e., that are not part of the design metamodel);

— limit inheritance: the number of inheritance links should be limited if possible, as inheritance
needs to be emulated in Promela. Flattening the inheritance hierarchy reduces the execution
time, because for pattern instances, less candidates have to be evaluated;

— limit input language: since model checking will take any possible scenario into account, the
execution time is heavily dependent on what input it can get. Consequently, the number of
distinct input scenarios should be limited by making abstractions that decrease the complexity
of the input language (i.e., limit the number of elements that are part of the input metamodel).
When possible, it is recommended to translate integers in the input language to enumerations,
which is an available data type in AToMPM.

The operational semantics transformation can be simplified in a similar way. There are no
constraints in the design of the operational semantics, but some guidelines should be taken into
account:

— determinism: it is recommended to avoid nondeterminism in the transformation’s rule sched-
ule, as nondeterminism can drastically increase the size of the state space;

— pattern size: the pattern size of each rule should be kept as minimal as possible as large
patterns increase the state space depth;

— number of pattern matches: the number of matches that a pattern is expected to have should
be kept to a minimum as a large number of matches increases the state space width. In particular,
abstract classes in a pattern should be used with caution. One way of keeping the number
of pattern matches low is using larger patterns (note that this is in conflict with the guideline
above), and/or the use of negative application conditions (NACs) in patterns.
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These simplifications only affect the DSML formalism. Note that the eventual model checking
performance will also be heavily affected by the size of the system model and the complexity of
the property.

Migration of Existing Models

A traditional metamodel can be automatically converted to an annotated metamodel. The meta-
model language (i.e., Class Diagrams) is a subset of ProMoBox’s metamodelling language Anno-
tated Class Diagrams language, which only adds the possibility to annotate metamodel elements
with different predefined annotations. We can analyse the migration impact of changes by inter-
preting switching from Class Diagrams to Annotated Class Diagrams as a language evolution
(see Chapter 3). In this case, only additive, non-breaking changes are made. This means that
the conformance of the Class Diagram instances (i.e., the actual metamodels), is not broken after
migrating them to Annotated Class Diagrams, only there are no annotations used. Depending on
the tool that is used, it might however be necessary to change the namespace of the types used in
the metamodel to explicitly denote that the metamodel is an annotated metamodel. This can be
done using a simple transformation that traverses all metamodel elements and changes the type.
Once the metamodel is migrated, the regular ProMoBox process can continue from AnnotateMM
activity in Figure 2.4.

A traditional operational semantics model can be automatically converted to an annotated trans-
formation model as well. Similarly, this is an additive, non-breaking change in the transformation
language, where the rule schedule is migrated to an annotated rule schedule, and the patterns in
rules are migrated to the run-time language. The migrated rule schedule will not yet include input
stars, and will have the default output behaviour. The migrated rules do not change (except for
namespace changes if necessary), and can be used in ProMoBox as is. Note that in case of an
existing traditional operational semantics model, the metamodel annotation can be semi-automated
by analysing the rules as explained in Section 2.3.2. This is however out of scope of this thesis.

An existing concrete syntax model does not need to be migrated as traditional concrete syntax
modelling is still used in the ProMoBox approach.

As a consequence of the migration of a traditional metamodel, existing instances should be
converted as well. The traditional metamodel might include static, dynamic and input concepts,
which are all included in the run-time language according to the annotation type rules. This means
that to migrate instances to the run-time language, yet again, no explicit migration is necessary. If
however the instance has to be migrated to the design language or input language, some language
constructs might become unavailable. These metamodel changes can be calculated in retrospect by
analysing the difference between the traditional metamodel and the design or input metamodel. The
resulting metamodel changes are eliminate metaclass, and eliminate metaproperty (which covers
both associations and attributes) (see Chapter 3). These are subtractive, breaking and resolvable
changes, so a corresponding migration transformation can be generated. The transformation will
remove all instances of removed meta-elements, thus again establishing conformance with the
target language (i.e., design or input language).

As a conclusion, all existing DSM artifacts can be automatically migrated to ProMoBox, so
that the additional required effort for the language engineer is limited to annotating the metamodel
and transformation schedule.
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Figure 2.17: The ProMoBoxPromela compilation process.

2.4 Mapping to a Verification Backbone

As shown in Figure 2.3, a generic transformation generates a Promela model (a pml file) containing
an LTL formula by means of a model-to-text transformation. The Promela model is compiled from
the following models:

— the annotated metamodel, that is used to generate the Promela run-time metamodel and
environment;

— an initial state, a run-time model;

— a property model;

— an operational semantics model;

— the annotations model (not shown).

A dedicated Promela model is generated that is optimised for a specific modelled system, initial
state and property. The compilation process follows the steps shown in Figure 2.17. First,
the models are parsed following the traditional concrete syntax parsing, resulting in a platform
independent abstract syntax graphASGPI . Then, the abstract syntax is queried taking the Promela
target language into account to obtain a platform specific abstract syntax treeASTPS . TheASTPS
is used to perform semantic analysis that organises the tree to generate optimised Promela code.
Finally, the ASTPS is compiled to Promela including an LTL formula. The compilation results in
a pml file that serves as input for the Spin verification tool.

Promela is a language specifically designed for explicit state model checking, meaning that
during model checking the state space, i.e., a graph of states of the system, is formed. This means
that in designing a suitable Promela model, certain restrictions have to be taken into account:

— the state space (i.e., number of different states and transitions) needs to be as small as possible.
This means that nondeterminism has to be limited to constrain the breadth of the state space
and that the number of atomic statements has to be limited to constrain the depth of the state
space. This influences the verification time and memory consumption;

— the state vector has a static size and needs to be a small as possible, so that the individual nodes
in the graph are as small as possible. This mainly influences the memory consumption of the
verification.

The overall structure of the pml file is shown in Listing 2.1, where code snippets are referenced
between angle brackets, which are explained in detail below. The Promela model is structured as
follows, and the role of each model in the compilation process is discussed in the remainder of this
subsection:

— line 1: code for the metamodel (see Section 2.4.1) which implements the definition of types;

— line 2-3: declaration of the system variables for the static s and dynamic part r of the system,
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1 <METAMODEL>
2 hidden __System s;
3 __RuntimeSystem r;
4 <ENVIRONMENT>
5 <LTL FORMULA>
6 active proctype instance() {
7 <INSTANCE>
8 <SET INITIAL RULE>
9 do ::

10 atomic {
11 <RULE SCHEDULE>
12 <RULE 1>
13 <RULE 2>
14 ...
15 <RULE N>
16 <PRINT STATE>
17 <UPDATE STATE>
18 }
19 od;
20 }

Listing 2.1: The overall structure of the generated Promela model.

which is typed by the metamodel. The hidden keyword denotes that s, the static part of the
system, is not part of the state vector;

— line 4: code for the input language (see Section 2.4.3) which is implemented as a function that
nondeterministically executes an input event;

— line 5: an LTL formula implementing the temporal pattern (see Section 2.4.5);

— line 6: start of the main process (stops at line 20);

— line 7: code for the initial state (see Section 2.4.2) initialising the system variable by assigning
values to fields of r and s;

— line 8-15: code for operational semantics (see Section 2.4.4), including a do-loop, i.e., the
simulation loop, that applies a rule each indivisible atomic iteration (ends at line 19). This
includes a rule schedule, which branches (by using gotos) to code for rules;

— line 16: code for the trace language (see Section 2.4.6), which prints out the current state of the
system in a predefined format, which can be written to a text file;

— line 17: code for evaluating the property propositions (i.e., structural patterns) which will be
executed after every state change (i.e., rule application) (see Section 2.4.5).

2.4.1 Compilation of the Metamodel

A metamodel is created in the form of typedef statements as shown in Listing 2.2, that allow the
declaration of statically structured types. First, an mtype declaration is given, which introduces
symbolic names for concrete metamodel types and rules (the latter will be used in Section 2.4.4).
Only the three classes on top of the inheritance hierarchy become Promela types (line 2-26). The
instances of these types are stored as static arrays, and instances are accessed by indexing that
array. Attributes are converted to typedef fields, with corresponding types. Since Promela is
not an object-oriented language, inheritance and associations have to be encoded, as shown in
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1 mtype = {movedown_last_, opendoor_up_, changetoup_, changetodown_, opendoor_down_, movedown_, moveup_last_, closedoor_,
environmentstep2_, environmentstep1_, moveup_, ElevatorButtonType, ElevatorType, FloorType, UpButtonType,
DownButtonType}

2 typedef Button {
3 short __subtype;
4 short requests_out; // Floor out
5 short elevator_button_in; // Elevator in
6 }
7 typedefRuntimeButton {
8 bit pressed;
9 }

10 typedef Elevator {
11 short __subtype;
12 short elevator_button_out[3]; // ElevatorButton out
13 }
14 typedefRuntimeElevator {
15 bit doors_open;
16 bit going_up;
17 short currentfloor_out; // Floor out
18 }
19 typedef Floor {
20 short __subtype;
21 short nr;
22 short next_out; // Floor out
23 short next_in; // Floor in
24 short requests_in[3]; // Button in
25 short currentfloor_in; // Elevator in
26 }
27 typedef __System {
28 Button button_[7];
29 Elevator elevator_[1];
30 Floor floor_[3];
31 }
32 typedef__RuntimeSystem {
33 RuntimeButtonbutton_[7];
34 RuntimeElevatorelevator_[1];
35 }

Listing 2.2: The compiled bounded meta-model.

Listing 2.2. Inheritance is implemented by the __subtype attribute, that refers to any class in the
run-time or design metamodel. Associations are implemented with bidirectional navigability by
fields of type short, that refer to the index of the target, rather than to an object. For instance,
if the currentfloor_out of an Elevator is 1, its target is the Floor with index 1. If no link
exists, its index is set to -1. Two kinds of types are created: static types (Button, Elevator, Floor

and __System) that model the design language, and dynamic types (RuntimeButton, RuntimeEle-

vator and __RuntimeSystem) that model the additional elements of the run-time language. This
distinction is made so that the state vector only contains a minimum of state information.

The model of the initial state of the modelled system (modelled as a run-time instance) is taken
into account in three ways to make sure the state space of the Promela model is bounded. First, on
line 27-35, a __System type is declared with static arrays of 7 Buttons, 1 Elevator and 3 Floors,
and a __RuntimeSystem type with 7 Buttons and 1 Elevator, referring to the multiplicities of the
design model. These two types represent the static and dynamic part of the modelled system, and
both are instantiated once as shown in Listing 2.1 on line 2-3. Second, maximum array sizes for
fields implementing associations are chosen according to the multiplicities of the design model. If
the number of possible instances of a dynamic association is unbounded, a maximum number is
set to ensure boundedness of the Promela model. Third, only one end of each dynamic association
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1 d_step {
2 // ElevatorButton$atompmId:1
3 s.button_[0].__subtype = ElevatorButtonType;
4 r.button_[0].pressed = true;
5 s.button_[0].requests_out = 0;
6 s.button_[0].elevator_button_in = 0;
7 // ElevatorButton$atompmId:2
8 s.button_[1].__subtype = ElevatorButtonType;
9 r.button_[1].pressed = false;

10 s.button_[1].requests_out = 1;
11 s.button_[1].elevator_button_in = 0;
12 (...)
13

14 // Elevator $atompmId:0
15 s.elevator_[0].__subtype = ElevatorType;
16 r.elevator_[0].doors_open = true;
17 r.elevator_[0].going_up = false;
18 s.elevator_[0].elevator_button_out[0] = 2;
19 s.elevator_[0].elevator_button_out[1] = 0;
20 s.elevator_[0].elevator_button_out[2] = 1;
21 r.elevator_[0].currentfloor_out = 2;
22

23 // Floor $atompmId:4
24 s.floor_[0].__subtype = FloorType;
25 s.floor_[0].nr = 2;
26 s.floor_[0].requests_in[0] = 3;
27 s.floor_[0].requests_in[1] = 0;
28 s.floor_[0].requests_in[2] = -1;
29 s.floor_[0].next_in = 1;
30 s.floor_[0].next_out = -1;
31 s.floor_[0].currentfloor_in = -1;
32 (...)
33 }

Listing 2.3: The compiled design model and initial state (abbreviated).

needs to be stored in the dynamic state vector, and the one with the lowest multiplicity of the
design model is chosen in order to limit the state vector size. Both ends are stored to improve
navigability but will constantly be kept synchronised, so only one end has to be part of the state
vector. In this example, the currentfloor_out field has a multiplicity of maximum 1 as there
is only one Elevator in the design model, while the currentfloor_in field has a multiplicity of
maximum 3 as there are three Floors, so the former is stored in the state vector.

2.4.2 Compilation of the Model and Initial State

The first statements of the one and only active process started on line 6 in Listing 2.1 set the values
of the initial state of the modelled system as shown partially in Listing 2.3. The values for each
model element are set, creating attribute values, type values and association links. In comments
the corresponding type and element id from the modelling tool are given as documentation. This
results in the static __System instance s and the initial state of the dynamic __RuntimeSystem

instance r. The element order of array fields in __System and __RuntimeSystem is by definition
the same, meaning that e.g., s.button_[2] refers to the same Button instance as r.button_[2].
The initialisation code is in a d_step block, making it an indivisible, deterministic block of code.
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1 inline environment() {
2 if
3 :: true -> skip
4 :: r.button_[0].pressed == 0 ->
5 d_step { success = true; r.button_[0].pressed = true; }
6 :: r.button_[1].pressed == 0 ->
7 d_step { success = true; r.button_[1].pressed = true; }
8 :: r.button_[2].pressed == 0 ->
9 d_step { success = true; r.button_[2].pressed = true; }

10 :: r.button_[3].pressed == 0 ->
11 d_step { success = true; r.button_[3].pressed = true; }
12 :: r.button_[4].pressed == 0 ->
13 d_step { success = true; r.button_[4].pressed = true; }
14 :: r.button_[5].pressed == 0 ->
15 d_step { success = true; r.button_[5].pressed = true; }
16 :: r.button_[6].pressed == 0 ->
17 d_step { success = true; r.button_[6].pressed = true; }
18 fi
19 }

Listing 2.4: The compiled environment model.

2.4.3 Compilation of the Input Language

Listing 2.4 shows a macro containing a model of one execution step of the environment that
implements the input language. It represents passing through an input star during simulation. It
consists of an if-statement that can set the pressed-value of any Button to true (or 1) if it was
not yet true. Promela evaluates the if-statement by evaluating all of its conditions, then chooses
randomly one option that evaluates to true, and executes the corresponding body. The code of
an environment step shown above ensures that at most one, but also no (see line 3) button can be
pressed. Other semantics can be chosen which would result in a variation of this macro, such as:
exactly one option has to be chosen, more than one but unique options can be chosen, more than
one and the same options can be chosen, etc. Also, in our current implementation, a Boolean input
is implemented that can only be turned on, not off, by the environment. The environment strongly
influences the size of the state space, as this macro is typically executed a multitude of times and
might result in a significant number of state space branches. Therefore, the possible options (in
this case maximally 8) should be kept to a minimum by wisely choosing the above described
environment variant. This often requires an abstraction. The success variable is necessary to
denote whether a rule was applied and reflects whether the success or notApplicable link exiting
an input star should be followed in the rule schedule. The print statement will be used to create a
textual report in the case of a counterexample (see Section 2.4.6).

2.4.4 Compilation of the Operational Semantics

Listing 2.5 shows the partial rule schedule of Figure 2.16 in Promela. This rule schedule is part
of the simulation loop shown in Listing 2.1. In line 1-14, control flow is directed to the correct
rule. The initial rule is set earlier in the code, right before the start of the simulation loop, by
assigning the nextrule variable. From line 16 onward, the schedule is modelled that is activated
after evaluating a rule. After evaluation, the rule was either successful or not applicable, which
is modelled by the success variable that is set in the rule code. According to this, the new
value of nextrule is determined, and depending on whether output must be added to the output
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1 if
2 :: (nextrule == movedown_last_) -> goto MOVEDOWN_LAST;
3 :: (nextrule == movedown_) -> goto MOVEDOWN;
4 :: (nextrule == moveup_last_) -> goto MOVEUP_LAST;
5 :: (nextrule == opendoor_up_) -> goto OPENDOOR_UP;
6 :: (nextrule == closedoor_) -> goto CLOSEDOOR;
7 :: (nextrule == changetoup_) -> goto CHANGETOUP;
8 :: (nextrule == changetodown_) -> goto CHANGETODOWN;
9 :: (nextrule == initialize_) -> goto INITIALIZE;

10 :: (nextrule == environmentstep2_) -> goto ENVIRONMENTSTEP2;
11 :: (nextrule == environmentstep1_) -> goto ENVIRONMENTSTEP1;
12 :: (nextrule == opendoor_down_) -> goto OPENDOOR_DOWN;
13 :: (nextrule == moveup_) -> goto MOVEUP;
14 fi;
15

16 MOVEDOWN_LAST_schedule:
17 if
18 :: (success == true) -> // when successful
19 rule = movedown_last_;
20 nextrule = environmentstep1_;
21 goto OUTPUT;
22 :: else -> // when not applicable
23 nextrule = changetodown_;
24 goto UPDATESTATE;
25 fi;
26 OPENDOOR_UP_schedule:
27 if
28 :: (success == true) -> // when successful
29 rule = opendoor_up_;
30 nextrule = environmentstep1_;
31 goto OUTPUT;
32 :: else -> // when not applicable
33 nextrule = opendoor_down_;
34 goto UPDATESTATE;
35 fi;
36 (...)
37 ENVIRONMENTSTEP1_schedule:
38 if
39 :: (success == true) -> // when successful
40 nextrule = opendoor_up_;
41 goto UPDATESTATE;
42 :: else -> // when not applicable
43 nextrule = opendoor_up_;
44 goto UPDATESTATE;
45 fi;
46

47 ENVIRONMENTSTEP2:
48 success = false;
49 environment();
50 goto ENVIRONMENTSTEP2_schedule;
51

52 ENVIRONMENTSTEP1:
53 success = false;
54 environment();
55 goto ENVIRONMENTSTEP1_schedule;

Listing 2.5: The compiled rule schedule (abbreviated) and environment steps.

trace control flow is directed to OUTPUT (see Listing 2.1 line 16) or directly to UPDATESTATE (see
Listing 2.1 line 18), after which a new iteration of the simulation loop starts. Note that a new
iteration starts after every evaluation of a rule, successful or not.

The input stars are modelled as rules on line 47-55 and as such, can be triggered by line 1-14.
The success variable is set to false, and can be set to true in the function call to the environment
macro of Listing 2.4. Like any rule, control flow is directed to the right schedule block at the end
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1 CHANGETOUP:
2 success = false;
3 e0 = 0; // this is the only Elevator so index must be 0
4 f1 = r.elevator_[e0].currentfloor_out; // direct access
5 b2_indexes[0]=0; b2_indexes[1]=1; b2_indexes[2]=2; b2_indexes[3]=3; b2_indexes[4]=4; b2_indexes[5]=5; b2_indexes[6]=6;
6 b2_max = 7;
7 do
8 :: (success == false && b2_max > 0) ->
9 if

10 :: ((e0 >= 0) && (s.elevator_[e0].__subtype == ElevatorType)
11 && (r.elevator_[e0].going_up == false)
12 && (f1 >= 0)
13 && (s.floor_[f1].__subtype == FloorType)
14 && (b2_max > 0) && (b2_indexes[0] >= 0)
15 && (s.button_[b2_indexes[0]].__subtype == ElevatorButtonType
16 || s.button_[b2_indexes[0]].__subtype == DownButtonType
17 || s.button_[b2_indexes[0]].__subtype == UpButtonType)
18 && (r.button_[b2_indexes[0]].pressed == true)
19 && (s.button_[b2_indexes[0]].requests_out>= 0)
20 && (s.button_[b2_indexes[0]].requests_out != f1)
21 && (s.floor_[s.button_[b2_indexes[0]].requests_out].__subtype == FloorType)
22 && (s.floor_[s.button_[b2_indexes[0]].requests_out].nr>s.floor_[f1].nr))
23 -> b2 = b2_indexes[0]
24 (...)
25 :: else -> break
26 fi;
27 f4 = s.button_[b2].requests_out; // direct access
28 // NAC_
29 NAC__success = false;
30 b7_indexes[0]=0; b7_indexes[1]=1; b7_indexes[2]=2; b7_indexes[3]=3; b7_indexes[4]=4; b7_indexes[5]=5; b7_indexes[6]=6;
31 b7_max = 7;
32 do
33 :: (NAC__success == false && b7_max > 0) ->
34 if
35 :: ((b7_max > 0) && (b7_indexes[0] >= 0)
36 && (s.button_[b7_indexes[0]].__subtype == ElevatorButtonType
37 || s.button_[b7_indexes[0]].__subtype == DownButtonType
38 || s.button_[b7_indexes[0]].__subtype == UpButtonType)
39 && (r.button_[b7_indexes[0]].pressed == true)
40 && (s.button_[b7_indexes[0]].requests_out>= 0)
41 && (s.button_[b7_indexes[0]].requests_out != f1)
42 && (s.floor_[s.button_[b7_indexes[0]].requests_out].__subtype == FloorType)
43 && (s.floor_[s.button_[b7_indexes[0]].requests_out].nr < s.floor_[f1].nr))
44 -> b7 = b7_indexes[0]
45 (...)
46 :: else -> break
47 fi;
48 f6 = s.button_[b7].requests_out; // direct access
49 // NAC_ matched
50 NAC__success = true;
51 break;
52 :: else -> break
53 od;
54 if
55 :: (NAC__success == false) ->
56 r.elevator_[e0].going_up = true;
57 success = true;
58 break;
59 :: else ->
60 b2_max--; temp = b2_indexes[b2_max]; b2_indexes[b2_max] = b2_indexes[b2_index]; b2_indexes[b2_index] = temp;
61 fi;
62 :: else -> break
63 od;
64 goto CHANGETOUP_schedule;

Listing 2.6: The compiled changeToUp rule (abbreviated).

of the rule.
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Figure 2.18: The order of compilation of the LHS of the changeToUp rule.

The compiled changeToUp rule is shown in Listing 2.5. Just like the input star, it starts by
setting the success variable to false and ends with a goto statement. A rule consists of an LHS
(the pattern that must be matched), optional NACs (given an LHS match, patterns that should not
match) and an RHS (the effect of the pattern).

For each of these three parts, its pattern elements are compiled one by one. The order in
which elements are compiled is determined by a sorting algorithm, that sorts according to a
score for each element, representing the expected probability to find a match. This compilation
order is illustrated in Figure 2.18, where the score of each element, followed by the order of
compilation between brackets, is shown at the right side of each element on Figure 2.18. The
score given to each pattern element is determined by the default formula: 10 · nrOfAttributes−
2 ·multiplicity − subclassMatching, with nrOfAttributes, the number of attributes with a
constraint, multiplicity, the number of elements of that type, and subclassMatching whether
or not (value 1 or 0) this element can be matched with candidates of a subtype (e.g., an UpButton
can match a Button pattern element). Pattern elements with high scores are more constrained and
thus less likely to match. For efficient pattern matching, it is desirable to know as soon as possible
if the pattern will not match, and it is therefore preferable to try to match “hard” elements first. A
different sorting algorithm can be plugged in easily. From a compiled element, the code generator
traverses the pattern by following links from the element. A similar pluggable sorting algorithm is
implemented for links to determine which of the pattern element links should be matched first.

In Promela, a match candidate is represented by an array index stored in a variable and the
variable name is composed of the first letter of its type, followed by the label of the pattern element
(e.g., e0 on line 3 represents a match candidate for the Elevator with label 0 in the changeToUp
rule in Figure 1.7). In principle, the code for matching the elements and thus finding the right
candidate consists of nested blocks in order of element traversal. Depending on the element one
out of two kinds of code blocks is generated:

— a do block, if there are multiple candidates, e.g., for matchingButtons. The do block iterates
over all candidates until one is found that satisfies the element constraints. According to
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the pattern matching semantics, a random candidate has to be found. This is achieved by
storing all valid candidates in a temporary _indexes array (line 5, 30). The first _max (line
6, 31) elements in the array are the candidates that are not evaluated yet. Since at the start no
elements are evaluated yet, _max is equal to the length of _indexes. If a candidate does not
satisfy the pattern element constraints, its _indexes entry is swapped and _max is decreased
so that the candidate is not in the first _max elements of _indexes anymore (line 62). In each
iteration, a candidate is chosen by an if statement that chooses a random candidate for which
the additional conditions are met (line 9-26, 34-49). Each option has the same condition, but a
different candidate is used from the _indexes array, e.g., b2_indexes[0] is used for the first
candidate as the Button with label 2, b2_indexes[1] as the second candidate (not shown), etc.
For brevity, only one option is shown per if statement. If a candidate satisfies the condition, the
candidate variable is set (line 23, 46). If no valid candidate can be found, control breaks out of
the do loop (line 25, 48).

— an if block, if there is only one candidate, e.g., for matching a Floor pattern element that
is reached via the requests_out link from a Button. No _indexes variable has to be used,
because only the condition of the single candidate has to be checked.

In practice however, the nested structure is folded where possible into a smaller number of tests,
by combining conditions of multiple pattern elements. This way the cyclomatic complexity, and
consequently the state space, is decreased significantly. For the changeToUp rule, the LHS can be
folded into a single do loop, and the NAC is folded into a single do loop as well.

The conditions that are used to check whether a candidate satisfies the constraints of a pattern
element (line 10-22, 35-45) are the following:

1. they are not null (i.e., the match candidate is not -1) and there are still possible candidates
(line 10, 12, 14, 19, 35, 40);

2. if applicable, they are not the same as a previously matched item (line 20, 41),

3. if applicable, their dynamic type, represented by the __subtype attribute, is correct (line 10,
13, 15-17, 21, 36-38, 42-43) and,

4. if applicable, element conditions that are specified are satisfied (line 11, 18, 22, 39, 44-45).

The order of evaluating the candidates as shown in Figure 2.18 can be recognised in the order of
expressions in the conditions.

If a match is found for the LHS (line 7-26, 64-65), and no match is found for a NAC (line
32-55), the right-hand side (RHS) of the rule is applied (line 58), which is generated from the
difference between the RHS and the left-hand side of the rule. The rule is flagged successful and is
exited (line 59-60). Finally the execution jumps back to the rule schedule, which will decide the
next step (line 66).

2.4.5 Compilation of the Property Instance

The property instance is translated to an LTL formula (line 5 in Listing 2.1) and Promela code.
Promela code is necessary to evaluate the formula’s propositions which are modelled as structural
patterns (line 17 in Listing 2.1). The compilation to an LTL formula is done according to the

54



2.4. MAPPING TO A VERIFICATION BACKBONE

1 UPDATESTATE:
2 skip;
3 d_step {
4 f0 = 0; // statically set
5 P0 = 0;
6 do
7 :: ((P0 == 0) && (b1 < 3) && (s.floor_[f0].requests_in[b1] >= 0)
8 && (s.button_[s.floor_[f0].requests_in[b1]].__subtype == ElevatorButtonType
9 || s.button_[s.floor_[f0].requests_in[b1]].__subtype == DownButtonType

10 || s.button_[s.floor_[f0].requests_in[b1]].__subtype == UpButtonType)
11 && (r.button_[s.floor_[f0].requests_in[b1]].pressed == 1)) ->
12 P0 = 1;
13 break;
14 :: (b1 >= 3) -> break;
15 :: else -> b1++;
16 od;
17 Q0 = 0;
18 e3 = 0; // via id field
19 if
20 :: ((r.elevator_[e3].doors_open == 1)
21 && (f0 == r.elevator_[e3].currentfloor_out)) ->
22 Q0 = 1;
23 :: else -> skip;
24 fi;
25 (...)
26 }

Listing 2.7: The compiled proposition patterns of the property.

formulas of Table 2.1. Additionally, quantification patterns are statically evaluated on the design
model and for each match an LTL formula is generated, joined by logical and in case of for
all quantification, and logical or in case of exists quantification. For example, the reachesFloor
property of Figure 2.14 for the design model of Figure 2.9 can be compiled to the formula
2(¬P0 ∨ 3(P0 ∧ 3Q0)) ∧ 2(¬P1 ∨ 3(P1 ∧ 3Q1)) ∧ 2(¬P2 ∨ 3(P2 ∧ 3Q2)). The two
proposition patterns of Figure 2.14 (i.e., the two rightmost structural patterns), are thus translated
to six propositions, as both are applied to each of the three floors. The proposition P0 represents
“a button is pressed at the first floor”, Q0 represents “the elevator has opened its doors at the first
floor”, etc. Note how the resulting formula does not only depend on the property, but also on the
modelled system.

The propositions of the property must be evaluated after every rule application of the operational
semantics. This is done in the UPDATE STATE block (line 17 in Listing 2.1), which is shown in
Listing 2.7. The evaluation of propositions P0 (line 5-16) and Q0 line (17-24) are shown, and P1,
P2, Q1, and Q2 are not shown but are similar, modulo the different value of f0 (line 4). Since
the code represents matching a pattern, it is similar to the code implementing a rule. The main
difference however is that we are only interested in whether a match can be found, while it is not
important which match is found. Therefore, the choice of candidates can be deterministic, allowing
for more optimal and simpler code that only traverses all candidates (line 6-16). If a match is
found, the proposition variable becomes 1, else it is 0.

2.4.6 Compilation and Parsing of the Counterexample

If the transition that is followed in the rule schedule dictates that output must be written, the
schedule directs to the OUTPUT label in the PRINT STATE block (line 16 in Listing 2.1) which is
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1 OUTPUT:
2 skip;
3 d_step {
4 printf("%d: ", timestep);
5 if
6 :: (rule == movedown_last_) -> printf("MOVEDOWN_LAST ");
7 :: (rule == movedown_) -> printf("MOVEDOWN ");
8 :: (rule == moveup_last_) -> printf("MOVEUP_LAST ");
9 :: (rule == opendoor_up_) -> printf("OPENDOOR_UP ");

10 :: (rule == closedoor_) -> printf("CLOSEDOOR ");
11 :: (rule == changetoup_) -> printf("CHANGETOUP ");
12 :: (rule == changetodown_) -> printf("CHANGETODOWN ");
13 :: (rule == initialize_) -> printf("INITIALIZE ");
14 :: (rule == environmentstep2_) -> printf("ENVIRONMENTSTEP2 ");
15 :: (rule == environmentstep1_) -> printf("ENVIRONMENTSTEP1 ");
16 :: (rule == opendoor_down_) -> printf("OPENDOOR_DOWN ");
17 :: (rule == moveup_) -> printf("MOVEUP ");
18 :: else -> skip;
19 fi;
20 printf("$atompmId:1.pressed=%d;", r.button_[0].pressed);
21 printf("$atompmId:2.pressed=%d;", r.button_[1].pressed);
22 printf("$atompmId:3.pressed=%d;", r.button_[2].pressed);
23 printf("$atompmId:7.pressed=%d;", r.button_[3].pressed);
24 printf("$atompmId:8.pressed=%d;", r.button_[4].pressed);
25 printf("$atompmId:9.pressed=%d;", r.button_[5].pressed);
26 printf("$atompmId:10.pressed=%d;", r.button_[6].pressed);
27 printf("$atompmId:0.doors_open=%d;", r.elevator_[0].doors_open);
28 printf("$atompmId:0.going_up=%d;", r.elevator_[0].going_up);
29 if
30 :: (r.elevator_[0].currentfloor_out == 0) ->
31 printf("$atompmId:0.currentfloor_out=$atompmId:4;");
32 :: (r.elevator_[0].currentfloor_out == 1) ->
33 printf("$atompmId:0.currentfloor_out=$atompmId:5;");
34 :: (r.elevator_[0].currentfloor_out == 2) ->
35 printf("$atompmId:0.currentfloor_out=$atompmId:6;");
36 fi;
37 printf("\n");
38 timestep = timestep + 1;
39 }

Listing 2.8: The code for printing the current state.

shown in Listing 2.8. The last executed rule and state of the system are printed out using the id
of the corresponding model element. This information can be used to trace back the value to the
run-time model, and allows for playing out a trace. The printf statements are only executed
during simulation in Spin, not during model checking.

After the Promela model is generated (step 1 in Figure 2.3), Spin uses model checking to find
a counterexample of the property (step 2 in Figure 2.3). If a counterexample is found, a trail file is
generated, which can be simulated in Spin, to execute the print state code of Listing 2.8 (step 3 in
Figure 2.3). The printed text is directed to a text file, which can be interpreted by a generic parser
that creates a trace model (step 4 in Figure 2.3). The trace model can be played out on the run-time
model, so that the counterexample is visualised step by step (step 5 in Figure 2.3). Because the
trace model usually has this purpose, it is parsed implicitly to memory instead of constructing a Et
instance.

56



2.5. THE ELEVATOR PROMOBOX IN ACTION

Figure 2.19: FTG (left) and PM (right) of the domain user’s activities using ProMoBox.

2.5 The Elevator ProMoBox in Action

We implemented the ProMoBox framework in AToMPM [194], and the compiler for models to
Promela and the parser for text to models were written in Python, using AToMPM bindings. Fig-
ure 2.19 shows the FTG+PM of the full process of using ProMoBox for modelling and verification,
including the modelling of the system and property. In accordance with the two DSM phases
explained in Section 1.2.1, this modelling process is typically carried out by the domain user and
starts where the process of the language engineer of Figure 2.4 stops. The user starts by modelling
a system in the design language. The design model can be automatically converted to a run-time
model using the generic ToRuntime transformation. This transformation is similar to the migration
described in Section 2.3.5, meaning that it only consists of an namespace switch, if necessary. In
this case however, obligatory run-time attributes (such as the pressed, going_up and doors_open
attributes) and run-time associations with a minimum cardinality greater than 0 (such as the
currentfloor association) are required in Elevator and Button instances in the run-time language.
Consequently, the result of the transformation is a model conform a “relaxed” run-time language
(much like the intermediate metamodel described in Chapter 3), i.e., the run-time language modulo
constraints on the minimum cardinality of run-time associations. In this relaxed run-time language,
the initial state can be modelled in the SetInitialState activity. In case of the elevator example, the
currentfloor link should be set and initial values for attributes should be given. Instead of modelling
by hand, default values can be used, if available. In this particular example however, which initial
state is chosen is not relevant, as all states turn out to be reachable from one another. In parallel
with modelling the system, a property is modelled in the ModelProperty activity.

57



CHAPTER 2. VERIFICATION FOR DOMAIN-SPECIFIC MODELLING LANGUAGES

Figure 2.20: Using the toolbar for playing out the counterexample trace in AToMPM.

The remainder of the process model in Figure 2.19 explains the five steps of Figure 2.3
in detail. The property model, the run-time model, and the existing annotated metamodel and
operational semantics are translated to a Promela model as explained in Section 2.4. This Promela
model, containing an LTL formula, is fed to the Spin model checker in the VerifyWithSPIN activity.
Depending of the type of the property (liveness or safety), ProMoBox automatically instructs Spin
whether to look for acceptance cycles or not. The report of the verification is stored as a text
file. In the HasCounterExample? transformation, the report is automatically analysed to conclude
whether a counterexample is found. If none is found, the model checking process finishes and it
is concluded that the system satisfies the property. In case of a counterexample, Spin produces a
trail file, containing a counterexample scenario. Subsequently, Spin is executed to perform a
guided simulation in the PrintTrace transformation, following the scenario described in the trail
file. In guided simulation, the generated print statements (see Section 2.4.6) are executed, which
results in a textual execution trace. The resulting output stream is directed to a text file which is
a sequence of system states and transitions. This text file can be automatically transformed to a
trace model by a generic parser with the TransformTrace transformation. Note however that for
performance reasons, the result of this transformation is an implicit trace model, as actual trace
models tend to be rather large – in the order of magnitude of the number of elements in the design
model times the number of states in the trace trace. In order to inspect the counterexample at
the level of the DSML, the trace model can be automatically loaded in AToMPM as shown in
Figure 2.20, showing the initial state and a toolbar (shown below AToMPM’s main toolbar) to step
through the counterexample. A counterexample can be loaded, it can be fully played out, one step
can be taken, and a full play-out can be paused or stopped, which is done in the manual PlayTrace
activity.

When applying this process to the running example, (maybe unexpectedly) a counterexample
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Figure 2.21: The doorsCanOpen property.

for the reachesFloor property is found. When playing out the counterexample as shown in
Figure 2.20, it can be seen that the system might get in an infinite loop consisting of three steps:
(1) a button is pressed on the floor where the closed elevator currently is, (2) the elevator opens
its doors and unlights the button, and (3) the elevator closes its doors. These three steps can be
repeated infinitely many times (which is shown when playing out the counterexample), even if
buttons on other floors are pressed, thus resulting in an acceptance cycle representing this fairness
problem.

We checked the property with Spin [89] version 6.4.4 on a 64-bit Windows 7 SP1 PC with an
Intel(R) Core(TM) i7 Q 720 CPU at 1.60 GHz (up to 2.80 GHz) with 8 GB of 1600 MHz DDR3
memory. As is typical for ProMoBox in case of a counterexample [136, 138, 49], the execution
time is short. In this case, Spin takes less than 1 millisecond to find a counterexample, and uses
5 KB of memory. Another property is shown in Figure 2.21 stating that if the elevator doors are
closed, they will eventually open again. This property does not have a counterexample. Model
checking with Spin results in a traversal of the entire state space, and takes 48 milliseconds, using
409 KB of memory.

2.6 Evaluation of ProMoBox

The ProMoBox approach is evaluated in this section.

First, we discuss the performance of the generated Promela model. The performance of
explicit-state model checkers such as Spin is a well-known issue which is inherent to the approach,
due to state space explosion [11]. Because the ProMoBox approach uses model checking as its
verification backbone, it is inherently subjected to these performance issues, which are considered
to be beyond the scope of this chapter. However, we present anecdotal evidence that the generated
code of the Elevator ProMoBox is at least competitive with a manually created Promela model.

The contribution of the ProMoBox framework is to provide an automated and flexible approach
for modelling and verifying properties. Therefore, the main part of this section evaluates these
promises, which reflect the MPM principles. More specifically, the level of automation is evaluated
by discussing the extent of user input, and the flexibility is evaluated by assessing the impact of
evolution of all of ProMoBox’s related models.
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2.6.1 Model Checking Performance

In this section, we compare the Promela model that is generated by ProMoBox with a manually
constructed model.

The manually created model is a variant of a similar model that is presented in Merz and
Navet’s “on the verification of real-time systems” [134]. The model presented in the book is simpler
than our case study. Consequently we adapted it so that it behaves the same as our rule-based
variant. Since it is derived from a model presented by experts in the domain of verification, this
model is representative for a model built by an average Promela user. The model is shown in
Appendix A and corresponds to the running example, which has three floors and seven buttons. In
this case however, no buttons are pressed in the initial state, but a simple environment is modelled
where buttons can be pressed. We use a meaningless LTL formula 2(True) that forces a full state
space traversal. Note that a checking a different LTL formula yields different execution times and
memory consumption, as usual in Spin.

The ProMoBox Promela model used as running example throughout this chapter, has some
slight differences compared to the compiled Elevator case of Section 1.3:

— we use the more optimal rule schedule where the change direction rules are evaluated before
the move rules, so that the NAC in the change direction rules can be removed as mentioned in
Section 1.3;

— similar to the manual Promela model, no buttons are pressed in the initial state;

— we use the same LTL formula 2(True).

Variants of the model in Appendix A and of the ProMoBox model are used that have different
numbers of floors and buttons. For every number of floors, we use at least as many buttons as the
number of floors, so that every floor can be requested, and at most as many buttons as needed to
have one elevator button, up button and down button for each floor, with no down button for the
ground floor and no up button for the top floor. In the variants, buttons are equally distributed over
floors. We cover all variants up to the number of floors that causes Spin to run out of memory.

The results are shown in Figure 2.22 and Figure 2.23. Both plots use a logarithmic scale
on the vertical axis. All test models are shown on the horizontal axis, indexed by two numbers:
the number of floors and the number of buttons. We verified each Promela model 50 times, and
excluded the 5 highest and 5 lowest outliers. The averages of the execution times without outliers
is shown in Figure 2.22. Figure 2.23 shows memory-related resources. The number of states and
number of transitions reflect the size of the state space. The state vector size is shown and the
memory usage for the state space is shown (excluding memory used for optimisations, which is
determined by Spin run-time parameters). Note how the required resources grow exponentially
with the size of the environment (i.e., the number of buttons) as discussed in Section 2.3.5. The
ProMoBox models need fewer resources for all test cases.

Figure 2.24 shows the improvement factor of all resources for every test case. The plot indicates
no decline in improvement for larger models. Interestingly, the improvement (especially in time
but also in memory) increases for the more complex cases that have a larger number of buttons.

As stated before, this comparison serves as an indicative measurement and is by no means
evidence that ProMoBox generates optimal Promela models. For other examples, the execution
time or memory consumption of the model checking algorithm may still be impractically high,
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Figure 2.22: Comparison of the state space traversal time.

even after simplification (Section 2.3.5). Although desirable, a full state space exploration may
not always be necessary to find counterexamples. According to the “small scope hypothesis”, an
essential factor in the applicability of the Alloy Analyzer [91], the majority of errors can be found
by testing the model and all of its inputs within a small scope. The breadth-first exploration of
Spin follows the same principle. In case of ProMoBox, we systematically found counterexamples
within one millisecond [136, 49], while traversing the full state space took significantly longer and
required significantly more memory.

The goal of this comparison is to provide anecdotal evidence that generated Promela models are
usable for model checking. Further evaluation on the performance of generated Promela models
diverges from the contribution of this chapter for two reasons. First, the mapping to Promela and
LTL is only one example of a possible verification backbone for ProMoBox. In this respect, a
mapping to Groove and CTL is shown in Section 2.6.3. Second, optimising the generated Promela
models requires profound knowledge of Promela and Spin rather than of the DSML and is thus
beyond the scope of this DSM-centred contribution.

2.6.2 Modelling Performance

One of the design objectives of ProMoBox is automation. The goal of the approach is to support
modelling and verification of properties for DSMLs with a minimal burden for both the language
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Figure 2.23: Comparison of the state space traversal memory usage.

engineer and the domain expert (who design the DSML) and the domain user (who uses the
DSML). In order to assess the contribution with respect to automation, we compare the amount of
manual work when using ProMoBox with:

— the amount of manual work when using traditional DSM for modelling and verifying properties.
In this comparison, the emphasis is on the amount of manual work that is avoided by ProMoBox;

— the amount of additional manual work when using traditional DSM without verification. In
this comparison, the emphasis is on the amount of manual work required to support property
verification using ProMoBox.

Comparison with Traditional DSM Including Verification Support

In the literature, we distinguish three approaches to support verification (see also Section 2.7):

— approach 1: no DSML for properties is available, but properties are directly modelled in logic
(e.g., [171], following the architecture shown in Figure 2.2);

— approach 2: a DSML for properties is created including a mapping to a verification backbone,
but no counterexample parsing is supported (e.g., [100]);

— approach 3: a DSML for properties is created including a mapping to and counterexample
parsing from a verification backbone (e.g., [185]).
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Figure 2.24: Improvement factor of the traversal time and memory usage.

Appr. 1 Appr. 2 Appr. 3 ProMoBox

Property language modelling none manual manual generated
System model mapping to verification backbone manual manual manual automated
Property mapping to verification backbone none manual manual automated
Counterexample parsing none none manual automated

Table 2.2: Comparison of the degree of automation between the state of the art and ProMoBox.

For this comparison, we only consider approaches that are applicable to DSMLs in general, thus
excluding modelling languages that are expressive enough to support property specification and
generation (e.g., [128]).

The comparison of existing approaches with ProMoBox is shown in Table 2.2. The approaches
differ in whether they support, either manually or automatically, the given four language engineer-
ing activities. If the activity is not supported (entry “none”), a burden is put on the domain user,
because the activity is not raised to the domain-specific level. If the activity is marked “manual”, it
requires a manual effort from the language engineer resulting in a DSM solution for the domain
user. A “generated” marking means that a generative process enables the execution of the activity
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and “automated” refers to a generic process.
It can be concluded that compared to traditional approaches, the language engineer has less

work when using the ProMoBox approach for each of the activities, and better support for the
domain user is provided compared to the first two approaches.

Comparison with Traditional DSM Excluding Verification Support

In this section we assess how much manual work is needed to extend a DMSL with verification
support using the ProMoBox approach. Since this comparison reflects the modelling processes, the
FTG+PM is analysed to evaluate the level of automation. The ProMoBox’s FTG+PM shown in
Figure 2.4, Figure 2.7 and Figure 2.19 is compared to the FTG+PM of traditional DSM (Figure 1.2).
There are two additional manual tasks for the language engineer, denoted as manual activities with
the (L) mark (language-specific): (1) she/he has to annotate the metamodel, and (2) she/he has to
annotate the operational semantics transformation model. Since this annotation process requires
minimal effort, the additional effort required for the language engineer is limited. For the domain
user, relevant activities are marked with (A) or (P) (application-specific and property-specific).
She/he has to model her/his property and in case of a counterexample, play it out. Note that the
SetInitialState activity is part of the CreateInstance activity in traditional DSM. The two extra
activities can be performed at the domain level. In conclusion, the domain user only has to limit
his- or herself to the bare necessities of the task at hand, using the most suitable language.

2.6.3 Evolution Performance

The flexibility of ProMoBox is evaluated by assessing the impact of evolution of its associated
components. A generic approach for evolution of artifacts in a relational ecosystem is presented in
Chapter 3. This is done by inspecting the FTG+PM of Figure 2.4, Figure 2.7 and Figure 2.19 once
again. We start from the assumption that any model artifact in the process model can evolve. Its
(worst case) impact can be directly calculated by transitively following the activities that have the
model as input. For instance, a change in the property instance :Property requires a restart of the
full verification process. This means that the Promela model needs to be compiled again, and the
verification needs to be to be executed again, including the transformation and loading of the trace
in case of a counterexample and playing out the counterexample:
cost(evolve(:Property)) = cost(Compile2Pml + VerifyWithSPIN + HasCounterExample? + PrintTrace
+ TransformTrace + LoadTrace + PlayTrace).
The cost of VerifyWithSPIN was illustrated in Section 2.6.1 and is inherent to model checking. The
cost of all other automated activities is at most polynomial in the size of the model, and is therefore
negligible in comparison with the cost of manual effort. The only manual step required is the
PlayTrace activity, and it represents therefore the significant cost of changing :Property. This user
cost is limited by keeping this activity to its essence, by providing a domain-specific visualisation
and a toolbar. Changing :Runtime has a similar impact, as well as :Design, but for the latter the
:SetInitialState activity has to be performed again.

Three other classes of evolution scenarios are distinguished, which cover all possible evolution
scenarios in ProMoBox. In contrast to the evolution scenario discussed above, these three classes
of evolution scenarios all affect artifacts at the language level. We performed each of them on
the Elevator ProMoBox so that a more precise measure of impact can be presented in addition
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to simply counting the number of required manual tasks. Evolutions can be conceptually very
complicated and can therefore require a tremendous effort, but in this evaluation we assess the
technological impact, i.e., what the framework’s architecture requires the user to do in case of
evolution.

Evolution of the DSML

The first scenario is an evolution of the DSML, notably :AnnotatedMetamodel, :ConcreteSyntax
and :AnnotatedTransformation in Figure 2.4. Since :AnnotatedMetamodel is created at the very
start of the ProMoBox process, all subsequent activities have to be redone. There are however
shortcuts possible:

— if only :ConcreteSyntax evolves, :AnnotatedMetamodel and the metamodel of the five sublan-
guages can remain untouched. Only the concrete syntax models have to be regenerated (the
automated :FilterCS, :MergeCS and :RAMify activities) in Figure 2.7. In AToMPM, instance
models like in Figure 2.19 and operational semantics transformation models that use the con-
crete syntax do not need to change. We validated this by changing the button icons (compared
to [136]), which was achieved in a matter of minutes;

— if only :AnnotatedTransformation evolves, only the compilation to the verification backbone
and the verification itself have to be redone, similar to changing :Property. No models need
to be adapted. We validated this by optimising our operational semantics as explained in
Section 2.6.1, by reordering rules and removing the NACs, which was also achieved within
minutes;

— in case of an evolution of :AnnotatedMetamodel, it might very well be possible that the changes
are non-breaking for one or more of the five sublanguages. For example, if an association
annotated with rt is added, the design metamodel and input metamodel will remain the same.
Consequently, their instance models do not need to be migrated either. In case of a change in a
sublanguage, it needs to be regenerated. The change of the sublanguage might be non-breaking
(e.g., a non-obligatory association is added), which means that no change in its instances is
necessary. In general, co-evolution rules as described in Chapter 3 apply to its instances, which
means that an instance might not have to be migrated (in case of a non-breaking change), can
be automatically migrated (in case of a breaking and resolvable change), or should be migrated
manually (in case of a breaking and unresolvable change). If an instance that changes is input
to the Compile2Pml activity, the full verification process as described above has to be restarted.
Incremental techniques might be used to only partly regenerate or recompile, but since the
impact of the automated activities can be neglected, this is left as future work.

In [49] we went a step further by applying ProMoBox to a DSML for the gestural interaction
domain, including a simplification step as described in Section 2.3.5. This process only took
slightly longer than a traditional DSM process. This confirms the discussed of Section 2.6.2.

Evolution of the Property Language

The second scenario is an evolution of the property language, by evolving the metamodel template
for properties in Figure 2.7 (as shown in Figure 2.13). As indicated by the (F) mark of the template,
this is in fact an evolution of the ProMoBox framework itself, instead of an evolution of its input
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Figure 2.25: The variant of the reachesFloor property: after a button is pressed, the elevator will
eventually open its doors at the corresponding floor, and then close them again.

models. A consequence of the evolution is that the concrete syntax template might have to be
updated and that the property language has to be regenerated. Also, the co-evolution rules apply to
its instances, possibly requiring the full verification process as described above to be redone. In
this case, since the template has changed, the Compile2Pml activity needs to be adapted as well, so
that the changed language is adequately compiled.

We added an additional pattern called “chained response” [55] to the property language
template, which is similar to “response” but has two rather than one effects that need to happen in
the given order. Using this new pattern we were able to extend the reachesFloor property by adding
a second restriction that the doors should close again after they were opened. This new property is
shown in Figure 2.25. Implementing this pattern in the template and adapting the compiler took
less than one hour, and no existing property models had to be changed, since the evolution can be
classified as an additive, non-breaking change.

The evolution of the following models has a similar impact:

— the impact of changing the template of another sublanguage is similar. In particular, changing
the trace language template differs slightly as it requires the parser TransformTrace to be
changed instead of the compiler Compile2Pml;

— the impact of changing the concrete syntax of a template is fully automated. It only requires
the regeneration of the concrete syntax of the sublanguages;

— the impact of changing the annotations model of Figure 2.5 is fully automated with respect
to the language engineer. It requires all sublanguages to be regenerated. For the sublanguage
instances co-evolution rules apply, so depending on the change the instance might have to be
migrated and the verification process might have to be redone.

One might wish to add e.g., real time to the property language. We consider such changes too
intricate to be called an evolution, because they would require not only the property language to
change, but also the input and trace language, and even the transformation language for operational
semantics. This is interesting future work however.

Evolution of the Verification Backbone

A last type of change that should be investigated is replacing the entire evolution backbone. To
illustrate this, we replaced the mapping to Promela and LTL by a mapping to Groove and CTL.
Since models in Groove are graphs and transformations are rule-based just like in our view on
DSM, the mapping is more straightforward than to Promela. The downside is that Groove is not as
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Figure 2.26: The Groove type graph generated from the metamodel.

expressive as Promela (notably the lack of NAC patterns and a limited scheduling language) and
the performance of model checking is significantly lower. Regarding the mapping to CTL, similar
to the LTL formulas presented in Table 2.1, Dwyer et al. [55] also provide a mapping to CTL for
every temporal pattern.

The mapping to Groove took about four days to implement, including getting familiar with
Groove. A similar compilation strategy is followed as shown in Figure 2.17, where ASTPS is
now Groove-specific, and the target is divided in multiple different models implementing Groove
type graphs, instances, rules, environment and property propositions (as XML-files), and a rule
schedule and CTL formula (in textual syntax).

The run-time metamodel of Figure 2.10 is translated to a Groove type graph as shown in
Figure 2.26. Colors are added for clarity, and the multiplicities are encoded in the edges (not
visible).

The Groove equivalent of the instance depicted in Figure 1.6 is shown in Figure 2.27. A generic
concrete syntax is used, with rectangles, arrows with labels, and expressions.

The translation of the MoveUp rule (see Figure 1.7) is shown in Figure 2.28. The pattern
includes the LHS and RHS, where all pattern conditions represent the LHS, and all statements,
creations and deletions represent the RHS and are applied if a match is found. In this case, the RHS
consists of deleting a currentfloor link (dashed) and creating a new one on the floor above (bold).
This notation allows for concise rules. The left part of the rule visualises a simple comparison
operation representing the LHS condition.

The complete rule schedule is shown in Listing 2.9. This schedule is generated from the more
optimised schedule that first evaluates the move rules, followed by the change direction rules. The
main control structure of the schedule is an infinite while loop, representing the simulation loop.
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Figure 2.27: The Groove instance graph generated from the run-time model.

Figure 2.28: The Groove rule for MoveUp.

The rules are tried in the correct order. If successful, the environment is evaluated if necessary,
and a new iteration of the main while loop is started. If unsuccessful, the next rule is tried. Note
that, since Groove does not support conditions on pattern element types, the openDoor_up and
openDoor_down rules have to be split into two rules: one matching a directional button and one
matching an elevator button.

The environment distilled from the annotated metamodel is shown on the left of Figure 2.29,
and presses a button that is not yet pressed. Additional to this rule, an empty rule nothing is created
to give Groove the option to not perform an environment step.

According to Dwyer’s specification patterns [55] and taking quantification into account as
presented in Section 2.4.5, the property is translated to the CTL formula:

A[!Q0 W (Q0 & AF(P0))] & A[!Q1 W (Q1 & AF(P1))] & A[!Q2 W (Q2 & AF(P2))].
The propositions are translated to conditions in Groove, which are rules that do not have a side
effect. Groove automatically evaluates after every state change whether or not a match for these
conditions can be found. The condition P0 is shown on the right in Figure 2.29.
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1 while(true) {
2 try {
3 openDoor_up_UpButton | openDoor_up_ElevatorButton;
4 Environment | nothing;
5 } else {
6 try {
7 openDoor_down_DownButton | openDoor_down_ElevatorButton;
8 Environment | nothing;
9 } else {

10 try {
11 closeDoor;
12 Environment | nothing;
13 } else {
14 try {
15 moveUp;
16 Environment | nothing;
17 } else {
18 try {
19 moveUp_last;
20 Environment | nothing;
21 } else {
22 try {
23 moveDown;
24 Environment | nothing;
25 } else {
26 try {
27 moveDown_last;
28 Environment | nothing;
29 } else {
30 try {
31 changeToDown;
32 } else {
33 try {
34 changeToUp;
35 } else {
36 Environment;
37 }
38 }
39 }
40 }
41 }
42 }
43 }
44 }
45 }
46 }

Listing 2.9: The rule schedule in Groove.

Figure 2.29: The Groove environment generated from the annotated metamodel (left) and the
Groove proposition rule for P0, the elevator opens its doors at the ground floor (right).

2.6.4 Assumptions and Limitations

To conclude the evaluation of ProMoBox, we discuss the assumptions and limitations of the
approach.
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Format of the DSML

It is assumed that we can express the abstract syntax of the DSML as a metamodel in the form
of a class diagram. The concrete syntax is defined graphically by icons for every abstract syntax
concept. The semantics is given by a transformation model with a rule schedule supporting control
flow and graph transformation rules. Under these conditions, an operational ProMoBox can be
generated from any DSML.

Boundedness

The rule-based nature of the operational semantics ensure a step-wise, state-based semantics. In its
current state, ProMoBox supports DSMLs that have a notion of state, so that temporal properties
can be checked. Since we apply explicit state model checking, the number of possible states must
be bounded. This is guaranteed by limiting the multiplicity of the run-time elements. If such
boundedness is not achieved in the metamodel because of an infinite multiplicity value, this value
must be bounded (possibly through abstraction) in order to allow model checking. Likewise, other
simplification steps might be performed to ensure boundedness, as explained in Section 2.3.5.

Format of the Properties

We currently support temporal properties with quantification and structural patterns. The properties
can be mapped to LTL and CTL, so the approach can be considered representative for a wide range
of properties. ProMoBox does not include support for the “next”-operator (i.e., something must
happen immediately after something else), as “immediately” can be interpreted in many ways.
A promising direction is to use the principle of the conceptual time step (see Section 2.3.4) and
define “immediately” as “in the next conceptual time step”.

Because of ProMoBox’s flexibility, we feel that the approach described in this chapter can be
reused for different kinds of properties by defining generic mappers to tools supporting model
checking with e.g., OCL, real time properties, or properties using distributions. The target tool
has to be expressive enough so that a correct structure and operational semantics can be defined,
i.e., all elements can be queried, variables can be stored and updated throughout the evaluation
of the temporal formula (context-dependency), etc. The key to automation of the approach is
that it is defined at the meta-level (class diagrams, concrete syntax definitions, and rule-based
transformation with scheduling), in combination with predefined, generic templates.

We use a combination of natural language and patterns as concrete syntax for properties.
Although very expressive, simple properties can be cumbersome to model and can still be confusing,
which was the very problem ProMoBox tried to solve. The contribution of ProMoBox is however
to provide means to ease the specification and verification of properties. We showed that because
of the template-based approach the modeller can easily change the concrete syntax, if for example,
a user prefers a visual syntax for patterns. Also, syntactic sugar may be added to easily express
and visualise features that occur often. For example, the pattern structure might be bypassed if it
consists of a single element. In that respect, and because a domain-specific concrete syntax is used,
we feel that the ProMoBox framework adequately addresses the understandability of the properties.

70



2.7. RELATED WORK

Scalability

As scalability limitations are inherent to model checking, it remains the main concern. The compiler
generating Promela could be further optimised. On the one hand, further generic optimisations
can be applied to the compiler by a cooperation between a DSM and Promela expert. On the
other hand, the compiler might be extended to take user-defined optimisation information into
account. For example, since pattern matching is the bottleneck of rule-based transformation, search
plans [208] can be incorporated in the approach, to allow an optimal matching order of pattern
elements.

Another way to contain the scalability issue is to extend and quantify the modelling guidelines,
so that a prediction of the model checking time and memory consumption can be given. To this end,
extensive empirical research is needed to quantify the relationship between model characteristics
and model checking performance. This relationship is different for every verification backbone.

A radically different solution to the problem of scalability would be to not map to a model
checking approach, but instead use test case generation techniques to generate relevant test cases
in the form of input models and trace models (oracles). Tests are executed by using the input
models as initial state, applying the operational semantics transformation, and comparing (by
using model comparison, e.g., the DSMDiff algorithm [120]) the resulting trace with the oracle.
This illustrates how ProMoBox benefits from its flexible modelling approach, because mappings
to different semantic domains can be implemented. However, this research direction is not yet
investigated for the ProMoBox approach. In Section 2.8 this thread of future work is discussed
more.

2.7 Related Work

With respect to the contribution of this chapter, we distinguish two types of related work. First, we
consider approaches that translate models to formal representations to specify and verify properties
that are created specifically for one modelling language. Second, we discuss approaches that have
a more general view on providing specification and verification support for different modelling
languages.

2.7.1 Specific Solutions

In the last decade, a plethora of language-specific approaches have been presented to define proper-
ties and verification results for different kinds of design-oriented languages. For instance, Cimatti et
al. [32] have proposed to verify component-based systems by using scenarios specified as Message
Sequence Charts (MSCs). Li et al. [118] also apply MSCs for specifying scenarios for verifying
concurrent systems. The CHARMY approach [158] offers amongst other features, verification
support for architectural models described in UML. Collaboration and sequence diagrams have
been applied to check the behaviour of systems described in terms of state machines [26, 104, 103].
These mentioned approaches are just a few examples that aim at specifying temporal properties
for models and verifying them by model checkers (see [66] for a survey). They have in common
that they offer language-specific property languages. However, these approaches are not aiming to
support language engineers in the task of building domain-specific property languages.
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TimeLine [185] is specifically designed to address the design of temporal properties in a visual
manner. Analogous to LTL formulas, these TimeLine properties can be transformed to Promela
never claims (i.e., Büchi automata), which can be directly used for model checking by Spin.
TimeLine was used to convert informal requirements written in English to formal requirements
that are still very readable. The problem that TimeLine addresses is highly related to the problem
statement of this chapter, but in our approach we generalised this approach for DSM.

2.7.2 Generic Solutions

In [207], Varró presents an approach in which a metamodel with operational semantics and an
instance model can be transformed to a transition system. Transition systems are used as the de
facto interchange standard of the Symbolic Analysis Laboratory [16], a framework for combining
tools for formal methods. Safety properties and deadlock can be analysed. The approach also
makes the distinction between static and dynamic language concepts for reducing the state space.

Rivera et al. map models and their operational semantics of DSMLs to rewriting logic [173], as
well as metamodels [172]. Maude [35] can verify properties using rewriting logic, so operational
semantics can be subjected to analyzing methods provided out-of-the-box of Maude environments
such as reachability analysis and checking of temporal properties specified in LTL. The approach
maps rules to rewriting logic (which is in essence rule-based), while our mapping to Promela
supports a broader platform for rule-based semantics.

There are some approaches that aim to shift the specification and verification tasks to the model
level in a more generalised manner. First of all, there are approaches that propose OCL extensions,
often referred to Temporal OCL (TOCL), for defining temporal properties on models [221, 94, 18].
As OCL may be combined with any modelling language, TOCL can be seen as a generic model-
based property language as well. In [217, 36] the authors discuss and apply a pattern to extend
modelling languages with events, traces, and further run-time concepts to represent the state of a
model’s execution and to use TOCL for defining properties that are verified by mapping the design
models as well as the properties expressed in TOCL to formal domains that provide verification
support. In addition, not only the input for model checkers is automatically produced, but also
the output, i.e., the verification results, is translated back to the model level. The authors explain
the choice of using TOCL to be able to express properties at the domain level, because TOCL
is close to OCL and should be therefore familiar to domain engineers. However, they also state
that early feedback of applying their approach has shown that TOCL is still not well suited to
many domain engineers and they state in future work that more tailored languages may be of help
for the domain engineers. The work presented in this chapter goes directly in this direction by
enabling domain engineers to use their familiar notation for defining properties and exploring the
verification results.

Another approach that aims to define properties on the model level in a generic way is presented
by Klein and Giese [100]. The authors extend a language for defining structural patterns based
on Story Diagrams [62] to allow for modelling temporal patterns as well. The resulting language
allows to define conditionally timed scenarios stating the partial order of structural patterns. The
authors argue that their language is more accessible for domain users, because their language allows
decomposition of complex temporal properties into smaller ones by if-then-else decomposition
and quantification over free variables. Their approach is tailored to engineers that are familiar with
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UML class diagrams and UML object diagrams as their notation is heavily based on the concepts
of these two languages. Furthermore, they explain how the specification patterns of Dwyer et
al. [55] are encoded in their language, but there is no language-inherent support to explicitly apply
them. In our work, we tackle these two issues in the context of DSM by reusing the notation of
domain users for specifying properties and providing explicit language support for specification
patterns.

Finally, da Costa Cavalheiro et al. [41] present specification patterns for describing properties
over reachable states of graph grammars. These specification patterns are purely defined on graph
structures (i.e., nodes and edges) and thus are reusable for any modelling language. However,
the authors do not discuss integration with current modelling languages to use such specification
patterns for specific properties.

None of these approaches supports visual, domain-specific syntax for all used models as in
our approach. Moreover, no solutions exist that use a generative approach to define sublanguages
similar to the used DSML.

2.8 Conclusion and Future Work

In this chapter, we presented a solution in the form of ProMoBox, a framework that integrates
the definition and verification of temporal properties in discrete-time behavioural DSMLs, whose
semantics can be described as a schedule of graph rewrite rules. Thanks to the expressiveness
of graph rewriting, this covers a very large class of problems. With ProMoBox, the domain user
models not only the system with a DSML, but also its properties, input model, run-time state and
output trace. The DSML is thus comprised of five sublanguages, which share domain-specific
syntax. The sublanguages are generated from a single metamodel to keep them consistent and to
avoid duplication, that is annotated to denote the role of each language concept. he operational
semantics of the DSML is modelled as a transformation and is annotated with information about
input and output. The modelled system and its properties are transformed to Promela, and
properties are verified with Spin, a tool for explicit state model checking In case a counterexample
is found, its execution trace is transformed to the domain-specific level as a trace model, which can
be played out. Thus, whilst modelling and verifying properties, the domain user is shielded from
underlying notations and techniques. Following MPM principles, the process of the ProMoBox
framework is explicitly modelled in a Formalism Transformation Graph and Process Model. We
used an elevator controller as a running example, and showed how the five sublanguages can be
generated and how properties can be verified with ProMoBox.

We evaluated the ProMoBox approach in three ways. Firstly, we assessed the verification
time in Spin of the generated Promela model, and anecdotally showed that execution times and
memory consumption are no worse than their hand-made counterparts. Secondly, we showed that
ProMoBox is a lightweight solution by comparing with existing DSM approaches. Thirdly, we
investigated the impact of evolution of models in ProMoBox, to evaluate the approach’s sensitivity
to change. This included replacing the verification backbone of Promela and LTL by Groove and
CTL.

To summarise, we return to the research questions stated in Section 2.1.

— RQ 1.1. What languages are needed at the domain-specific level for specifying and verifying
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properties?
We identified five sublanguages for modelling design, run-time, input, traces and properties
with each their specific task in Section 2.3.1;

— RQ 1.2. How can these languages be generated from a specification of a design DSML?
We presented a generation process for each of these languages in Section 2.3.3, based on
templates and (meta)model transformation;

— RQ 1.3. How can the verification activity, in this case by model checking, that uses these
languages, be automated?
We described a transformation to Spin and a transformation from text output produced by Spin
in Section 2.4;

— RQ 1.4. What effort is required to enable verification support for a traditional DSM solution?
We described the process of enabling verification support in Section 2.3.5. We assessed the
effort in Section 2.6.2 where we concluded that the additional effort is limited to annotating the
DSML metamodel and operational semantics;

— RQ 1.5. Does the use of the presented approach result in a similar model checking time as its
non-domain-specific counterpart?
We anecdotally showed that the model checking time in the ProMoBox framework for Elevator
models is decreased in Section 2.6.1;

— RQ 1.6. What is the impact of changes of/to different components of the approach?
We assessed the impact of changing any of the artifacts in the framework in Section 2.6.3 by
identifying three classes of evolution scenarios;

— RQ 1.7. What are the assumptions and limitations of the approach?
We identified the limitations and assumptions of the ProMoBox in Section 2.6.4, describing the
requirements the DSML must adhere to, boundedness of the modelled system, the restrictions
on the property format, and the scalability of the approach which is inherent to model checking.

In conclusion, ProMoBox provides a solution for the specification and verification of properties
in a highly flexible and automated way, according to MPM principles.

An interesting thread for future work is checking different kinds of properties, such as real-
time properties. In [107, 76] the authors extend Dwyer’s specification patterns with real-time
information. These properties could be mapped to a tool for verifying real-time systems, such
as UPPAAL [14], which allows the user to specify a system as a timed automaton and specify
temporal properties with time bounds.

Furthermore, it is interesting to investigate under what circumstances the model checking
process does not have to completely re-executed after a change in the design model or property.
Incremental model checking is not supported by Spin, though recently, an approach has been
described by Molnár et al. [142]. Incremental approaches can have a similarly beneficial impact
in the context of computationally expensive model queries [201].

Moreover, in more complex models, the model checking approach falls short however because
of its computational complexity. Therefore we aim to investigate a more scalable alternative to
model checking, in the form of test case generation. We believe that the five sublanguages are
highly suitable to address this. A test case can be encoded as a run-time model and an input model.
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A trace model (or a variation thereof representing a trace pattern rather than a trace) can serve as
an oracle. We want to investigate whether the test case and oracle can be generated from a design
model and a property model, thus requiring the same input as in the current ProMoBox approach.
The test case generation strategy can then be plugged in, whether it be random selection according
to a normal distribution, search-based testing [129], or a different strategy. Since testing does not
guarantee correctness like model checking does, running the test case generation phase should
return a coverage report [140]. This coverage report should be presentable at the DSM level as
well, and could include covering every transition in the transformation schedule, every path in the
transformation schedule, every element in the design model, every element of the input metamodel,
etc. We aim for an equally flexible and automated approach. We have done preliminary work
on test case generation for ProMoBox with Alexandre Petrenko (CRIM, Montréal, Canada) and
Manuel Wimmer (TUWien, Vienna, Austria).
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CHAPTER 3
Evolution of Domain-Specific Modelling

Languages

Abstract. In Domain-Specific Modelling (DSM), evolution is inevitable over the course of the
complete life cycle of complex software-intensive systems and more importantly of entire product
families. Not only instance models, but also entire modelling languages are subject to change. This
is in particular true for domain-specific languages, whose language constructs are tightly coupled
to an application domain. The most popular approach to evolution in the modelling domain is a
manual process, with tedious and error-prone migration of artefacts such as instance models as
a result. This chapter provides a taxonomy for evolution of modelling languages and discusses
the different evolution scenarios for various kinds of modelling artefacts, such as instance models,
metamodels, and transformation models. Subsequently, the consequences of evolution and the
required remedial actions are decomposed into primitive scenarios such that all possible evolutions
can be covered exhaustively. These primitives are then used in a high-level framework for the
evolution of modelling languages. We suggest that our structured approach enables the design of
(semi-)automatic modelling language evolution solutions.
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3.1 Introduction

In software engineering, the evolution of software artifacts is ubiquitous [131]. Diverse artifacts
such as programs, data, requirements, and documentation may all evolve. In DSM, where modelling
languages play a central role, evolution occurs not only at the level of models, but also at the level
of modelling languages. This is in contrast with general-purpose programming languages such
as C++ where programs evolve during the software development cycle, but not the programming
language. Language evolution applies in particular to DSMLs, where relatively frequent changes
in the problem domain as well as in the implementation target domain (due to for example external
technical or strategic decisions) must be reflected in the respective languages, as shown in an
industrial context by Safa [180]. This is to maintain the high coupling between domain and
language. The first problem is the need for rapid development techniques for DSMLs, as they are
created and modified frequently during the life-cycle of the system they are used for. The second,
and far greater problem is that possibly large numbers of modelling artifacts such as instance
models or transformation models developed may become invalid and unusable when a related
DSML is modified/evolved. Early adopters of DSM dealt with language evolution issues manually
[180]. However, this approach, as well as an ad hoc approach to any language change, is tedious
and error-prone [197]. The reason for this is that syntax of languages such as UML [153] and
BPMN [151], which have evolved considerably over the last few years, easily comprise several
hundreds of element types. Also, the semantic differences resulting from this evolution, either
intended or intentional, can be subtle. Hence, dealing with evolution requires in-depth knowledge
of the language as a whole. Without a proper scientific foundation, as well as methods, techniques
and tools to support evolution DSM cannot live up to its promise of ten-fold productivity increase
[96]. This becomes apparent when projects span longer periods of time [180]. Since the problem
of modelling language evolution was first identified by Sprinkle and Karsai [187], the general
problem has only grown in importance, yet still remains largely unsolved. The importance of
modelling language evolution is further evidenced by the attention it receives in the research
community. Most contributions in this field are focused on (semi-)automatic model differencing
[30] and on the co-evolution of instance models [86]. Nevertheless, there are other artifacts that
might have to co-evolve. In this context, we define syntactic evolution and semantic evolution.

Syntactic Evolution

To obtain insight into the consequences of evolution, let us go back to Figure 1.1 and exhaustively
explore all possible evolution scenarios. When MMLang evolves, all instance models m have to
co-evolve. As the relations of Figure 1.1 suggest, the evolution of MMLang might affect other
artifacts as well. First, similar to m, the domain and/or image of transformations such as κi, πi,
Tj and [[.]]DN may no longer conform to the new version of the metamodel. As a consequence,
these transformations must also co-evolve. This makes all conformance relations valid once again,
which means that the system is syntactically consistent again. Consistency pertains to a collection
of models of a system at a single point in time. Metamodel evolution leads to the need for model
instances and related transformation models to co-evolve.

However, there are more scenarios. Firstly, it is possible that the metamodel changes in such a
way that the co-evolved models become structurally different. This ultimately means that each
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transformation defined for each co-evolved model has to be re-executed when the related models
are needed. The resulting co-evolved models can also be structurally different, so a chain of
evolution transformations may be required.

Secondly, changes made to one metamodel can have repercussions on metamodels or other
models on the metalevel. For example, when an element is added to a metamodel, a new element
is often also added to the concrete syntax model in order to be able to visualise this new construct.
Other instances of this scenario can be found in ProMoBox (see Chapter 2), where the evolution of
the annotated metamodel has to be propagated to the metamodels of all the sublanguages. Thus,
there is a need for metamodel co-evolution.

Thirdly, until now, we only discussed metamodel evolution as the driving force behind co-
evolution. Evolution of other artifacts, such as instance models and transformation models, should
also be taken into account. Normally the case of the evolution of a model m does not enforce a
change of a metamodel: related models such as Tj(m) can co-evolve by executing the appropriate
transformations Tj . Note, however, that a co-evolved model may itself be a metamodel, thereby
possibly triggering a cascade of further co-evolutions.

The case of the evolution of a transformation model can become complex. Often, the evolved
transformation simply has to be re-executed on each model in this domain. This restricts a
transformation evolution to remain compliant with its source and target metamodels, which may
not be desired. For example, a new language might be created by mapping rules for each language
construct of an existing language. This is particularly convenient for creating a concrete syntax
language. The aforementioned complications stem from two special cases of transformation
evolution. Firstly, the evolution of either the parsing or rendering function requires the other one to
co-evolve in order to maintain a meaningful relation between abstract and concrete syntax. Such a
co-evolution can be generalised to any bi-directional transformation. Secondly, the evolution of
the semantic mapping function requires a means to reason about semantics, which are discussed in
the next section.

Semantic Evolution

As mentioned above, semantics of a model are defined by means of a translational semantics
transformation or operational semantics transformation. In case of translational semantics, analyses
can be performed on models in this semantic domain (e.g., model-checking a given LTL formula,
or finding state invariants in a Petri net) in order to verify whether the model satisfies given
properties. Just like a ProMoBox mapping to a verification backbone, a semantic mapping function
is constructed in such a way that some properties hold both for a model and for its image under the
semantic mapping. These common properties have to be maintained throughout evolution. An
evolution is a semantic evolution if the set of properties that hold changes. This typically happens
when the requirements of a system change.

In general, a model m (whose semantics are given by a semantic mapping function [[.]]TS as
shown in Figure 1.1) has properties P(m) that hold that are identical to the properties of that model
in its semantic domain P([[m]]TS). If a model m with properties P(m) in some formalism evolves
to m', then P(m') must be identical to P(m). Of course, when semantic changes are implemented
on purpose (these are new requirements of the system, formalised by a change in the set of
properties) they have to be taken into account when comparing properties before and after the
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evolution process. In other words, it must be guaranteed that they are equal modulo the intended
changes. A similar rationale holds for operational semantics. When two versions of a system are
(a) equal modulo their intended syntactic and semantic changes and (b) syntactically consistent, the
evolution of the system is said to be continuous. Continuity pertains to a collection of models of a
system as they evolve over time. Only continuous evolutions are deemed useful. In this thesis, the
relationship between properties before and after evolution is not further explored. Our approach
relies on evolution that can be captured syntactically (i.e., are modelled explicitly), which includes
e.g., a transformation model representing the translational or operational semantics. However,
since no general way of explicitly modelling (abstraction) relationships between properties exists
as of today, a syntactic approach will not be applicable in the context of continuity. The explicit
modelling of property relationships is a research topic in its own right [12], and is presented as
related and future work in Section 3.4.5 when discussing the automation prerequisites for our
framework, and Section 3.6 when discussing future work.

Research Goals

After sketching the phenomenon of modelling language evolution and introducing new terminology,
we can reflect on the research objectives of this chapter:

— the cause of this research is the observation that modelling languages evolve;

— the goal is to maintain consistency and continuity;

— as a consequence, there is a need for co-evolution of modelling artifacts;

— the approach to achieve co-evolution is to devise migration operations.

This chapter presents guidelines to achieve these objectives. The aim is to be complete, meaning
that all possible scenarios are covered. In order to achieve this, we break down the phenomenon of
modelling language evolution, so that every single aspect can be explored exhaustively.

The general research question of this chapter is:
RQ 2. What is a solution according to MPM principles for dealing with the consequences of

language evolution?
More specifically, the following research questions are posed:

— RQ 2.1. What is the role of syntax and semantics in language evolution?

— RQ 2.2. What is a complete set of language evolution scenarios that incorporates all possible
evolution scenarios?

— RQ 2.3. How can transformation models be co-evolved in case of language evolution?

— RQ 2.4. How can we cover every possible case of language evolution?

— RQ 2.5. What are the assumptions and limitations of the approach?

The remainder of the chapter is organised as follows: Section 3.2 introduces a way to tackle
evolution of modelling languages by de-constructing the problem into primitives. Section 3.3 uses
this information to assemble solutions for evolution scenarios. Section 3.4 presents a framework
and algorithm for the evolution of modelling artifacts in a DSML relational ecosystem when
languages evolve. Section 3.5 discusses related work, and Section 3.6 concludes the chapter and
describes future work.
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3.2 De-constructing Evolution

The concept of language evolution is heterogeneous in terms of affected modelling artifacts. In
order to deal with this problem uniformly, we first look for basic building blocks for evolution. First
in Section 3.2.1, we introduce some concepts from the literature to shape the context of language
evolution. Then in Section 3.2.2, we look into evolution in the context of the language-instance
relationship. In Section 3.2.3 we continue by explaining the projection problem. This turns out to
be important when discussing evolution in a full DSML relational ecosystem, which is done in
Section 3.2.4 to 3.2.9. This leaves us re-construct evolution and present a solution to transformation
co-evolution in Section 3.3.

3.2.1 Metamodel Evolution and Co-Evolution

In order to be able to model evolution in a DSML relational ecosystem, one should be able to
model differences between two versions of a model. This can of course be done by using lexical
differencing, as used for text files, on the data representation of the model. However, the result of
such analysis is often not useful, as (1) the actual differences occur at the granularity level of nodes,
links, labels and attributes and (2) models are usually not sequential in nature and equivalences
between models converted to text will not be taken into account. Hence, model differencing should
be done at an appropriate level of abstraction, and take semantics into account.

In addition to finding differences, one should be able to represent them explicitly as a model,
called the delta model. There are two kinds of representations: operational and structural. In the
operational (or change-based) representation [121], also used for detecting model inconsistencies
[20, 19], the difference between two versions of a model is modelled as the series of CRUD
(Create/Read/Update/Delete) edit operations that were performed on one model to arrive at the
other [1, 86]. When these operations are recorded live from a tool, this strategy is very accurate
and powerful, though dependent on that particular tool and difficult to manipulate explicitly. In the
structural representation, the difference is encoded as a declarative model (e.g., [30]). The two
representations can typically be converted to one another, possibly with loss of information, such
as the order in which changes were applied. In any case, these representations can be composed of
small operations. These operations, which we will call delta operations, are reusable. In modelling
language evolution, the metamodel is often the subject of change. Therefore, further in this chapter,
we consider the delta model as the difference between two versions of a modelling language’s
metamodel.

When the metamodel of a modelling language evolves, the most prominent side-effect is that
its instance models may no longer conform to the new metamodel. It is widely accepted that a
model co-evolution (i.e., migration) is best modelled as a model transformation [31, 77, 86, 212],
which we will call the migration transformation. Since the migration transformation is directly
influenced by the delta model, the migration transformation can be split up accordingly in migration
operations, each linked to a delta operation [86].

Gruschko et al. [77] distinguish between non-breaking, resolvable and unresolvable delta
operations:

— non-breaking operations do not break conformance of models with respect to the new meta-
model, and hence do not require co-evolution. For example, the addition of a class in the
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metamodel is a non-breaking operation. Because of the optional nature of the change, none
of the instance models have to be co-evolved in order to conform to the new metamodel. The
instance models simply do not make use of the new language feature;

— breaking and resolvable operations cause inconsistencies that can be resolved by automated
co-evolution. For example, renaming a class in the metamodel requires renaming of the class
instances in the instance models;

— Model co-evolution for unresolvable operations requires additional information in order to
execute. For example, when an attribute is added to a class in the metamodel, a new attribute is
created for each instance of that class. However, the initial value of this feature is unknown,
as it differs from instance to instance. There are two ways to solve this problem. On the
one hand, a default value or expression can be given. Although this default value must be
manually included in the migration transformation, the instance model can be migrated fully
automatically. However, this does restrict the migration to one default scenario, which might
not be accurate for each co-evolving artifact. On the other hand, one could manually adapt
each model. Though the only correct solution in some cases, it can be a tedious job to perform
manual co-evolutions on each model separately.

Cicchetti et al. [31] classify changes as additive, subtractive and updative, referring to CRUD
operations. There is no consensus about the exact meaning of these terms in the literature. In some
work, the terms refer to adding, removing or updating elements in the metamodel. We however
define these terms in the context of the metamodel’s semantics, i.e., the effect of the change on
the modelling space. After additive changes have been applied, more models are valid. In other
words, the modelling space of the language is enlarged. Subtractive changes reduce the modelling
space, and updative changes ensure the same size. With these operations, evolution of the part of
the metamodel that specifies the static semantics can be expressed. If necessary, similar operations
can be created for the constraint language, as it also has a metamodel [170].

From all introduced concepts, we create a classification of instance model migration.

— Ad hoc transformation vs. coupled transformation. As previously mentioned, migration
transformations are naturally modelled as model transformations. A migration transformation
can be composed in a non-structured, ad hoc manner, or by coupling it to the metamodel
changes. For coupled transformation, different kinds of changes require different migration
operations, which can be classified as follows:

— Non-breaking vs. breaking changes. Non-breaking and breaking changes can be distin-
guished. Breaking changes are often divided into the following two types:

— Resolvable vs. unresolvable changes. Resolvable changes can be automated. According to
many authors, changes can be unresolvable, meaning that the according migration operations
must be created manually [31, 77, 86, 209, 212].

— Additive, subtractive and updative changes. Changes are additive if they increase the mod-
elling space, subtractive if they decrease the modelling space, and updative if the modelling
space does not change in size.

Orthogonal to this classification, there is the matter of execution of the migration transformation.

— Automatic migration execution vs. manual intervention. According to some authors, not
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Figure 3.1: Models m have to be migrated when MML evolves.

only the creation of migration operations, but also the execution of the migration transformation
can require manual intervention [31, 77]. Such a manual intervention can be different for each
instance model.

All of these choices are incorporated into our approach.

3.2.2 De-constructing Evolution Actions

In this section, evolution as an operation is de-constructed into manageable, reusable parts based
on the literature. Since the driving force is language evolution, we will, similar to the literature,
address evolution actions of the language’s structure, i.e., the metamodel. Later in Section 3.2.4,
we will zoom out and look into the consequences of language evolution in the DSML relational
ecosystem.

Figure 3.1 illustrates the singled out language evolution problem at a glance. Note that we
visualise evolution by adding “depth” to the diagram. Full arrows are transformations, dashed
arrows indicate conformance (i.e., that a model conforms to the language constraints). After
evolution ∆MML of a metamodel MML, models m, which conform to MML, need to be
migrated to m′, which conform to MML′ , by creating a suitable migration M.

As described in related work in Section 3.5, in the literature ∆MML is described as a sequence
of delta operations. For models that are not metamodels, similar operations can be defined as
the set of possible evolution actions on the abstract syntax of the model. As in the literature, the
delta operations are classified as non-breaking, resolvable breaking and unresolvable. Table 3.1
shows how the impact of delta operations can also be classified as updative, additive or subtractive,
referring to CRUD (create/read/update/delete) operations. For each of the delta operations, there
is a default migration operation that can be used to co-evolve instance models. As expected, the
non-breaking operations do not need a migration operation, the resolvable operations have a useful
migration operation, and the unresolvable operations have a default operation that does not always
have the desired migration effect. Additionally, each delta operation has an inverse operation
which we will need in our approach. By definition, performing a delta operation on a metamodel,
followed by its inverse operation, results in the original metamodel. Note that the same is not
necessarily true for its migration operation. Furthermore, each delta operation is operationalised
by a function, with parameters and preconditions that must be met to execute the delta operation.
An example of a delta operation definition is expressed as follows:
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Delta operation Type Migration Operation Inverse Operation

Non-breaking delta operations
Generalise property Additive None Restrict property
Add class Additive None Eliminate class
Add non-obligatory property Additive None Eliminate property
Make class concrete Additive None Make class abstract
Extract abstract superclass Updative None Flatten abstract hierarchy
Extract superclass Additive None Flatten hierarchy
Flatten abstract hierarchy Updative None Extract abstract superclass
Push property from abstract class Updative None Push property from abstract class
Pull property to abstract class Updative None Pull property to abstract class

Breaking and resolvable delta operations
Eliminate class Subtractive Eliminate instances Add class and Add non-obligatory property
Eliminate property Subtractive Eliminate instances Add (non-)obligatory property
Make class abstract Subtractive Eliminate instances Make class concrete
Extract class Updative Extract properties and add

instances
Inline class

Inline class Updative Inline properties and re-
move instances

Extract class

Flatten hierarchy Subtractive Eliminate superclass in-
stances

Extract superclass

Push property Subtractive Eliminate properties from
superclass instances

Pull property

Rename class Updative Change instances Rename class
Rename property Updative Change instances Rename property

Breaking and unresolvable delta operations
Add obligatory property Additive Add default instances Eliminate property
Pull property Additive Add default properties for

superclass instances
Push property

Restrict property Subtractive Remove instance if non-
compliant

Generalise property

Table 3.1: Delta operations adapted from [31] and [86], extended with their migration operations
and inverse operations.

Add obligatory property

Description: Add a new property (attribute or association) with lower multiplicity of at least 1
Type: additive
Impact: breaking and unresolvable
Migration operation: add property instances with default values
Inverse operation: Eliminate property
Function signature: AddObligatoryProperty(name, owner, lowsrc, highsrc, type[, lowdst, high-

dst][, default])

Parameters:

— name (string): name of the new property

— owner (class): the owner of the property
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— lowsrc (integer): the lower bound at the source

— highsrc (integer): the upper bound at the source

— type (type or class): the target (in case of an association) or type (in case of an attribute) of the
property

— lowdst (integer): (in case of an association) the lower bound at the target

— highdst (integer): (in case of an association) the upper bound at the target

— default (any): (in case of an attribute, optional) the default value

Preconditions:

— highsrc > 0, highdst > 0, lowsrc ≤ highsrc, lowdst ≤ highdst, lowsrc > 0 or lowdst

> 0

— default is of type type, or none

— name is not yet taken by another of owner’s properties

A full list of definitions of all delta operations can be found in Appendix B.
The evolutions listed in Table 3.1 represent manipulations that typically occur on a given

metamodel, more specific than basic CRUD operations. The table also lists complex evolutions
like “flatten hierarchy” (eliminating a superclass and adding all its properties to the subclasses) or
“generalise metaproperty” (relaxing the cardinality of a property). In those cases, the evolution
could also be seen as the composition of simple changes, but it captures its full meaning when
considered as a single adaptation step. Subsequently, a meaningful migration operation can be
defined. If the metamodel contains static semantics, in the form ofe.g., OCL constraints [152],
similar operations can be contrived. However, this is outside the scope of this thesis, and is left for
future work.

The classification proposed above highlights the criticality of the metamodel evolution detection
and representation in order to achieve a profitable migration of the existing instances. (Meta-)model
comparison has been an active field of research; it is an intrinsically complex task since it has to
deal with graph isomorphisms, i.e., with the problem of finding correspondences between two
given graphs. In this chapter we assume that the metamodel evolution, i.e., ∆MML in Figure 3.1,
is given, as reflecting the language engineer’s intentions, in terms of the operations classified in
Table 3.1: it could be obtained as directly traced from a tool, or encoded by hand. For our approach,
both techniques are applicable.

3.2.3 The Projection Problem

When a language L evolves to L', M is created to migrate instance models. Ideally, the image of
the migration transformation M is equal to the evolved language L'. Unfortunately, it is not always
the case that the migration transformation projects the original language to the evolved language.
We call this phenomenon the projection problem, which is illustrated in Figure 3.2 (a). Ellipses are
languages, or sets of models, conforming to the denoted metamodel. Arrows are transformations.
A language L evolves to L' by an evolution ∆MME , and instance models such as m are migrated
by M (which is related to ∆MME) to mM . There are two different cases where M(L) 6= L′,
namely L′ \M(L) 6= ∅ (e.g., for m') and M(L) \ L′ 6= ∅ (e.g., for m''). The case of L′ \M(L)
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(a) (b)

Figure 3.2: Set representation for evolution with (a) the projection problem after migration and (b)
example of the case of L′ \M(L).

occurs for additive changes. Models like m' are valid but cannot be the result of the execution
of M. In other words, M does not exactly project L to L'. This can be illustrated by the fact that
non-breaking, additive changes do not require migration at all. In that case M(L) = L and
L ⊂ L′, so M(L) ⊂ L′. The other case of M(L) \ L′ only occurs if M is not well implemented.
Models like m'' are models that are the result of the execution of M, but are not valid in the new
language L'. For example, this would happen if no proper M is composed for a subtractive change.
This is a matter of faulty implementation instead of an inevitable structural problem. Therefore,
we will only take the case of L′ \M(L) into account for the projection problem.

Figure 3.2 (b) shows an example of the projection problem resulting in models that are
in L′ \ M(L). The same layout is used as in Figure 3.2 (a). Suppose that in the Elevator
metamodel as shown in Figure 1.4 (visualised partially) the class FloorButton is made concrete
as a non-breaking, additive change “make class concrete”. The delta model ∆MME can thus
be modelled as MakeClassConcrete(FloorButton). Since the change is non-breaking, M is the
identity transformation id that applies no changes at all to the model. The model in L is thereby
migrated to the model in M(L), and its structure is preserved. However, new models are possible in
L′ \M(L) that include instances of FloorButton (represented as buttons with a floor icon inside).
The fact that this model is out of the scope of M, will add some restrictions on the use of M.

3.2.4 De-constructing Evolution Consequences

As discussed in Section 3.1, there are many possible situations in which co-evolution can occur.
These possibilities can be mapped onto the DSM relational ecosystem of Figure 1.1, and in the
Elevator example onto the Elevator relational ecosystem of Figure 1.3. When we look more
closely at the possible scenarios, similarities can be distinguished in the steps that are taken in
the co-evolution scenarios. As consistency and continuity are desired during system evolution,
co-evolution is in fact the (chained) relationship between metamodel, model and transformation
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Figure 3.3: Basic co-evolution schema.

(instead of only metamodel and model, as suggested in related work). Thereby, it is important
to note that unidirectional transformations have a domain (i.e., the language that is translated)
and an image (i.e., the language this domain is translated to). In other words, for language
evolution, both incoming and outgoing transformations must be dealt with separately. This
distinction does not have to be made in case bidirectional transformations are used, but in practice,
unidirectional transformations are often preferred as bidirectional transformations come with
technological difficulties. As a consequence, we can reduce the problem of co-evolution to the
diagram in Figure 3.3, where a domain metamodel MMD and an image metamodel MMI , and
their instance models are distinguished, with a transformation T in between. Again, arrows denote
transformations and dotted arrows denote “conforms to”-relationships. The diagram reduces the
problem of evolution to its bare essence.

The possible evolution scenarios can be broken down into a few basic ones which are depicted
in Figure 3.4. Small, dashed arrows denote a (semi-)automatic generation. Each diagram starts
from the relation between domain and image metamodels, given in Figure 3.3. With these four
basic scenarios, every possible evolution of Figure 3.3 is covered. These are explained in detail in
the following paragraphs.

3.2.5 Model Evolution

Figure 3.4 (a) shows model evolution. Although in the diagram m evolves, model evolution occurs
in fact when either m or T(m) evolves. This kind of evolution is not a language evolution and is
included for completeness, and has quite simple consequences for other artifacts in the relational
ecosystem. Some model m evolves to m' (still conformant to MMD). In step 1 (the only step), a
delta model ∆m is constructed (either automatically or manually) that models the evolution of m
to m': m' = m + ∆m. The evolution itself is typically represented as a migration transformation
M, which is the identity transformation for all models in language D, with the exception of m. If
the model is the input of a transformation, as depicted in Figure 3.4 (a), it is desirable that this
transformation is executed again. The transformations whose execution results in the model (in
Figure 3.4 (a) this would mean that T(m) evolves rather than m) do not have to be executed again.

In the context of the Elevator relational ecosystem, Elevator models could evolve via the
insertion, removal or redirection of Floors, Buttons and Elevators. Changing m (as shown in
Figure 1.1) this way might be desirable that some of the transformations are re-executed. For
example, if one wants to use a Petri net model for analysis, the semantic mapping [[.]]TS must
be applied again. In general, κi and [[.]]TS and/or [[.]]OS transformations, as well as any other
transformation Tj from model m, remain valid since no metamodel evolution has occurred, but
have to be re-executed. No further co-evolution is required.
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(a) (b)

(c) (d)

Figure 3.4: Co-evolution in (a) model evolution, (b) image evolution, (c) domain evolution and (d)
transformation evolution.

Figure 3.5: A metamodel for the Petri net formalism, including inhibitor arcs.

3.2.6 Image Evolution

Image evolution is shown in Figure 3.4 (b). Suppose that a metamodel MMI evolves to MMI′ .
In the context of the Elevator relational ecosystem of Figure 1.3, a possible image evolution is
the evolution of the target metamodel for the semantic mapping transformation (in this case, Petri
nets). We illustrate this with an evolution of the Petri net metamodel of Figure 1.9. Suppose
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Figure 3.6: The Elevator system in inhibitor Petri nets.

that we add the concept of inhibitor arcs to the Petri net formalism, as shown in Figure 3.5.
This is done by the non-breaking, additive “add non-obligatory property” delta operation. Con-
ceptually, inhibitor arcs represent constraints on a transition, saying that the connected place
should not contain a token. The addition of inhibitor arcs makes the Petri net formalism Turing
complete [216]. In step 1 of the evolution, a delta model ∆MMI is constructed to represent
the difference between metamodels MMI and MMI′ . In the example, ∆MMI can be repre-
sented as the delta operation AddNonObligatoryProperty(name="inhibitor_arc", owner=Place,

highsrc=*, type=Transition, highdst=*). In concrete visual syntax, the inhibitor arc is usually
represented as an arc with a circle at its end. However, we will focus here on the evolution of the
metamodel only.

In step 2, a migration transformation M is generated from ∆MMI . The execution of M
co-evolves models T(m) to models T(m)M such that they conform to the new metamodel MMI′ .
In the simple example, this can be skipped because the change is non-breaking. We added inhibitor
arcs for a reason however, and by using inhibitor arcs we can define M as the replacement of
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(a) (b)

Figure 3.7: The projection problem in image evolution: (a) T' = M ◦ T does not hold and (b) an
example.

place-antiplace patterns with only one Place. Every outgoing arc of the antiplace is replaced
with an inhibitor arc from the related place. Applying the migration transformation on [[m]]TS
representing the three-floor Elevator system shown in Figure 1.11 results in the inhibitor Petri net
shown in Figure 3.6. The representation of Buttons has changed.

Moreover, the execution of transformation T has to result in valid models (i.e., models that
conform to MMI′). Consequently, T is migrated to a new transformation T' (step 3), which is
able to transform every possible model m conforming to MMD to an appropriate model T(m)M
conforming to MMI′ . The diagram presents an intuitive solution for the generation of this T': for
every model m, T'(m) = M(T(m)) holds, and thus we have T' = M ◦ T. Hence, the co-evolved
transformation T' can be obtained simply by composing transformations T and M. The trivial way
of doing this is to execute T, followed by executing M on the output model of T. Optimising this
composition is a challenge in its own right. In our evolution example, the E2PN transformation
can be migrated without digging into the transformation model: each Elevator model can be
transformed to the new version of Petri nets by first applying E2PN, resulting in an old version
Petri net model, followed by the execution of the migration transformation M, which transforms
models of the old version to the new version. Resulting models will conform to the evolved Petri
net metamodel. Of course, this setting is only valid for simple language evolutions. T' = M ◦ T
does not hold for the entire evolved image I'.

Because of the projection problem, T' = M ◦ T does not always hold for image evolution.
Following Figure 3.3, Figure 3.7 (a) shows a model m conforming to MMD that can be transformed
by T resulting in the model T(m) conforming to MMI . The image MMI evolves to MMI′ by an
additive operation, which results in I' being larger than M(I). If T' is acquired by executing M ◦ T,
it turns out that semantic information is not taken into account, as the model is transformed to the
language I first, which does not include the newly added semantic information. As explained in
Section 3.2.3, it is generally desirable that the evolved transformation T' can explore the full power
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(a) (b)

Figure 3.8: The projection problem in domain evolution: (a) T' = T ◦M−1 does not hold and (b)
an example.

of the new version of the image language I'.
In Figure 3.7 (b) an example is shown. The example is based on the evolution from Petri

nets inhibitor Petri nets of Figure 3.5. Now, the E2PN transformation is included with Elevator
as domain. If it is stated that T' = M ◦ T, then T' transforms the Elevator model to the model in
M(PN), by first executing the original T, followed by migrating the model in PN. However, this
way, some changes that were deliberately applied to the Petri net language are ignored. In this case,
only place-antiplace patterns will be covered by M. Inhibitor arcs in general are not supported by
T' = M ◦ T. Despite the projection problem, the principle of T' = M ◦ T will prove to be useful in
our final approach, as presented in Section 3.3.

3.2.7 Domain Evolution

Figure 3.4 (c) shows domain evolution, where MMD evolves. The artifacts that co-evolve are
similar to those in the image evolution scenario. However, co-evolved transformations T' can
now be obtained by T' = T ◦M−1 which implies the need to construct an inverse transformation
M−1. More specifically, in order to transform models that conform to the new version of the
language to the image language, they are first co-evolved back to the old version, and then the
original transformation can be applied. Again, the transformation does not have to be adapted.
In the context of the Elevator relational ecosystem, domain evolution occurs when the Elevator
metamodel of Figure 1.4 (a) changes.

In domain evolution, the projection problem can also occur, as shown in Figure 3.8 (a). Again,
during transformation where M(D) 6= D', critical information can be lost when migrating the model
back to its old version using M−1. Again, this occurs for additive changes. Also, it is desirable
that the transformation T' can be applied to its entire domain, including D' \M(D). This part of
the transformation cannot be obtained by T' = T ◦M−1 if M(D) 6= D'. One might intuitively think
that subtractive changes also result in a projection problem, as for these changes new information
should be “invented” when executing M−1. However, M−1 typically does not have to extend the
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models again to their original form because the language was reduced deliberately. An example of
the projection problem for domain evolution is shown in Figure 3.8 (b), which continues from the
example of Figure 3.2 (b). Since the change is non-breaking, M and consequently M−1 are the
identity transformation id. Similar to image evolution, T' = T ◦M−1 applies for models in M(E).
However, models in E′ \M(E) that use FloorButton instances (which are visualised by an empty
button icon) cannot be transformed by T'. This is problematic, as it should be possible that every
possible Elevator model is transformed to a Petri net.

3.2.8 Transformation Evolution

Figure 3.4 (d) shows transformation evolution. For example, in the context of the Elevator
relational ecosystem, the semantic mapping E2PN could be adapted in such a way that the number
of button presses is recorded in a place. If transformations evolve according to a delta model
∆T, it is possible that they only have to be executed once again. In this case, the changes on the
transformation are limited: the image of the evolved transformation T' must conform to MMI

(i.e., the existing Petri net language). As previously discussed, other artifacts such as the image
metamodel might also co-evolve. In such cases, a migration transformation M must be constructed
from which a delta model ∆MMI can be derived. In the Elevator example, one could add a time
delay to opening and closing the doors, or changing floors. In this case, a timed Petri net could
be needed as a result of a change in E2PN. Note that such a decision on the co-evolution of the
metamodel highly depends on the intention of the evolution and is therefore done manually. The
construction of the migration transformation M helps in this process, but can be left implicit at
this stage. In case of co-evolution of the domain however, if left implicit, M will be obtained in a
later stage when the scenario of metamodel evolution is carried out. Consequently, the issue of the
combination of evolution scenarios arises, which is discussed in general in the following section.

3.2.9 Evolution Scenario Amalgamation

Using a combination of these basic four scenarios of Figure 3.4, all possible evolutions can be
carried out. For unresolvable changes, a general M cannot be found. Note also that the projection
problem exists, so automated co-evolution is not always possible. Due to the projection problem,
transformations have to support the models in L' \M(L).

In the Elevator relational ecosystem, it is conceivable that a language engineer desires domain
and image evolutions. Consider the example evolutions of domain evolution (making FloorButton
concrete), in combination with image evolution (adding inhibitor arcs). The co-evolution of the
instances of both formalisms is independent of each other. The E2PN transformation, however,
co-evolves for both evolutions. After both are applied, the co-evolved transformation will again be
obtained by following the evolution diagram as follows: T'(m) = M∆MMPN

(T (M−1
∆MME

(m))).
In general, evolutions can be chained in transformation co-evolution. Of course, the projection
problem still applies.

Simply combining basic evolution scenario solutions to solve complex scenarios may yield
sub-optimal results. Firstly, domain and image evolutions might happen at the same time because
they are closely related. In the example of domain and image evolution, it can be desirable that the
E2PN transformation is only migrated once, taking both evolutions into account at the same time.
If not, some artificial mappings might be necessary when the E2PN transformation is migrated
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for only one of the evolutions. Secondly, the performance of combining scenarios might be sub-
optimal. In a system under development, an additional transformation must be executed for each
additional evolution. Hence, the total number of migration transformations to be executed after an
evolution isO(n·v), with n the number of artifacts that are co-evolved and v the number of existing
versions. It may be possible to obtain the same output models while executing less and/or simpler
transformation rules. An open research problem is the (semi-)automatic merging of sequences
of transformations into more efficient (but equivalent) transformations. Hereby, issues such as
order dependence of transformation rules must be overcome. Because they are more modular, at a
suitable level of abstraction (hiding matching and rewriting issues), and explicitly metamodelled
(allowing for higher-order transformations) it is likely that rule-based transformation specifications
will be more amenable to such optimisations than pure code-based ones. Nevertheless, complex
rule pattern dependence analysis [84, 132] has to be conducted in order to reason about the
composability of transformation rules.

3.3 Re-constructing Evolution

In Section 3.2, evolution was de-constructed into manageable basic scenarios. The delta trans-
formation was divided into atomic steps and the relational ecosystem of Figure 1.1 was broken
down into the basic schema of Figure 3.3. In this section, we use this breakdown to re-construct
all possible evolution scenarios. Then, similarities and differences between scenarios can be
investigated and a suitable solution in the form of instance and transformation co-evolution can be
customised to maximise automation.

In the basic co-evolution schema of Figure 3.3, each of the involved artifacts can evolve,
causing some other artifacts to co-evolve. Hence, we assume that each relational ecosystem can be
mapped onto (multiple instances of) this schema, which originated from the modelling artifacts
shown in Figure 1.1. An instance of the basic schema can be identified in a relational ecosystem
by identifying a transformation as an instance of T. Then, incoming models are instances of m and
their metamodel is an instance of MMD. The resulting models are instances of T(m) and their
metamodel is an instance of MMI . However, in theory, a transformation has one input model
and one output model, this input or output model can be a modular composition of two models
(possibly conforming to two different metamodels) so that in practice transformations can have
multiple input and/or output models. An example of a transformation with a composed input model
is model merging. An example of a transformation with a composed output model is executing
the operational semantics in ProMoBox which generates a model in the output language and a
model in the input language. Note that ProMoBox operational semantics also has a composed
input model, conform to the run-time and input language. In many existing transformation tools,
the transformations have combinations of more than one metamodel describing input or output.
In those cases, it is desirable to maintain the modularity of the different formalisms that are used.
Therefore, each input or output metamodel is mapped onto a different instance of the basic schema.
For example, a model merging transformation has two mappings to the basic schema: one with
the metamodel of the first input model as MMD, and one with the metamodel of the second input
model as MMD.

Additionally, we must take into account the type of transformation T . Different kinds of trans-
formations have different co-evolution consequences. As explained in Section 1.2, transformations
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Changing artifact

Type of T MMD MMI T mD mI

unidirectional
exogenous
transformation

co-evolve mD

and T , execute
T

co-evolve mI

and T
change MMD

and/or MMI
change MMD change MMI

bidirectional ex-
ogenous trans-
formation

co-evolve mD

and T and
T−1, execute
T

co-evolve mI

and T and
T−1, execute
T−1

change MMD

and/or MMI
change MMD change MMI

unidirectional
endogenous
transformation

co-evolve
mD /mI and
T , execute T

co-evolve
mD /mI and T

change
MMD /MMI

change
MMD /MMI

change
MMD /MMI

bidirectional
endogenous
transformation

co-evolve
mD /mI and
T and T−1,
execute T

co-evolve
mD /mI and
T and T−1,
execute T−1

change
MMD /MMI

change
MMD /MMI

change
MMD /MMI

translational se-
mantics [[·]]TS

co-evolve mD

and [[·]]TS , ex-
ecute [[·]]TS

co-evolve mI

and [[·]]TS

change MMD

and/or MMI
change MMD change MMI

operational se-
mantics [[·]]OS

co-evolve
mD /mI

and [[·]]OS ,
execute [[·]]OS

co-evolve
mD /mI and
[[·]]OS

change
MMD /MMI

change
MMD /MMI

change
MMD /MMI

concrete map-
ping function κ
and π (render-
ing and pars-
ing)

co-evolve
MMI , mD

and κ and π,
execute κ or
π depending
on changing
artifact

co-evolve
MMD , mI

and κ and π,
execute κ or
π depending
on changing
artifact

change MMD

(and conse-
quently MMI )

change MMD

(and conse-
quently MMI )

change MMD

and (and conse-
quently MMI )

Table 3.2: Evolution scenarios for the basic co-evolution schema.

can be (orthogonally) endogenous/exogenous, unidirectionally/bidirectionally, in-place/out-place
[133]. Additionally, transformations can be used as parsing or rendering functions, semantic map-
ping or model-to-model transformation [110]. They can also keep generic links between concepts
in different models, which results in traceability between concepts of the model. Although this
can greatly facilitate the automation of co-evolution at the implementation side, this is irrelevant
from the architectural point of view presented in this section. Also note that transformation
models can range from simple search-replace scripts, to XSLT transformations, to rule-based
graph transformations. Although the above distinction suffices to express the different kinds of
transformations, the concrete mapping functions κ and π can be considered a special case because
of the tight coupling between the metamodels of abstract and concrete syntax. This relation is
homomorphic in nature. In order to maintain that homomorphic relation, a metamodel evolution
(e.g., of the abstract syntax) that changes the metamodel structurally requires migration of the other
metamodel of the relation (e.g., of the concrete syntax). In Table 3.2, the possible co-evolution
scenarios are explored, where rows represent the kind of transformation, columns represent the
artifact that changes. As artifacts of Figure 3.3 are used, we assume that every language evolution
in a system can be mapped onto one or more cells in this table.

Some conclusions can be drawn from observing the table. The default scenario is the evolution
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of MMD or MMI , i.e., the first two columns. Evolutions of T , mD or mI usually do not cause
a change on the metalevel (i.e., the level of the language). Indeed, evolution causes at most
execution of T , in order to keep the models in the system consistent. This is in particular true,
and usually must happen instantly, for multi-view systems [78]. As this does not change anything
at the metalevel, it is not taken into account. In some cases, however, a change at the metalevel
is desirable. Suppose that a domain user can adapt a language by changing the model. This is
useful because the domain user can perform simple modifications to a language without extensive
knowledge of language engineering, such as metamodelling or transformation modelling (in case
of adaptation of T itself, the user must understand it of course). Instance-based modification of a
language is possible if the modelling environment allows bottom-up editing, where metamodels are
extracted from instances [141, 40]. The last three columns in Table 3.2 represent such scenarios
where the language is adapted, as we are interested in language changes.

A second conclusion is that, apart from the concrete mapping, all types of T are very similar.
Evolution of a language always leads to co-evolution of instances and transformation models,
with a possible execution of T as a consequence. Note that we limit each scenario to the schema
of Figure 3.3, so, some real-life scenarios might trigger more than one evolution scenario of
Table 3.2. For example, when evolving a metamodel, each of the related transformation models is
co-evolved, which can each be mapped onto a table cell. Furthermore, because of the co-evolution
consequences, a chain of transformation executions can be triggered.

The concrete mapping is, however, notably different. The abstract syntax must be kept
consistent with the concrete syntax(es). The concrete mapping functions κ and π (for rendering
and parsing) can for this purpose be considered a special kind of transformation. Some tools such
as AToMPM or Fujaba [72] force the user to explicitly implement a concrete mapping. Abstract
syntax concepts can be instantiated using an Object Diagrams-like language, like in metaDepth.
Tools such as AToM3 [46] include concrete syntax in the language definition (i.e., attached to
metamodel elements). This illustrates the tight coupling as well as the simple one-to-one nature of
the concrete syntax mapping.

The remainder of this section will dig deeper in the an actual co-evolution step and will
discuss the re-construction of metamodel evolution and instance migration in an isolated context.
Whenever a change ∆ is operated on a metamodel, a corresponding migration M should be
operated on the existing instances. The creation of migration transformation is closely related
to the changes on the metamodel however. Therefore, this section continues with an elaboration
on the difference model composed from the delta operations presented in Section 3.2.2, which is
a structured representation of the changes. Next, the creation of the migration transformation is
presented for instance models, and it is explained how the presented technique is applicable to
transformation models by incorporating the de-construction rules. The approach is demonstrated
with a prototype in metaDepth in Appendix C.

3.3.1 Difference Model

Metamodel evolution can be modelled in a delta model as a sequence of delta operations, with as-
sociated migration operations, as presented in Section 3.2.2. Some migration operations are empty
(in case of non-breaking delta operations), others can be implemented as simple scripts (e.g., the
migration operation of the breaking and resolvable delta operation “rename class”), but many more
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migration operations can be implemented intuitively as rule-based graph transformations. For un-
resolvable delta operations it is often not possible to define an automatic migration transformation,
as the migration is instance-dependent. The goal is to alleviate both the language engineer and
the domain user from as much manual work as possible when migrating instances by generating a
modular migration transformation. The migration transformation can be adapted where necessary
by the language engineer. Moreover, it can include manual intervention at execution time that
needs to be performed by the domain user.

Reconsider the metamodel for the Elevator example of Figure 1.4. During the development
cycle, a number of changes are made at the language level as shown in Table 3.3, consisting of
delta operations from Table 3.1. The step-wise evolution is shown in Figure 3.9. The first delta
operation limits the number of Buttons that requests a Floor to three using the “restrict property”
operation. Then, an EmergencyButton is added by extracting a Button class in changes (operation
2 to 5). This is a button that, when pressed in case of emergency or by a technician, stops the
elevator, and restarts the elevator when pressed again. Subsequently the UpButton and DownButton
are replaced by a up_direction attribute in the now concrete class FloorButton in changes (operation
6 to 9). This way, FloorButton can be used for both directions (if necessary, their direction can
even be changed), and is implemented as a single kind of button. Finally, the nr attribute is deemed
redundant and is removed.

Concerning the stepwise evolution of the metamodel, we identify a problem related to the
conformance of migrating instances. In most transformation tools, transformations such as the
migration transformation require a well-defined input and output metamodel. As we want to
keep the migration transformation as separate migration operations for modularity, we will need
intermediate metamodels for each migration transformation. Indeed, the result of the first of many
migration operations is not conform to the original version of the metamodel, and not yet to the
metamodel of the new version of the language, but is conform to a metamodel “in between” the
two versions.

To solve this problem, we suggest to use a relaxed intermediate metamodel, which is the result
of merging the metamodels of two language versions. For a metamodel MMv0 and its evolution
MMv1, we define the intermediate metamodel as MM[v0,v1] = merge(MMv0,MMv1). This
intermediate metamodel is generated from the old metamodel, and the delta operations. In
case of additive operations, the new elements are added to the intermediate metamodel as non-
obligatory language concepts. In case of subtractive operations, the elements that need to be
removed are instead made non-obligatory. In case of updative operations, both versions of
the element are non-obligatory in the intermediate metamodel. The merging algorithm can be
used recursively. For example if the evolution consists of three changes, then MM[v0,v1] =

merge(merge(merge(MMv0, δ1), δ2), δ3). Rename operations pose a slight problem: as it is
inconvenient to give the element both names (the old name and the new name) in the intermediate
metamodel. Therefore, only the updated language concepts are included. As a result, rename
operations are shifted forwards in the delta model so that they are applied first, and their changes
are applied if necessary to delta operation that were previously before the rename operation. As
rename operations are not subject to the projection problem, changing their place in the delta
model does not pose a problem.

The resulting delta model is shown in Table 3.3, where the “rename class” delta operation is
shifted forwards and is now called δr. In this case, the rename did not affect other delta operations.
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Figure 3.9: Evolution of the Elevator metamodel.
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nr. Operation Type Impact

δr RenameClass(class=Button, name="CallButton") Updative Breaking and resolvable
δ1 RestrictProperty(prop=requests, lowsrc=0, highsrc=3,

lowdst=1, highdst=1)
Subtractive Breaking and unresolvable

δ2 ExtractAbstractSuperclass(name="Button",
subclasses=[CallButton])

Updative Non-breaking

δ3 PullPropertyToAbstractClass(prop=pressed) Updative Non-breaking
δ4 AddClass(name="EmergencyButton", superclass=Button,

abstract=False)
Additive Non-breaking

δ5 MakeClassConcrete(class=FloorButton) Additive Non-breaking
δ6 AddObligatoryProperty(name="up_direction",

owner=FloorButton, lowsrc=1, highsrc=1, type=boolean)
Additive Breaking and unresolvable

δ7 EliminateClass(class=UpButton) Subtractive Breaking and resolvable
δ8 EliminateClass(class=DownButton) Subtractive Breaking and resolvable
δ9 EliminateProperty(prop=nr) Subtractive Breaking and resolvable

Table 3.3: The operational difference model ∆ of the Elevator evolution.
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Figure 3.10: The intermediate metamodel of the Elevator metamodel and delta model of Table 3.3.

Figure 3.11: The transformation pipeline.

The intermediate metamodel taking changes δ1 to δ9 into account is shown in Figure 3.10.
As a result, every model that conforms to the old metamodel, as well as every model that

conforms to the new metamodel, conforms to the intermediate metamodel. A step-wise co-
evolution from an old version to a new version is now possible. Before and after execution of each
migration step, the model under migration conforms to the intermediate metamodel.

In Figure 3.11, the step-wise migration of a version 0 artifact to a version 1 artifact is shown.
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First, the version 0 artifact is converted to conform to the intermediate metamodel. This consists of
replacing concepts of version 0 with their respective concepts of the intermediate metamodel. This
is a purely technical step, and this often involves changing the package or path of every element’s
type. Often, this can be most efficiently done by using a script1. Additionally, type rename
migrations are performed. The resulting artifact conforms to the intermediate metamodel, but is
a “virtual version 0 artifact”, as the artifact is semantically identical to its version 0 counterpart.
In a sense, the virtual version 0 artifact lies at the edge of the modelling space described by the
intermediate metamodel at the side of the version 0 metamodel. Next, the actual migration M
is performed, by applying additive, subtractive and updative operations. After all these have
been applied, the resulting artifact will be a “virtual version 1 artifact”. Then, a straightforward
conversion to a version 1 artifact is possible. As the bi-directional arrows suggest, it is possible to
apply the migration in both directions. This way, the inverse migration transformation that can be
used for domain evolution is also captured by Figure 3.11.

3.3.2 Migration of Instance Models

In this section an approach is presented to guide the user in solving co-evolution issues in a
structured, step-wise manner in combination with systematically modelling the evolution (ensuring
that the migrated models conform to the new metamodel). The approach distinguishes between
syntactic (preserving consistency) and semantic (preserving continuity) migration. In-place
transformation languages are employed. A migration is either automatically generated or adapted
by the language engineer, and upon execution, manual intervention of the domain user might be
required. The benefits of this technique are manifold, notably:

— the simplification of the migration specification by reusing the well-known graph transformation
formalism of in-place transformations;

— the ability to express every possible evolution and migration by allowing graph transformation
techniques;

— the reduction of the effort for the user by reusing generically applicable migration rules;

— the isolation of domain user intervention by singling out the delta operation;

— the control of domain user intervention by automated preventive and corrective mechanisms to
validate that models conform to the language in each migration step;

— the optimisation of the migration execution itself by allowing in-place adaptation of the existing
instances.

In short, we aim at a high degree of automation, a high degree of control, and high execution
performance. Automation will reduce the effort for the language engineer and domain user, thus
increasing productivity. Control will increase correctness of the migration process as well as
facilitate the migration process for the language engineer at design time and for the domain user at
execution time. Performance will affect scalability, and minimises the time to migrate a number of
instance models. The migration process consists of three phases: automated synthesis, manual
adaptation and execution.

1Note that in ProMoBox, similar conversion steps such as generating a run-time model from a design model are solved
using such a script.
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Figure 3.12: (left) Synthesis of migration transformation M , and (right) A generic migration step.

Automated synthesis

In the first phase, we synthesise migration transformations from difference operations. This is
done automatically, by generating an instance of the default migration transformation for each
difference operation corresponding to Table 3.1. The left side of Figure 3.12 shows the evolution
∆ of the Elevator example, split up into δr and nine δi, as shown in Table 3.3. For each δi, a µi is
synthesised by applying the transformation G. Conceptually, G is a higher order transformation,
because it takes transformation models instead of instance models as input or output [198]. In
practice, G is more efficiently implemented by using a migration template for each delta operation
and instantiating this template with the parameters of the delta operation. In this modular approach,
we start by using an intermediate metamodel for every step. The metamodel MME evolves to
MME′ , over metamodels MMi. Using this approach the result of every migration step µi is
syntactically limited to the delta operation δi instead of the full evolution. The instance model
m is migrated accordingly to m′. In this case, MM9 = MML′ and m9 = m′. A single step is
shown in a more detailed way on the right side of Figure 3.12. For every step δi is considered an
evolution as presented in Figure 3.11, where the intermediate metamodel MM[i−1,i] is the merge
of MMi−1 and MMi. So for every step, mi−1 is first converted to the intermediate metamodel
MM[i−1,i], then transformed by µi, and then converted to MMi. It is clear that µi is an in-place
transformation.

Once the default migration operation is synthesised for each δi, the instance models m can be
migrated by executing the sequence of in-place transformations M = µi ◦ µi−1 ◦ ... ◦ µ2 ◦ µ1 of
Figure 3.12. By construction, the resulting m′ = M(m) will syntactically conform to MME′ .

Manual adaptation

Technically, the first phase fulfils the requirement for co-evolution, namely ensuring that the new
models conform to the new language. Syntactic migration and consistency is thereby accomplished.
In the Elevator evolution however, there are also cases of semantic migration, thus continuity
must be maintained. An example is the replacement of the UpButton and DownButton with the
up_direction in the now concrete FloorButton class. In the first phase, UpButtons and DownButtons
are removed as a consequence of the “eliminate class” operation, which is clearly not the intention
of the evolution. Semantic migration is done during the manual adaptation phase.

In this phase, each δi and corresponding default µi are one by one presented by the language
engineer. For each µi, the language engineer can choose from five possible actions:

— keep the default µi. If the language engineer is satisfied with the default µi, nothing has to be
done for this step. This action is typically applied for non-breaking or breaking and resolvable
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nr. Operation Action

δr RenameClass(class=Button, name="CallButton") keep (compulsory)
δ1 RestrictProperty(prop=requests, lowsrc=0, highsrc=3,

lowdst=1, highdst=1)
edit: µi = id

δ2 ExtractAbstractSuperclass(name="Button",
subclasses=[CallButton])

keep

δ3 PullPropertyToAbstractClass(prop=pressed) keep
δ4 AddClass(name="EmergencyButton", superclass=Button,

abstract=False)
keep

δ5 MakeClassConcrete(class=FloorButton)
δ6 AddObligatoryProperty(name="up_direction",

owner=FloorButton, lowsrc=1, highsrc=1, type=boolean)
group and create

δ7 EliminateClass(class=UpButton)
δ8 EliminateClass(class=DownButton)
δ9 EliminateProperty(prop=nr) keep

Table 3.4: The operational difference model ∆ of the Elevator evolution.

changes;

— edit the default µi. The language engineer might be satisfied with the structure of the default
µi, but might wish to alter µi to µ′i. This action is typically applied for breaking and resolvable
changes or breaking and unresolvable changes;

— group the current µi with following µi+1. In some cases, a number of difference operations
can be grouped as one conceptual change, requiring one µ′S (with S a sequence of consecutive
indices) for two or more difference operations;

— create a tailored migration for the corresponding difference operation. If the language engineer
has a migration transformation in mind that is completely different than the default one, he/she
can create his/her own. The action is typically applied for non-breaking (if the language
engineer actually wants to migrate instead of doing nothing) or breaking and unresolvable
changes. Note that by first grouping and next creating, the original µi and µi+1 are replaced by
one µ′i,i+1 that covers both the migration of δi and δi+1;

— relegate a migration to a manual intervention step in the migration transformation, by requiring
user input at migration time in case of model-specific migration [86]. This action is typically
applied for breaking and unresolvable changes. Of course, this needs to be avoided as much as
possible, because the migration step will need to be done for each instance.

Note that µr has to be kept as it needs to be a purely syntactic migration.
Table 3.4 shows the result of the Elevator migration after the manual adaptation phase. µr,

µ2, µ3, µ4 and µ9 are kept, µ′1 is edited (actually, we assume that never more than three Buttons
are attached to a Floor, so µ′1 = id) and µ5, µ6, µ7 and µ8 have been grouped (introducing the
notion of direction) and µ′5,6,7,8 is created manually. The resulting evolution pipeline is shown in
Figure 3.13.

Figure 3.14 shows the customised migration transformation µ′5,6,7,8. Two rules are created.
The left rule transforms UpButton instances to FloorButtons with true as value for up_direction
(visualised by “up” in the top right corner of the FloorButton). The right rule is the equivalent for
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Figure 3.13: The step-wise migration after the manual adaptation phase.

Figure 3.14: The customised migration transformation µ′5,6,7,8.

DownButtons.
A new problem arises when allowing the language engineer to manually create migration

operations. After this phase, it cannot be guaranteed any more that mi is conform to MMi, as the
language engineer is allowed to implement anything he/she wants in the customised migration
transformations. In our approach, we offer a solution to uphold this guarantee by providing maximal
control over the creation of the migration operation, while still offering full expressiveness. This
control is provided by two mechanisms, a preventive mechanism and a corrective mechanism:

Restricted metamodel: as a preventive mechanism, it is only allowed to use language constructs
of the corresponding difference operation(s) when editing or creating a µ′S (with S a sequence of
one or more consecutive indices, though in many cases this is just one index i, as suggested in
Figure 3.13). This means that we isolate a part of the total evolution for this migration, particularly
MMmin(S)−1 to MMmax(S) (in the case of |S| = 1 this would be MMi−1 to MMi), as intended
by the step-wise migration. Again, changes of a previous evolution step δh with h < min(S) are
considered carried through, and changes any future evolution step δk with k > max(S) are not
yet considered at all. For example when creating µ′5,6,7,8 in Figure 3.13, the changes δ1 to δ4 are
carried through, and change δ9 is disregarded for now. Only for changes δ5, δ6, δ7 and δ8, will a
migration transformation be created, aiding transformation modularity.

Technically, this degree of control is achieved by merging the metamodels MMmin(S)−1

and MMmax(S) into an intermediate metamodel MM[min(S)−1,max(S)]. This way, an in-place
transformation can be created. Since in this context it is possible that a µ′ is created for more than
one δ, the intermediate metamodel can include more than one δ.

Checkout transformation: as a corrective mechanism, full model conformance is ensured of
the partly migrated instance model to the partly evolved metamodel in the checkout transforma-
tion γ. This step is automatically achieved in our approach by applying the default migration
transformations of the difference operations immediately after the customised migration step,
i.e., γi ◦ µ′i. After all, the default migration transformation is constructed so that its output models
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Figure 3.15: The naive execution needing a lot of conversions (top) and the optimised execution
needing only three conversions (bottom).

are syntactically correct. This way, e.g., instances of deleted classes that are by accident not
deleted by the customised migration transformation, are deleted by the checkout transformation,
thereby ensuring conformance to the partly evolved metamodel. Typically however, the language
engineer has designed his/her customised migration transformation so that model conformance is
already ensured. In that case, executing the checkout transformation will not change anything. The
checkout transformation merely validates conformance in the general case.

M is composed of regular transformation models, and is stored as any other transformation
model. Thus, future instance models conforming to the old version can be migrated later.

Execution

At first glance, the execution of the migration suite M is straightforward. On all instance models
m, M is applied. More specifically a sequence of in-place transformations, like µi, µ′j and γj ,
are applied in the given order. The ad hoc execution is not optimal however. As shown on
the right side of Figure 3.12, in order for each of the in-place transformations to be executed,
the instance model must be converted to that particular intermediate metamodel of the step.
After execution, the result must be converted to the partly evolved metamodel. As previously
mentioned, these conversions are trivial: a simple search/replace script on the data file of the
instance model or a trivial transformation that implements a one-to-one mapping of elements
can be automatically generated. However, this can cripple the execution performance of the total
migration. In Figure 3.15, a conversion is needed every time a different metamodel is used (i.e., a
grey vertical line is crossed) throughout the execution of M . The top of Figure 3.15 represents the
naive execution, requiring a multitude of conversions.

As a solution, after creation of migration transformation M , the different metamodels used in
the in-place transformations are relaxed to the intermediate metamodel that spans all δi in ∆. In the
Elevator example, the intermediate metamodel is shown in Figure 3.10. As mentioned, all possible
instance models throughout all migration steps can be expressed in the resulting metamodelMM∆.
Every in-place transformation’s used metamodel is changed to MM[0,‖∆‖]. Of course, this has to
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Figure 3.16: The execution of E2PN after image evolution.

be done only once for M instead of for all instance models. With this optimised approach, a m
that needs to be migrated only has to be converted two times: (1) after retyping operations of µr,
but before applying the in-place transformations of M (µr might be part of the conversion step),
and (2) after applying the in-place transformations of M . In between, all artefacts use the same
metamodel MM[0,‖∆‖], and only in-place transformations are applied. Moreover, µi migrations
that are equal to id are removed. In the example, µ′i (because we assume that no instances exist
with more than three Buttons on one floor), and µ2, µ3, µ4, and γ8 (because their associated delta
operations are non-breaking), can be safely removed. The bottom of Figure 3.15 represents the
optimised execution. Note how γ1 ensures consistency by removing non-compliant Buttons if
our assumption of maximally three Buttons per Floor turns out to be incorrect. Also note how
m9 (conform to MM[0,9]) is explicitly visualised to denote the difference with m' (conform to
MME′ ).

Additionally, the absence of model-to-model transformations adds to the execution performance
of the migration because after evolution, often models only change slightly, if at all. If the language
engineer is confident in his/her customised migration transformation, he/she has the option to
disable the execution of the checkout transformations, further improving the execution time of M .

The example did not include a relegate action, which imposes a manual intervention when
executing the migration. In that case, a conversion right before the µi that was relegated and right
after are kept. This way, the domain user who executes the migration transformation can only edit
models within the modelling space of MM[i−1,i].

Note that the example presented in this section is deliberately chosen to show the different
aspects of our approach. When using migration operations in practice, however, Herrmannsdörfer
et al. [86] have shown that in industrial case studies, generated migration operations can be used
for more than 99% of the total number of operations. It turns out that a majority of changes are
refactorings. Note that this might be due to the complexity of other (i.e., additive and subtractive)
changes. In contrast to the example, editing migration operations is needed for only a limited
number of cases.

3.3.3 Migration of Transformation Models

In addition to instance models, related transformation models must be migrated. A transformation
may often be represented as a graph transformation model, consisting of graph rewriting rules.
However, its implementation can be simpler in some cases, such as an XSLT transformation or
a simple script. Transformations can be total, i.e., mapping the entire domain onto the image.
In many cases, however, some language constructs of the domain do not have an image, so the
transformation is partial. In this case, semantic information is lost.
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Figure 3.17: The execution of E2PN after domain evolution.

Suppose we apply transformation co-evolution directly to the evolution of the Elevator rela-
tional ecosystem of Figure 1.3. An image evolution scenario was presented in Section 3.2.6: E2PN
co-evolves with the evolution of Petri nets. Syntactically, the co-evolved transformation would
be able to transform Elevator models of to inhibitor Petri nets: T'(m) = T(M(m)) as shown in
Figure 3.4 (b). In that case, M consists of one migration operation µ′1 that replaces place-antiplace
patterns with one place as explained in Section 3.2.6. Note that in this co-evolution, no adaptation
needs to be done to T. For optimisation however, T and M can be merged to a single transforma-
tion T'. The use of the intermediate metamodel plays a key role in the solution to this problem.
As concepts of both versions of the metamodel can be modelled in the intermediate model, no
information needs to be lost. The execution of the migrated transformation model is shown in
Figure 3.16. Therefore, instead of editing the transformation so that it produces MMPN instance
models, we convert the transformation to E2PN0 by applying rename operations (none in this
case) and type conversions (as shown by the left arrow of the evolution pipeline of Figure 3.11).
As a result, it produces Petri net models conform to the intermediate metamodel MM[0,1]. Next,
the migration transformation can be appended, so that the resulting T' produces inhibitor Petri
nets, that can then be converted to MMIPN by the right arrow of Figure 3.11. As now only one
transformation model remains, it can be edited.

The evolution of E and the co-evolution of E2PN is, when mapped to the relational ecosystem of
Figure 1.3, a case of domain evolution. As shown in Figure 3.4 (c), the co-evolved transformation
T'(m) = T(M−1(m)) is syntactically able to transform Elevator models conform to MME'. In order
to achieve this, M−1 must be defined. In that regard, it is advisable to define the reverse migration
at the time of defining M , because if a DSML evolves, domain evolution will likely occur. In the
example however, the information about EmergencyButtons would be lost after applying M−1.
This is often not desirable, as this information was deliberately added to the new version of Elevator.
The execution of the migrated transformation model is shown in Figure 3.17. In the case of domain
evolution for the semantic mapping E2PN, the mapping is migrated to the intermediate metamodel.
Then, when a MME′ model must be transformed, it must be migrated “towards” the converted
E2PN0 transformation by transforming the model to m9, conform to MM[0,9]. Syntactically,
E2PN0 can transform m9, because they both transform/conform to MM[0,9]. However, as the
transformation is virtually MM0 and the model is virtually conform to MM9, it is likely that the
mapping is not total any more. For example, EmergencyButtons and up_direction attributes will
not be transformed. Therefore, m9 will pass through some chosen slots in the migration pipeline.
In this example, it is desirable that FloorButtons are converted back to UpButtons and DownButtons.
We decide that the semantics of EmergencyButton are not relevant for our deadlock analysis in
Petri nets. Note that this judgement is not to be taken lightly, and relates to the general problem
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Figure 3.18: The execution of [[.]]OS after domain and image evolution.

of abstraction. Consequently, only the inverse migration operations of δ5 to δ8 of Figure 3.15 are
applied on the instance model, and checkout transformations for the inverse of δ9 and δ4. More
specifically, γ−1

9 introduces the nr attribute in each Floor (note that in this context a default value
of 0 can be given as it is not used in the E2PN transformation), and γ−1

4 removes all instances of
EmergencyButton. The other inverse delta operations are non-breaking. As a result, the migrated
transformation E2PN produces useful models again. Similar to image evolution, the migrated
transformation can be edited for optimisation.

Finally, consider the evolution of E and the co-evolution of [[.]]OS in the Elevator relational
ecosystem of Figure 1.3. An implementation of this co-evolution scenario is shown in Appendix C.
In the endogenous [[.]]OS transformation, both image and domain evolves, so both M and M−1

will have to be employed as shown in Figure 3.18. Since [[.]]OS makes use of the nr attribute of
Floors, γ−1

9 will not suffice and a µ
′−1
9 must be constructed to set nr values for each floor. The

transformation [[.]]OS can be reused, and has to be adapted only to add semantic information about
EmergencyButtons. Therefore, γ−1

4 , which simply removes EmergencyButtons, is removed from
the pipeline and E2PN is adapted (denoted as T ′0). In conclusion, the migration transformation
for instances can be reused as a structured starting point for transformation co-evolution. The
unavoidable manual adaptation of the co-evolving transformation is kept to its essence, i.e., the
inclusion of changed semantics.

3.4 A Framework for Modelling Language Evolution

In this section, a top-down approach for a framework for evolution of modelling languages is
presented. The concepts of previous sections will thus be mapped out in one framework. The main
requirement of this framework is that it must be complete, which means that it must be able to
handle every possible case of language evolution. Furthermore, it must present a solution that
maximises automation. This means that user intervention must be limited, and directed by the
framework. We can distinguish three levels of automation, ordered by the level of user intervention
required:

— full automation. This highest form of automation can be implemented in the framework itself.
If used, it does not require any manual intervention;

— evolution-specific automation. This form of automation is achieved at the level of evolution
itself, by the language engineer. As a result, the corresponding co-evolutions can be performed
automatically;

— no automation. If manual intervention is needed at the level of the co-evolving instances, by
the domain user, there is no automation.
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Figure 3.19: Feature diagram of the framework for evolution of a modelling language

Although full automation is desirable, the other classes of automation are sometimes necessary
as shown in the previous section.

Figure 3.19 shows a feature diagram [93] of the framework that is explained in this section.
Feature diagrams are a model for product families, and they model how different products can be
composed. In our context, we use it to describe a family of migrations, i.e., the diagram models all
possibilities for the evolution of modelling languages. The feature diagram shows what possibilities
have to be taken into account for the creation of a framework. Afterwards, an algorithm is provided.
Throughout the remainder of this section, the feature diagram is explained, and features from the
feature diagram are referred to in italic font. In order to support evolution (Evolve in the feature
diagram), the framework must support:

— model differencing (diff);

— co-evolution (co-evolve) of instance models or related transformation models. Depending on

107



CHAPTER 3. EVOLUTION OF DOMAIN-SPECIFIC MODELLING LANGUAGES

the context, this can originate from metamodel changes (src is MM) or changes of another
artifact (src is T and src is m). More than one possibility emerges here: an evolving artifact
can be an instance model in one mapping to the basic schema, a metamodel causing domain
evolution in another mapping to the basic schema, a metamodel causing image evolution in yet
another mapping to the basic schema;

— consistency of the system;

— continuity of the system;

These features are explained further in this section.

3.4.1 Difference between Models

The evolution of an artifact is modelled explicitly in a delta model, in order to derive a migration
transformation (semi-)automatically. Therefore, the difference between two versions of a model
needs to be represented (representation). As discussed in Section 3.5.1, there are two kinds of
representations: operational, where difference is modelled as a series of edit operations, and
structural, where difference is modelled using language elements (represented explicitly in a
metamodel).

Apart from representation, the calculation of the difference model is an essential part of the
framework. The difference models can be modelled manually (manual modelling), resulting in
evolution-specific automation. Full automation can be achieved when the difference is calculated
from the two versions of the metamodel (diff analysis), or when the changes are recorded at the
moment they are applied (change recording). Change recording is very accurate, and does not
require a complex algorithm to be implemented. However, it is dependent on that particular frame-
work and difficult to visualise. The differences in change recording are conveniently represented
as an operational model.

3.4.2 Evolution of Metamodels and Co-evolution

When following the migration approach of Section 3.3.2, a migration model (m migr) involves
creating an intermediate metamodel, a rename part δr and an additive/subtractive/updative part.
As stated in Section 3.2.2, the intermediate metamodel (intermediate MM) describes all concepts
of both metamodel versions, and can be generated fully automatically. The rename part, consisting
of all rename delta operations, can be automatically derived from the difference model. As
rename operations are not subject to the projection problem, migration operations and their inverse
(as necessary when applying transformation co-evolution) can be generated automatically. The
additive/subtractive/updative part (add/sub/up part), consisting of all delta operations other than
renaming, might need manual adaptation, so possibly no automation can be applied to some part
of the co-evolution. As a result, co-evolution is performed using automatic pass(es) and manual
pass(es). The manual pass can require undirected ad hoc adaptation, or can be directed by the
framework, which points out where manual intervention must be done in the co-evolving artifact,
as explained in Section 3.3.2.

In our framework we divide transformation co-evolution (T migr in Figure 3.19) in two parts: a
pipeline part and a manual part. The first part (pipeline part) can be automatically executed using a
combination of the evolution pipeline and the principles of image evolution and domain evolution
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as explained in Section 3.3.3. This means that the transformation is merged with M (merge with M)
or M−1 (merge with M−1). This process can be optimised (optimise) manually or automatically.
As noted, the simplistic approach of image- and domain evolution is not directly applicable to
additive or subtractive changes. Migration of a transformation model possibly requires a manual
part, typically used for the addition of new semantics. If an evolution comprises a lot of semantic
changes, the amount of effort that has to be put in this manual part will be greater. Note that,
when a series of evolutions are performed, the intermediate metamodel might describe a larger
modelling space, as concepts of all evolutions are incorporated. On top of this, the number of slots
in the pipeline will grow, as each evolution change is described by these migration operations.
Therefore, it is desirable to “freeze” the evolved system at some point, and optimise the migrated
transformations. This can be done either manually or automatically. An automated approach is
presented in [13]. From then on, the system can again be considered version 0.

If an instance model changes (src is m) or a transformation model changes (src is T), there are
two possibilities: either there is no impact on a metamodel (in case of regular instance edit) or
there are metamodel changes (in case of bottom-up edit). For the former, some transformations
may have to be executed again in order to maintain consistency among the model instances
(instance consistency). The latter is more complex and occurs when a tool supports bottom-up
editing [141, 40]. In bottom-up editing, the modeller can immediately edit an instance or concrete
syntax in order to change a language. The conversion of the m/T difference to a metamodel
difference (convert to MM diff) is supported by the bottom-up editor. Whenever the editor applies
a change to an instance model in the language, the change is generalised and applied to a (possibly
implicit) metamodel. Note that this is typically not done automatically, but rather, suggestions are
given. Ultimately, the modeller is presented a metamodel editor to allow manual metamodel edits.
Freehand editing can only be done if the other model is closely related to the original model, by a
homomorphic mapping. Homomorphic relations are in this context metamodel/instance or abstract
syntax/concrete syntax relations. When the metamodel changes (evolve MM), a new evolution is
triggered. Note that for a transformation model change, the domain metamodel might be subject to
change (domain edit) as well as the image metamodel (image edit).

3.4.3 Consistency and Continuity

When a language evolves and instance models and transformation models co-evolve, the system
might have become inconsistent (consistency). In many cases, it is desirable to solve this by
executing respective transformations so that the model instances are consistent again (instances).
In Section 3.3.2 preventive (using small steps with each their own intermediate metamodel) and
corrective (optionally using checkout transformations) mechanisms are presented. After the
necessary transformations have been executed, the system is consistent again. We assume that all
evolutions and co-evolutions are done correctly, i.e., they can result in a consistent system.

In addition to the consistency of instance models, we also have to take consistency between
abstract syntax and concrete syntaxes into account (concrete syntaxes). Due to the homomorphic
nature of the concrete syntax mapping and the tight coupling, this problem is usually simpler than
other co-evolution problems, as the concrete syntax mapping mainly consists of only simple one-
to-one transformation rules. When changing abstract syntax, the metamodels of the corresponding
concrete syntaxes must co-evolve. This requires migration of the metamodel of each concrete
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syntax (MMκ co-evolution). Also, κ and π themselves have to co-evolve (mapping co-evolution),
and the concrete syntax instances can be migrated as regular instances of a metamodel (instance
co-evolution). The other way around, in a bottom-up modelling tool, when a concrete syntax
structurally evolves it requires co-evolution of its abstract syntax. This will in turn trigger co-
evolution of the other concrete syntaxes, if available. In that case, co-evolution also happens for
instance models and the transformation model (i.e., concrete syntax mapping).

In order to perform a meaningful evolution, it must be continuous. This means that the system
is consistent and semantically equal to its previous versions (semantic similarities), with intended
changes taken into account (semantic changes). This can in principle be checked by executing the
semantic mapping and comparing the properties on these models by analysing their results. The
parts of the evolution that are semantic are isolated, so that they can be incorporated in a controlled
way.

3.4.4 Algorithm

DifferenceModel

+generateDefaultMigrationPipeline( intermediate : AbstractSyntax ) : MigrationPipeline
+convertTo( target : Model ) : DifferenceModel
+apply( target : Model ) : Model

TransformationModel

+evolve( target : TransformationModel, diff : DifferenceModel ) : void
+merge( transformations : TransformationModel ) : TransformationModel

+evolve( target : ConcreteSyntax, diff : DifferenceModel ) : void

ConcreteSyntax

InstanceModel

+evolve( target : InstanceModel, diff : DifferenceModel ) : void

AbstractSyntax

+evolve( target : AbstractSyntax, diff : DifferenceModel ) : void
+merge( delta : DifferenceModel ) : AbstractSyntax

Model

evolve( target : Model, diff : DifferenceModel ) : void
evolveTo( target : Model ) : void
execute( transformation : TransformationModel ) : void
difference( model : Model ) : DifferenceModel

ConcreteSyntaxMapping

OperationalDiffModel

MigrationConversion

StructuralDiffModel

MigrationOperation

RenderingMapping

MigrationPipeline

ParsingMapping

MetaModel

+instances

0..*

+metamodel

1

+image

1

+dependentTransformations

0..*

+domain

1

+parsingMapping

1

+renderingMappings

0..*

{ordered}

+steps

+abstractSyntax

1

+concreteSyntaxes

0..*

Figure 3.20: Class Diagram of the different kinds of model artifacts in the framework
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In this section, we describe an algorithm as the backbone of the proposed framework. In
Figure 3.20 a class diagram that is used by the algorithm is shown as an illustration. As this
research is in the context of MDE, it is not surprising that the root class is Model. Its subclasses
are:

— TransformationModel, that can transform models to other models. A TransformationModel
can be a ConcreteSyntaxMapping (which can be a RenderingMapping or a ParsingMapping), a
MigrationOperation or a MigrationPipeline which is an ordered set of MigrationOperations. A
MigrationOperation can be a ConversionOperation;

— InstanceModel, that conforms to a metamodel;

— MetaModel, that must be either an AbstractSyntax or a ConcreteSyntax;

— DifferenceModel, that is a model that describes the difference between two models. A Differ-
enceModel is either an OperationalDiffModel or a StructuralDiffModel.

Further in this section, an algorithm is shown for the evolve and evolveTo methods. These
methods offer a complete framework for language evolution in MDE, that can be used to tackle all
types of evolution. In the algorithms, methods that are shown in Figure 3.20 are used. Some of the
used methods (i.e., the association ends) are simple getters, more complex methods were discussed
previously in the chapter. The methods can be implemented as one wishes. This means that an
incremental implementation of the framework is possible using the algorithm, where initially
the implemented methods require a lot of manual work (e.g., the manual modelling of the delta
model), but gradually they are automated (e.g., by “plugging in” the DSMDiff algorithm [120] for
calculating the delta model). The used methods are:

— Model::execute: executes a transformation with the model as input. The target is known by the
transformation;

— Model::difference: calculates the difference of two models and returns a difference model (see
Section 3.5.1);

— TransformationModel::merge: merges two transformation models. This can be done trivially
by appending them (see Section 3.2.9 and Section 3.3.3);

— TransformationModel::domain: returns the metamodel of the domain of the transformation;

— TransformationModel::image: returns the metamodel of the image of the transformation;

— MigrationPipeline::steps: returns the sequence of migration steps that form the migration
pipeline. The conversion steps (MigrationConversion instances) from the old version to the
intermediate version, and from the intermediate version to the new version, are included (see
Section 3.3.2);

— DifferenceModel::generateDefaultMigrationPipeline: generates the default migration opera-
tions following Table 3.1;

— DifferenceModel::convertTo: converts the difference model of an original model to another
model;

— DifferenceModel::apply: applies the difference model to a model, so that the evolved model is
obtained;
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— MetaModel::instances: returns all available models that conform to this metamodel;

— ConcreteSyntax::parsingMapping: returns the parsing transformation;

— ConcreteSyntax::abstractSyntax: returns the corresponding abstract syntax;

— AbstractSyntax::merge: generates the intermediate metamodel for a given difference model
(see Section 3.3.1);

— AbstractSyntax::dependentTransformations: returns all transformations that use this metamodel
(for its input language and/or output language). It is assumed that these transformations only
have one input language and one output language. If in reality a transformation has two
output languages, than this transformation is returned twice, once for the first output language,
and once for the second one. This assumption is introduced to improve the simplicity of the
algorithms further in this section;

— AbstractSyntax::concreteSyntaxes: returns the corresponding concrete syntaxes;

— AbstractSyntax::renderingMappings: returns the rendering transformation;

— InstanceModel::metamodel: returns the metamodel of this model.

Figure 3.21 shows the method in pseudo code for the default case of abstract syntax metamodel
evolution. It executes the consequences of a metamodel, according to the new version of this
metamodel and the difference model. First, the intermediate metamodel and the migration pipeline
are created (lines 2-4). The INPUT() method denotes manual adaptation by the language engineer.
Then, instance models can be migrated (lines 5-9) by iterating over the migration operations and the
instance models. Next, the relevant transformations are migrated (lines 10-22) by first customising
the pipeline and, if necessary, the transformation itself (lines 11-12). Then, a distinction is made
between domain and image evolution (lines 13-21), and the transformation and pipeline are merged
accordingly. Note that the pipeline is traversed in the opposite way for domain evolution, so that
the inverse migration steps are used. In case of domain evolution, the transformation has to be
executed again on all instance models (lines 18-20). Finally, the concrete syntaxes are migrated
(lines 23-36). Hereby, the homomorphic relationship between abstract syntax and concrete syntax
is used extensively. The concrete syntax metamodel has to be migrated (line 24), as well as
the rendering mapping (lines 25-30), the parsing mapping (lines 31-32) and the concrete syntax
instances, which can be migrated by executing the migrated rendering mapping (lines 33-35).

Figure 3.22 shows the method for concrete syntax evolution in the more complex bottom-up
editing. The difference is converted to the corresponding concrete syntax metamodel, and the
algorithm of Figure 3.21 is called. As a result, the metamodel evolves and will migrate related
artifacts as described above.

Figure 3.23 shows the method for transformation evolution in the more complex bottom-up
editing. Both image and domain can change through the changes of a transformation model. The
difference model is converted to the domain metamodel, and the metamodel is evolved if there
was a difference (lines 2-6). Analogously, the image is evolved (lines 7-11).

Figure 3.24 shows the method for instance model evolution in the more complex bottom-up
editing. Analogously to Figure 3.23, the difference model is converted to the metamodel and the
metamodel is evolved.

Figure 3.25 shows the method for evolution without the knowledge of the difference model.
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1: function void AbstractSyntax::evolve(AbstractSyntax target, DifferenceModel diff) do // overridden from Model
2: MetaModel im = this.merge(diff) // create intermediate metamodel
3: MigrationPipeline pipe = diff.generateDefaultMigrationPipeline(im) // create migration pipeline
4: pipe = INPUT(pipe) // manually adapt, combine and optimise operations in pipeline
5: for all (MigrationOperation mm in pipe.steps()) do // migrate instance models
6: for all (InstanceModel i in this.instances()) do
7: i.execute(mm) // automatic or manual execution
8: end for
9: end for

10: for all (TransformationModel t in this.dependentTransformations()) do // migrate transformations
11: MigrationPipeline custompipe = INPUT(pipe) // manually adapt, combine and optimise operations in pipeline

for each t
12: t = INPUT(t) // the manual pass: semantic changes applied to the transformation model itself
13: if (this == t.image()) then // image evolution
14: t = t.merge(custompipe) // the transformation, followed by migration from intermediate model to new version
15: end if
16: if (this == t.domain()) then // domain evolution
17: t = custompipe.merge(t) // migration from new version to intermediate model, followed by the transformation
18: for all (InstanceModel i in this.instances()) do // execute the transformation again
19: i.execute(t)
20: end for
21: end if
22: end for
23: for all (ConcreteSyntax c in this.concreteSyntaxes()) do // migrate concrete syntaxes
24: c = diff.convertTo(c).apply(c) // use homomorphic relation to convert diff and apply
25: for all (RenderingMapping kappa in this.renderingMappings()) do // find rendering mapping for this concrete

syntax to migrate
26: if (kappa.image() == c) then
27: kappa = diff.convertTo(kappa).apply(kappa) // use homomorphic relation to convert diff and apply
28: break() // stop looking when it is found
29: end if
30: end for
31: ParsingMapping kappaInv = c.parsingMapping() // get parsing mapping to migrate too
32: kappaInv = diff.convertTo(kappaInv).apply(kappaInv) // use homomorphic relation to convert diff and apply
33: for all (InstanceModel i in this.instances()) do // synchronise concrete syntax models with abstract syntax model
34: i.execute(kappa)
35: end for
36: end for
37: end function

Figure 3.21: The evolve method for AbstractSyntax.

1: function void ConcreteSyntax::evolve(ConcreteSyntax target, DifferenceModel diff) do // overridden from Model,
assumes bottom-up modelling

2: AbstractSyntax as = this.abstractSyntax() // get the corresponding abstract syntax that will evolve
3: DifferenceModel diffAs = diff.convertTo(as) // use homomorphic relation to convert diff
4: AbstractSyntax asEvolved = diffAs.apply(as) // apply diff to obtain new version of metamodel
5: as.evolve(asEvolved, diffAs) // evolve the abstract syntax
6: end function

Figure 3.22: The evolve method for ConcreteSyntax.

The previous algorithms are in principle only usable for tools that record differences and obtain
the difference model automatically. Therefore, the method of Figure 3.25 is included, where the
difference is calculated by a difference algorithm, and the model is evolved, calling any of the
other algorithms.
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1: function void TransformationModel::evolve(TransformationModel target, DifferenceModel diff) do // overridden from
Model, assumes bottom-up modelling

2: AbstractSyntax domain = this.domain() // get the corresponding domain metamodel that will evolve
3: DifferenceModel diffDom = diff.convertTo(domain) // use homomorphic relation to convert diff
4: if not (diffDom is Null) then // check whether there was a change for the domain metamodel
5: domain.evolve(diffDom.apply(domain), diffDom) // evolve the domain metamodel
6: end if
7: AbstractSyntax image = this.image() // get the corresponding image metamodel that will evolve
8: DifferenceModel diffImg = diff.convertTo(this.image()) // use homomorphic relation to convert diff
9: if not (diffImg is Null) then // check whether there was a change for the image metamodel

10: image.evolve(diffImg.apply(image), diffImg) // evolve the image metamodel
11: end if
12: end function

Figure 3.23: The evolve method for TransformationModel.

1: function void InstanceModel::evolve(InstanceModel target, DifferenceModel diff) do // overridden from Model,
assumes bottom-up modelling

2: MetaModel mm = this.metamodel() // get the corresponding metamodel that will evolve
3: DifferenceModel diffmm = diff.convertTo(mm) // use homomorphic relation to convert diff
4: mm.evolve(diffmm.apply(mm), diffmm) // evolve the metamodel
5: end function

Figure 3.24: The evolve method for InstanceModel.

1: function void Model::evolveTo(Model target) do // main method
2: DifferenceModel diff = this.difference(target) // create difference model using a difference algorithm
3: this.evolve(target, diff) // now that the difference is calculated, evolve the model
4: end function

Figure 3.25: The evolveTo method for Model.

3.4.5 Prerequisites

We assume that an average MDE tool supports metamodelling, transformation modelling and
transformation execution. Following the discussion in this section, however, the proposed approach
relies on a few other techniques. As these techniques are not yet featured in the average MDE tool,
maximally automating all forms of evolution depends on the implementation of the following:

— metamodel transformation: the application of delta models and the generation of intermediate
metamodels requires the possibility to transform metamodels. To allow this, metamodels
should be modelled explicitly in a modelling language so they can adopt the role of an instance
model for the metamodel transformation;

— higher order transformation: the automatic generation of migration transformations out of delta
models requires support for higher order transformations, which are transformations that take
other transformations as input and/or output. In order to support higher order transformations,
the transformation language must be modelled explicitly (i.e., the metamodel is not available).
Several other uses for higher order transformation, inside and out of the context of evolution,
are discussed in [31, 137, 147]. It is widely accepted that higher order transformations are a
valuable feature in any MDE tool;

— model differencing: in order to support automated evolution on an industrial level, it must be
possible to generate delta models out of two versions of a model. Moreover, it is desirable
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that the activity of metamodelling does not have to change in order to support automated
evolution. Difference tools such as DSMDiff [120] and UMLDiff [215] are useful as they
detect differences retrospectively (see also Section 3.5.1);

— transformation inverting: in order to automatically co-evolve a transformation model in domain
evolution, the inverse of the migration transformation is needed. This can be implicitly featured
by providing the possibility to implement bi-directional transformations using Triple Graph
Grammars (TGGs) [184]. However, in that case, one is restricted to the use of bi-directional
transformation with triple graph grammars. It remains an open question whether TGGs are
expressive enough to obtain the inverse of the migration transformation (which may delete
elements). The other option is to (partially) automate the inversion of transformation models;

— representation of semantics: as not only the syntax but also the semantics of a modelling
language evolves, there must be a way to represent these semantic changes. The role of
semantics is very apparent when reasoning about automation of language evolution. A more
precise means to reason about semantics preservation is needed. Therefore, it is interesting to
look more into the properties of a model and into ontologies [12]. Also, the intents catalogue
presented by [124] can serve as an aid for more directed evolution. It remains to be determined
whether all kinds of semantic changes can be represented uniformly, when applying this
(ongoing) research to DSML evolution.

— merging of transformations: in order to optimise the sequences of transformations, they are
merged. In this sense, automatic merging of transformations can be of great convenience. This
can be simply done by chaining them, but the result can also be optimised.

The development of each of these techniques is a research topic in its own right. If all of
these techniques are supported by an MDE tool of choice, a framework for evolution can provide
maximal automation using the algorithm of Section 3.4.4. Nevertheless, the framework is still
valuable even if the prerequisites do not hold.

3.5 Related Work

In this section, work related to evolution is presented and some useful concepts are introduced.
This mainly covers the related topics of model differencing and model co-evolution. The research
in this chapter was conducted in 2009–2011, but subsequent related work shows that the presented
approach remains largely valid.

3.5.1 Model Differencing

A considerable amount of research has been done in the area of model differencing. Existing
approaches typically rely on the abstract syntax graphs of the two models to compare, and traverse
both graphs in parallel. Nodes in the graphs are matched by matching unique identifiers [1, 154], or
by a number of heuristics [120, 215, 99]. This research recently culminated in the implementation
of a comparison tool for the EMF framework called EMFCompare2. Van den Brand et al. describe
methods for assessing the quality of tools for model comparison [203], and applied their approach

2http://www.eclipse.org/emf/compare/
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to EMFCompare and their own tool RCVDiff. Specifically for metamodels, Liu et al. present the
MMDiff tool, which supports low-level differences between metamodels [122]. In the context
of UML, high level operations can be used in order not to lose the intent of the changes [220].
In this work the operations are similar to our delta operations. A metamodel-specific, highly
configurable matching algorithm is presented in [204]. The approach is based on an extended
metalanguage (metametamodel) based on MOF that includes an explicit conformance relationship
between metamodels and models. Könemann on the contrary, presents simple idioms to capture
the intention of model changes [106].

In difference representation, approaches are defined for an operational representation [1, 86],
possibly as a model transformation [111]. In structural (or state-based) representations, either the
model is coloured [120, 154, 183, 215] or a designated delta model is created which can be used
by modelling tools as yet another model in an appropriate language [30, 187, 112]. Van den Brand
et al. visualise the difference model as a combination of polymetric views for representing the
overview (suitable for zooming and filtering) and a generic visualisation framework for showing
the details of the difference model [205]. Di Rocco et al. step away from studying the difference
between just two models, and provide an approach to assess the impact of a change on related
modelling artifacts [50]. The impact can be visualised by keeping track of dependencies related to
the changes, by means of a traceability model. Interestingly, the authors also study the impact of
evolution in an ecosystem, much like our concept of a relational ecosystem.

Porres describes the state of the art in model differencing [163], and identifies the relationship
between an original model M1, an evolved model M2, and the difference ∆ as M2 −M1 = ∆

and M1 + ∆ = M2. In our approach, we circumvent the problem of differencing by starting from
the second equation. Porres describes a very similar merge operation as the one we present to
calculate the intermediate metamodel.

A general survey on model matching techniques can be found in [190], including the ap-
plication of reviewed approaches and a comparison of the kind of models that approaches are
intended to work with. An alternative to differencing is change recording, which is presented by
Herrmansdörfer et al. in the context of EMF [87].

Model versioning goes further than differencing, as it presents a multi-user view on model
changes. As a result, conflicts need to be detected, and resolved. Mens presents a classification of
resolutions for merging code in textual merging, syntactic merging and semantic merging [130].
Although, because of the graph-like nature of models textual merging is not considered a valid
technique in model versioning, syntactic and semantic merging (of either static semantic conflicts
or behavioural conflicts) and ditto differences are applicable to models too. When extrapolating
this classification to our work, our concept of consistency aims for syntactic validity similarly
to syntactic merging or semantic merging of static semantic conflicts, and our concept of con-
tinuity aims for “intended behaviour” similarly to semantic merging of behavioural conflicts.
Similar to model differencing, structural (called state-based), operational (called change-based)
and transformation-based (called operation-based) differences are identified. For graph-based
structures, Täntzer et al. distinguish between operation-based conflicts and state-based conflicts
and present merge actions for both [195]. Interestingly, the approach orders changes so that first
the additive changes are applied, and later the subtractive changes, to keep as much information as
possible. The authors present an implementation in EMF. The link between model versioning and
metamodel evolution is presented in [29], where metamodel and model changes are merged. Merg-
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ing is performed on the difference models and can be stored as such in the repository. Challenges
in model versioning are described in [2], also providing an overview. A more recent overview was
presented by Brosch et al. [95, 27].

3.5.2 Co-Evolution of Modelling Artifacts

The co-evolution (with evolution of their metamodel) of models has become an important research
topic. This research is inspired by the way the problem of language evolution is identified or
dealt with in other domains. In grammar evolution [102, 113, 161], the type/instance relation is
analogous to the metamodel element/instance relation. This type/instance relation is also present in
programming languages. In database schema evolution, database tables have to be migrated after a
change in the database schema [9, 119, 165] (cf. [175] for a survey). In format evolution, formally
specified documents (e.g., XML documents) must be migrated when their format (e.g., specified
in a DTD) changes [114, 192]. However, in modelling language evolution, the changes to model
semantics add a new “twist” to the evolution problems faced in these domains.

Many approaches represent model instance co-evolution as a model transformation [31, 77,
85, 86, 88, 187, 209, 212, 219]. Gruschko et al. write this transformation manually using the
Epsilon Transformation Language (ETL) [77]. They provide an automated copy operator that
allows the modeller to refrain from tediously writing ETL code for the model elements that do not
change. This algorithm is implemented in model migration framework Flock [176]. This default
rule generates target elements based on name equivalences between the metamodel versions. By
this, only transformation rules have to be manually developed for metamodel elements which have
been modified during metamodel evolution.

Sprinkle et al. [187] considered co-evolution of models by using changed semantics to design
co-evolution transformations. This differs from a syntactically driven approach that uses the
metamodel deltas. In that work as well as in [186], the authors proposed that syntactic co-evolution
(where the importance is only to load, but not interpret, the models) is feasible automatically, but it
seems to be impractical for semantic evolution. In the general case of semantic evolution concerns,
semantics-preserving transformations must be developed by language engineers manually, based
on their understanding of the semantic intent of the original models. However, for specific cases,
semantically-preserving co-evolution transformations are possible. In this work, we are following
this distinction.

There are several approaches for co-evolution which are based on model-to-model transfor-
mations. Garces et al. [67] proposed a set of heuristics to automatically compute differences
between two metamodel versions in order to adapt models. The computed differences are stored in
a so-called matching model, acting as input for a higher-order transformation (HOT), producing a
migration transformation. This is quite similar to our approach. The approach is implemented in a
prototype called AML and applied to evolution of the Java Netbeans design. Cicchetti et al. [31]
also presented a similar approach, i.e., the approach is again based on metamodel differences
acting as input for a HOT. Van den Brand et al. [206] presented a full approach by first calculating
the differences of metamodels. These metamodels are instances of a metametamodel, so model
difference techniques can be applied. The resulting difference operations are used as input for a
generic transformation that migrates instances, instead of using a HOT to generate a migration
transformation. This corresponds to our implementation in metaDepth presented in Appendix C.
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In [212], Wachsmuth proposed to combine ideas from object-oriented refactoring and grammar
adaptation to provide the basis for automatic (meta)model evolution. In this respect, metamodel re-
lations are defined based on model-to-model transformations, building the basis for the definition of
semantics preservation and instance preservation. Moreover, a set of transformations are proposed,
which are accordingly classified into refactoring, construction, and destruction transformations. In
[150, 117] the Model Change Language (MCL) is introduced. MCL is a declarative and graph-
ical language supporting a set of co-evolution idioms and conservative copying. The language
engineer defines relationships between elements of the metamodel versions. There are different
kinds of relationships starting from simple one-to-one mappings between classes to more complex
mappings for typing objects to new subclasses or for changing the containment hierarchy. More
complex co-evolution rules have to be defined in the context of the defined mappings as constraints
and actions in terms of C++ code. For unchanged parts of the metamodel no mappings have to
be defined due to the usage of name equivalences similar to Gruschko et al. The provided idioms
only cover syntactic co-evolution concerns but not semantic concerns. Most of the mentioned
model-to-model-based approaches intend to shield a language engineer from creating standard
copy rules by providing matching techniques or conservative copying techniques. However, the
non-automatically derivable parts have to be manually defined which seems to be more challenging
for the language engineer compared to using in-place transformations. This is due to the fact
that the language engineer has to reason about what elements look like in the source model, how
elements are represented in the target model, and how they are transformed by analysing the trace
information enforcing the user to work with three models. Di Rocco et al. specifically focus on
user intervention [51]. They provide an interactive tool where the user has to make simple choices
at given times, e.g., selecting which instances have to be removed if an association cardinality is
restricted.

Most approaches define some specific operations as building blocks for evolution, similar to the
operational representation of model differences. Such operations typically include “create class”,
“restrict multiplicity on association” and “rename attribute” and are related to object-oriented
refactoring patterns. Migration operations can be generated from sequences of delta operations.
It is important that any possible evolution can be modelled. There is a general consensus that
the proposed sets of delta operations do not suffice. Herrmannsdörfer et al. try to solve this
problem by repeatedly extending their list of delta operations [86]. The approach is implemented
in COPE, a tool for specifying the coupled evolution of metamodels and models. The co-evolution
of metamodels and corresponding models is realised by a set of so-called coupled operations,
composing a whole co-evolution problem of modular in-place transformations. Interestingly, they
classify migration operations with respect to their reuse: operations can be reused across different
metamodels, only across models of the same metamodel, or not at all. Expressiveness is ensured
by including custom coupled operations, but these must be expressed manually by primitives
embedded into the language Groovy. The authors observe that such unreusable operations, which
they call model-specific coupled changes, are only needed in less than 1% of the migrations in
their industrial use cases, when using an elaborated list of operations. Like COPE, we utilise
an incremental evolution approach, refraining from a single evolution process. However, our
incremental process is supported by computing intermediate merged metamodels, thus we allow to
model the migration of models by ensuring all metamodel constraints. Although the automated
synthesis of the intermediate metamodels gives up some control, it provides an ability to verify
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well-formedness, and differs from the metamodel-independent representation of models used in
COPE, which lacks the possibility for intermediate validation.

Although a less popular research topic than model co-evolution, the problem of transformation
co-evolution already described by Zhang et al. in 2004 [219]. Similar problems for grammar trans-
formations are addressed by Zaytsev [218]. In his work, a new model for grammar transformation
is presented to make them more adaptable. Similar commuting diagrams are identified, and the
concepts of image and domain evolution are reused. The approach includes explicit support for
manual intervention.

Levendovszky et al. state that transformation co-evolution is more complex, thus less automat-
able, than instance model co-evolution [116]. This is not surprising, because a transformation often
contains a significant part of the language’s semantics. Often, the transformation must be total,
i.e., must be able to transform every language concept. Therefore, additive changes will always
have to be incorporated in the transformation co-evolution. Levendovszky et al. call such additive
operations “fully semantic transformation operations”, but do not provide support for them.

Garcés et al. address image evolution and more extensively domain evolution [68]. Their
adaptation chains for migrating transformation models are very similar to our commuting diagrams.
Additionally, the projection problem is partly circumvented by using traceability models to keep
track of deleted elements. They show how traceability support can be injected into the transfor-
mation model by means of a HOT. The approach is implemented on top of Ecore, ATL [92] and
AML [67].

Since most of these approaches acknowledge the need for support for manual intervention,
Di Ruscio et al. present an approach to assess the adaptation cost in case of an evolution [179].
A classification of automated, partially automated and fully semantic adaptations is presented,
and dependency links are identified between transformation model and metamodel. This way,
the cost can be assessed, and if necessary lowered by refining metamodel changes, similar to our
divide-and-conquer strategy.

Other specific co-evolution scenarios that deal with other types of artifacts are studied since
our research. Di Ruscio et al. tackle the co-evolution of textual concrete syntax specification [178].
Also in this context, they use difference models and transformations to automate co-evolution. The
co-evolution of code generators is addressed by Di Rocco et al. [174]. Their work is applied to the
migration of Acceleo templates that consist mainly of OCL expressions. Automation is achieved
by using a HOT. The approach however mainly focuses on refactoring operations.

Recently, Hebig et al. advocate a holistic approach as they conducted six case studies in practice
to investigate MDE settings, which are similar to our concept of a relational ecosystem but includes
tools and artifacts that are not models [83, 82]. Their conclusion is that the composition of a MDE
setting is not seldom subject to evolution in practice, and that researches should extend their efforts
beyond the metamodel/model or metamodel/transformation relationship. Di Ruscio et al. discuss
the impact of evolution on different relations in the ecosystem and identify commonalities to define
a unifying and comprehensive adaptation process [177].

3.6 Conclusion and Future Work

The lack of support for automated evolution discourages modellers to implement the necessary
evolution of languages. In domain-specific modelling especially, modelling languages are used
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while under development or under on-going change. When such languages evolve, support for
(semi-)automated evolution of language artifacts is needed. At the time of this research, previous
research had been done on model co-evolution for metamodel evolution. Transformations or
semantics had not yet been taken into account. While addressing the problem of modelling
language evolution, we made the following contributions in this chapter, which are related to each
research question posed in Section 3.1:

— RQ 2.1. What is the role of syntax and semantics in language evolution?
We divided evolution into syntactic and semantic evolution. We identified a goal to satisfy
consistency and continuity in Section 3.1, effectively meaning that the evolution is syntactically
correct (i.e., the conformance relation is preserved throughout the system) and semantically
correct (i.e., the system has evolved according to the changes that were intended). We related
these concepts to our framework in Section 3.4.3;

— RQ 2.2. What is a complete set of language evolution scenarios that incorporates all possible
evolution scenarios?
We described four basic evolution scenarios in Section 3.2: model evolution, image evolution,
domain evolution and transformation evolution, which can each be handled (semi-)automatically.
We showed that the co-evolution of related artifacts can be mapped onto these basic scenarios.
The basic evolution scenarios can be combined to address all complex language evolution
scenarios;

— RQ 2.3. How can transformation models be co-evolved in case of language evolution?
We devised an approach for domain evolution and image evolution in Section 3.2. We identified
the projection problem that prevents the full automation of transformation model migration by
use of the migration transformation for instance models. We introduced a flexible and modular
migration pipeline, that can be reused for instance model migration as well as for transformation
model migration. The pipeline offers a high degree of automation by maximally employing
coupled migration operations, a high degree of control by isolating manual adaptation, and
high execution performance because of the given optimisations. From these building blocks,
we reconstructed a solution for transformation evolution in Section 3.3;

— RQ 2.4. How can we cover every possible case of language evolution?
We distinguished three levels of automation and we explored all possible consequences of
modelling language evolution in a feature diagram in Section 3.4, and discussed the level of
automation possible. We provided an algorithm that forms the backbone of our framework.
The algorithm uses techniques that are introduced or discussed throughout the chapter and con-
stitutes a coherent solution for the problem of modelling language evolution. The completeness
of the framework is achieved by showing how artifacts and their relations can be mapped on a
general DSML relational ecosystem. This is backed by the related work done after the time of
our research: we could not find any work that cannot be fit into the framework;

— RQ 2.5. What are the assumptions and limitations of the approach?
The framework is applicable to DSML relational ecosystems as described in Section 1.2.3.
Technological prerequisites for maximally automating the consequences of language evolution
are described in Section 3.4.5.
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The majority of approaches for language evolution perform best for evolutions that implement
refactoring. The other extreme is highly “semantic” evolution, where the meaning of the system
changes significantly. Current approaches do not support automation for such evolutions, as
the language engineer’s intent is implicit. Therefore, an interesting thread for future work is to
convert semantics to syntax, by explicitly modelling it. Chapter 2 addresses this problem partly by
providing support for property modelling. A second challenge lies in the relationships between
these properties and between (evolutions of) languages, to capture the “intended” changes of a
language. Recent work by Barroca et al. is an attempt to address this challenge by combining
ontology engineering with MPM [12].
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CHAPTER 4
Composition of Domain-Specific Modelling

Languages

Abstract. Complex systems require descriptions using multiple modelling languages, or languages
able to express different concerns, like timing or data dependencies. In this chapter, we propose
techniques for the modular definition and composition of languages, including their abstract,
concrete syntax and semantics. These techniques are based on (meta-)model templates, where
interface elements and requirements for their connection can be established. We illustrate the
ideas using the metaDepth textual meta-modelling tool. Semantically, language composition
can be exceptionally complex. In the domain of heterogeneous model composition, semantic
adaptation is the glue that is necessary to assemble heterogeneous models so that the resulting
composed model has well-defined and reasonable semantics. We present an execution model
for a semantic adaptation between heterogeneous models. We introduce two Domain-Specific
Modelling Languages (DSMLs) for explicitly specifying heterogeneous models on the one hand,
and rule-based adaptation blocks on the other hand. Both DSMLs are transformed to the ModHel’X
framework. The DSMLs enables the modeller to easily customise heterogeneous models and
semantic adaptations that fit this model in a modular way. We illustrate the use of our DSMLs on a
elevator door case study and demonstrate the importance of defining semantic adaptation explicitly
by comparing the obtained results to Ptolemy II.
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4.1 Introduction

Techniques such as metamodelling and model transformation greatly facilitate the development of
DSMLs. However, most development methods require the language engineer to start from scratch
when developing a new DSML. This is in contrast with the observation that there are similarities
between DSMLs: one might need a new variant of Petri nets, a different kind of automaton (as
there are tens of variants of these two formalisms), or the combination of a number of formalisms.
Therefore, there is a clear need for reuse of existing languages, or language modules as illustrated
by Pescador et al. [159].

In this chapter we introduce an approach for the modular composition of modelling languages,
based on existing language modules. Inspired by generic programming [75, 189], we use existing,
generic model composition mechanisms to achieve this [44]. A general terminology to generic
programming is given in a comparative study by Garcia et al. [69, 70]. In generic programming,
abstractions can be formalised in concepts as a set of requirements. Concepts can be refined
by incorporating the requirements concepts, and types can model the concept if they adhere to
its requirements. In metaDepth, these three notions of concepts, refinement and modelling are
implemented by the so-called extension mechanisms concepts, extension and templates, respec-
tively [42], which are explained more in detail below. By using these mechanisms, we aim for
general applicability of our approach, provided that these composition mechanisms are supported.
We support the composition of language modules in the three aspects of a language, abstract syntax,
concrete syntax and semantics. Our approach in metaDepth supports textual concrete syntax. The
following research question summarises this:

RQ 3. Can we extend generic model composition mechanisms, inspired by generic program-
ming, to the composition of DSMLs, in its three aspects, namely, abstract syntax, (textual) concrete
syntax and (operational) semantics?

This research question can be further refined into the following research questions:

— RQ 3.1. How can abstract syntax be combined using these composition mechanisms?

— RQ 3.2. How can textual concrete syntax be combined using these composition mechanisms?

— RQ 3.3. How can operational semantics be combined using these composition mechanisms?

— RQ 3.4. What are the assumptions and limitations of the approach?

We illustrate the approach with an elevator door example, for which a Timed State Machine
language is composed from reusable language modules.

Semantically, composition of languages can be very complex, but necessary in Multi-Paradigm
Modelling. A more advanced combination of semantics is necessary as different parts of the
system belong to different technical domains, but also because different abstraction levels, different
aspects of the system, and different phases in the design require different modelling techniques
and tools. It is therefore necessary to be able to cope with multi-paradigm, heterogeneous models,
and to give them semantics which are precise enough for simulating the behaviour and validating
properties of the system, and to generate as much as possible of the realisation of the system from
the model. To illustrate this complexity, we extend the example of an elevator door and show how
it can be modelled and simulated using a DSML for heterogeneous modelling. This DSML has a
visual concrete syntax and is mapped to ModHel’X, a framework for heterogeneous modelling.
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A major challenge in model composition is to obtain a meaningful result from models with
heterogeneous semantics. Tackling this issue requires that the semantics of the modelling languages
used in the composed models is described in a way such that it can be processed and, more
importantly, such that it can be composed. In this chapter, we focus on the definition of the
“composition laws” for heterogeneous parts of a model, which have to be explicitly described. A
key point of our approach is modularity: we should be able to compose heterogeneous models
without modifying them. These composition laws are captured in a technique called semantic
adaptation [23]. In ModHel’X, semantic adaptation can be explicitly described separately from
models and languages. Often complex semantic adaptations have to be coded however, which is
tedious and error prone. We introduce a metamodel for modelling semantic adaptation, founded
on an execution model. We then present a DSML that is designed to specify semantic adaptation
in an abstract and compact way.

RQ 4. What is a solution according to MPM principles for dealing with execution of heteroge-
neous modelling and semantic adaptation?

More specifically, we look for an answer to the following research questions:

— RQ 4.1. What is an appropriate formalism for heterogeneous modelling?

— RQ 4.2. What is an appropriate formalism for semantic adaptation?

— RQ 4.3. How is creating semantic adaptation improved by this formalism?

— RQ 4.4. What are the assumptions and limitations of the approach?

In this chapter we assume that no overlapping concepts exist between the to be composed
language modules. Instead, we assume that the languages are complementary. Hence, we use
the term compose rather than merge. Merging language modules implies resolving overlapping
concepts, which can cause conflicts (i.e., constraint violations in the context of modelling) [164]. In
this chapter, composition cannot cause conflicts. Rather than focusing on conflict resolution [164,
63] or avoidance [167, 38, 101], the contributions in this chapter are largely focused on the
composition of semantics.

This chapter is organised as follows: Section 4.2 addresses the composition of modelling
languages with textual concrete syntax and keeps a structural focus. Section 4.3 presents a solution
to this in the form of a DSML for semantic adaptation. Subsequently, Section 4.4 discusses related
work, and Section 4.5 concludes this chapter and presents directions for future work.

4.2 Composition of Modelling Languages

In this section some (meta)model composition mechanisms of the metaDepth tool [44] are exam-
ined to see whether they are applicable for language engineering. We use a model of an elevator
door as motivating example, and compose the three components of a modelling language: abstract
syntax, concrete syntax and operational semantics.

In Section 4.2.1 the mechanisms for composition are introduced. Then, Section 4.2.2 intro-
duces the elevator door example and the Timed State Machine language that will be composed.
Subsequently, the abstract syntax is composed in Section 4.2.3, concrete syntax in Section 4.2.4
and semantics in Section 4.2.5. The approach is evaluated in Section 4.2.6, where it is argued that
the composition of semantics can only be applied to compositions that are semantically relatively
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simple.

4.2.1 Composition Mechanisms

In this section we review some (meta)model composition mechanisms [44] that we will use in order
to compose modelling languages. These mechanisms are supported by the metaDepth tool [42]
that we will use throughout this chapter, but the mechanisms can be introduced in other modelling
frameworks.

Extension

We use two extension mechanisms, at the class/object level and at the metamodel/model level.
Inheritance is used as an extension mechanism for both types (class inheritance) and objects. In
the former case, children classes inherit attribute types defined in parent classes. In the latter case,
inheritance acts as value overriding. In this way, if children objects do not define a value for an
attribute instance, the value is taken from the parent object.

Regarding models, our first modularity mechanism is (meta)model extension, and is applicable
to models and metamodels. At the metamodel level, an extension is a metamodel fragment
that increments the elements in a base metamodel, by adding new types, new constraints, or
defining new attributes of existing classes. Therefore, it is similar to package merge in UML [53].
This mechanism allows a modular definition of metamodels, and is used intensively, e.g., in the
definition of the UML itself [153].

Our extension mechanism works at the model level as well, by using object inheritance. This
is useful to define libraries of predefined models, which can be later extended with further objects,
or to override the properties of existing objects.

Finally, models and metamodels can use the import directive in order to access other model
elements.

Concepts

Some of our composition mechanisms are based on expressing requirements that need to be
fulfilled by other (meta)models, to enable their composition. Using terminology from generic
programming [75], we call a structural concept a set of structural requirements to be fulfilled by a
(meta)model. They can be used to express requirements both for models and metamodels, and
therefore have the form of a model or a metamodel as well. For simplicity, this section explains
metamodel concepts, but explanations are also applicable to model concepts. A concept contains
classes, attributes and relations that need to exist in a certain metamodel, and therefore the concept
elements (classes, attributes, references) are interpreted as variables, which need to be bound to
the elements of the metamodel.

Concepts are useful in several ways as shown in Figure 4.1. First, operations can be defined
over a concept, so that they become reusable. When the concept gets bound to some metamodel,
the operation becomes applicable to it. In this case, the concept expresses the requirements for
the execution of an operation. Second, concepts can be used to express composition requirements.
Hence, it is possible define metamodel fragments, where some elements of such fragments are
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Figure 4.1: Expressing generic behaviour and composability criteria with concepts (from [44]).

variables. The requirements for binding such variables to concrete elements in other models can
be expressed through a concept.

A concept binding is a process in which the variables in a concept are bound to elements in a
metamodel [44]. It forms a one-to-one or many-to-one correspondence between the variables in
the concept and elements in the metamodel, allowing some heterogeneity between the concept
and the metamodel. For example, the subtyping relations in the concept must be preserved in the
metamodel, but the metamodel may collapse several classes, or add intermediate ones.

In order to gain further flexibility, hybrid concepts can reduce the structure required from a
specific metamodel to a minimum, but instead require the implementation of some operations.
Hence, in addition to a binding, the user needs to implement some operations (in EOL). The use
of hybrid concepts allows the user to hide unessential structural requirements behind operations,
which could, similar to Java interfaces, be implemented in different ways by different metamodels.

In order to create useful concepts, extension is required, because concepts only focus on
defining requirements.

Templates

While (meta)model extension provides an extensibility mechanism, such extensions are not a
reusability mechanism but a means for modularity. (Meta)model templates enable a more flexible
definition of model and metamodel fragments, as they permit their connection (perhaps through
extension) to other models, which are not specified at design time. Hence, a metamodel template
is a metamodel where some elements (metaclasses, features, associations) are variables. The
connection requirements for such variables are expressed through a concept.

Operation templates enable defining an operation independently of a concrete metamodel. For
this purpose, they are defined over a concept. The template parameters in the operation, which
are types, can be used as variables. A binding from the concept to some metamodel assigns a
particular type to each variable, and induces a retyping of the operation template, which becomes
applicable to the bound metamodel.

In order to create templates, a concept must be defined, which requires extension. It is up to
the user to assess whether the most basic composition mechanism extension suffices, or the usage
of concepts, or up the most reusable extension mechanism of using templates. It must however be
noted that concepts and templates are asymmetric, which means that both artifacts that are to be
combined are heterogeneous: one is a regular (meta)model and the other is a concept or template.
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Figure 4.2: A Timed State Machine for an elevator door.

4.2.2 Motivating Example

In this section, we introduce our motivating example based on Timed Automata [3] (see [15] for a
more extensive survey). In this chapter, we delve deeper into the behaviour of an elevator door. As
a motivating example, we focus on a particular component that is contained in the Elevator DSML.
We use a model of an elevator door, that manages opening and closing of the door, either prompted
by a button press or automatically invoked by the controller itself. This model is a refinement of the
door component, and allows us to analyse different properties. In this chapter, we use composition
techniques to investigate the most appropriate formalisms to model this component. Since the
elevator door model uses time delays and has modal and deterministic behaviour, timed automata
appears to be an appropriate formalism to model this component.

A timed automaton is a deterministic, finite-state automaton with a number of clocks. The
integer value of each clock increases step-wise, along with the execution of the automaton. A
transition may need an input symbol to be enabled. Additionally, a transition of a timed automaton
may have a guard expression over the clock values, which disables the transition if it returns to false.
A transition may also have actions that assign a new value to a clock, after firing the transition.
For the sake of simplicity, we assume that the clock value range is unbounded. Theoretically, this
automaton decides whether an input word (i.e., a sequence of input symbols) is accepted, if it is
in an accepting state after consuming the sequence. In our example, every state is an accepting
state so the language recognition possibilities of automata are not used in this chapter. Also, in our
example, it is not a requirement that for each state there is an outgoing transition for each symbol.
To stress the difference in usage, we call our formalism Timed State Machines.

Figure 4.2 shows a model in Timed State Machines of the timed behaviour of an elevator door.
The elevator door model can be in one of the following states, for which its outgoing transitions
are explained:

— doors_closed: the doors are closed, and the elevator is ready to start moving or the open button
can be pressed;

— doors_open: the doors are open, and the only possible action is to close the door, either
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Figure 4.3: The four steps for weaving the two languages.

manually or automatically after a time-out;

— doors_opening: the doors are sliding outward to open, and will eventually be open after a given
time delay, or can start closing again if the close button is pressed;

— doors_closing: the doors are sliding inward to close, and will eventually be closed after a given
time delay, or can start opening again if the open button is pressed or if an obstacle is detected
in the path of the door;

— elevator_moving: the elevator is moving, which means that the doors are blocked. After some
given time, the elevator stops and the doors automatically open.

The constant TD represents the time delay for the door to open or close. Two clocks x and
y are defined in this automaton. The clock x keeps track of the traversed time in a state and a
timed transition can occur when x reaches a certain value (i.e., the controller was a certain time
in the current state). To ensure these semantics, x is reset whenever the state changes. The only
exceptions are the transitions between doors_opening and doors_closing, because if the doors were
already opening for a certain amount of time, they need an equal amount of time to close. For this,
we use the formula x:=TD-x. A second clock y is introduced to model a second (parallel) delay in
the doors_open state, that occurs after pressing the close button.

The Timed State Machine language is an excellent example of our modular approach for
language engineering as it can be seen as a combination of two independent language modules:
(a) finite state machines, and (b) a language for expressions, with constructs for comparison,
assignment and simple mathematics (for the guards and actions). These two language modules
could be used autonomously, or in combination (using our approach) with different language
modules. Next, we show how to combine them, and how additional language constructs such as
clocks are introduced.

As shown in Figure 4.3, the Timed State Machine language is created from two existing
language modules: StateMachine and Expression. Using the composition mechanisms previously
presented, we tackle the three aspects of the language: abstract, concrete syntax, and semantics.
The two language modules are combined in four steps:

1. SMC: Template instantiation of the existing StateMachine template with the existing Expres-
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1 Model Expression {
2 Node DeclaredVariable { value : int; }
3 Node Assignment { op1 : AbstractVariable; op2 : Exp; }
4 abstract Node Exp;
5 abstract Node AbstractVariable : Exp;
6 Node Variable : AbstractVariable { context : DeclaredVariable; }
7 Node Literal : Exp { value : int; }
8 Node TrueLit : Exp; Node FalseLit : Exp;
9 abstract Node UnOp : Exp { op1 : Exp; }

10 abstract Node BinOp : Exp { op1 : Exp; op2 : Exp; }
11 Node Equals : BinOp; Node GreaterThan : BinOp; Node SmallerThan : BinOp;
12 Node NEquals : BinOp; Node GEquals : BinOp; Node LEquals : BinOp;
13 Node And : BinOp; Node Or : BinOp; Node Not : UnOp;
14 Node Plus : BinOp; Node Minus : BinOp;
15 Node Multiply : BinOp; Node Divide : BinOp; Node Modulo : BinOp;
16 }

Listing 4.1: Abstract syntax model of the Expression module.

sion language, to obtain SMC, a machine with conditions and actions;

2. TSM: Extension of SMC with a Clock language construct, to obtain TSM, a state machine
with time;

3. ExpressionTemplate: Extension of TSM to create a new template ExpressionTemplate,
linking identifiers in the expressions to a particular value;

4. TimedStateMachine: Template instantiation of ExpressionTemplate to link identifiers with
clocks.

(Partial) metamodels are shown in shaded squares representing a language module, with normal
arrows as associations and filled arrows as inheritance links. Template parameters are represented
by dark squares (with the name of the template variable preceded by “&”), instantiations1 of
template parameters are represented by dotted arrows, and extension is represented by large “+”
symbols. Applying these four steps results in TimedStateMachine, for which Associations have
conditions and actions that can refer to clock values: e.g., a transition that can only be fired if the
value of clock c is greater than 5 (see also Figure 4.2).

4.2.3 Composing Abstract Syntax

In order to create the abstract syntax for the language, the four steps presented above are followed:
A model for the Expression language is shown in Listing 4.1, representing simple algebraic

expressions. The language contains a way to declare variables (line 2) and to use them (line 6).
An abstract Exp class (line 4) is available which is a superclass of all kinds of expressions (lines
5–15), such as Equals, Plus, Literal (a constant value) or Variable (an identifier). The language
also contains an Assignment element (line 3) to assign new values to variables. For simplicity,
no distinction is made between Boolean and non-Boolean expressions. This module is a normal
metaDepth metamodel, but as we will see later, we can still extend it by means of inheritance.

Step 1. Listing 4.2 shows a template of a state machine. It has three template parameters (line
1), which are identifiers preceded by a “&”. The first parameter represents a model that contains

1Not to be confused with metamodel instantiation.
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1 template <&ConditionActionModel, &Condition, &Action>
2 requires Evaluatable(&ConditionActionModel, &Condition, &Action)
3 Model StateMachine imports &ConditionActionModel {
4 Node Symbol;
5 Node State {
6 initialflag: boolean = false;
7 finalflag : boolean = false;
8 }
9 Node Transition {

10 incoming : State;
11 outgoing : State;
12 symbol : Symbol[0..1];
13 condition : &Condition[0..1];
14 action : &Action[*];
15 }
16 oneInitial : $State.allInstances().one( s | s.initialflag=true)$
17 severalFinal: $State.allInstances().exists( s | s.finalflag=true)$
18 }
19 StateMachine<Expression, Expression::Exp, Expression::Assignment> SMC;

Listing 4.2: Abstract syntax template for the StateMachine module.

1 concept Evaluatable(&Evaluator, &EvaluatableNode1, &EvaluatableNode2) {
2 Model &Evaluator {
3 Node &EvaluatableNode1 {
4 operation eval() : boolean;
5 }
6 Node &EvaluatableNode2 {
7 operation eval();
8 }
9 }

10 }

Listing 4.3: A hybrid concept to ensure well-formedness of the StateMachines condition and
action.

the necessary concepts for conditions and actions and is imported into the StateMachine model
(line 3). The second and third parameter represent the condition and action construct, which are
then referenced in Transition (lines 13–14): a Transition may have a condition, and multiple actions.
A Transition also has an incoming and an outgoing State, and may have a symbol (lines 10–12). A
State can be an initial state or a final state (lines 6–7), and there should be exactly one initial state,
and at least one final state, as specified by constraints (lines 16–17). Constraints are expressed in
EOL-code between dollar signs. The template requires the fulfilment of the Evaluatable concept
(line 2). This concept is shown in Listing 4.3 and states that &Condition and &Action should be
node elements of a model &ConditionActionModel. Both nodes should implement an operation
eval (we will come back to this in Section 4.2.5). The eval operation of the first node parameter
should return a Boolean value, as it represents a condition. The eval operation of the first node
parameter does not return anything, and will be used as an action.

The template binding is done on line 19 of Listing 4.2. The Exp element of the Expression
module can serve as a condition for a Transition, and Assignment can serve as an action for a
Transition. All requirements that are imposed by the Evaluatable concept are fulfilled: Exp and
Assignment are indeed node elements of Evaluatable, and they do have the correct eval operation
(see Section 4.2.5). On line 25 of Listing 4.2 the template is instantiated with the Expression
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1 Model TSM extends SMC {
2 Node Clock { time : int; }
3 }

Listing 4.4: Adding the clock feature.

1 concept IntGettable(&Getter, &GettableNode) {
2 Model &Getter {
3 Node &GettableNode {
4 operation getValue() : int;
5 operation setValue(value : int);
6 }
7 }
8 }
9 template <&ContextModel, &Context> requires IntGettable(&ContextModel, &Context)

10 Model ExpressionTemplate extends TSM, &ContextModel {
11 Node RefVar : AbstractVariable { context : &Context; }
12 }
13 ExpressionTemplate<TSM, TSM::Clock> TimedStateMachine;

Listing 4.5: Linking the Variable element to a clock.

language, with Exp as the condition and Assignment as the action, resulting in SMC, a state
machine with conditions and actions.

Step 2. We still need an element denoting a clock, with a clock value. This is achieved by
using extension as shown in Listing 4.4. Line 1 states that the defined metamodel TSM extends
SMC, the template instantiation shown in line 25 of Listing 4.2. Note that this only adds an element
Clock to the metamodel, and no relations with other elements are defined yet.

Step 3. As shown in Listing 4.5, a variable RefVar that can reference variables outside of the
Expression module is added via extension. The new RefVar element inherits from the abstract
variable class AbstractVariable (abbreviated to AbsVar in Figure 4.3) so that it becomes usable in
an expression.

Step 4. The conditions and actions use named variables (e.g., x), which should be able to refer
to the clock values in our final timed state machine. This means that RefVar should be linked
(i.e., have a context) to a Clock instance. This is shown in Listing 4.5. To this end, the TSM
metamodel is extended by means of inheritance (line 11) and extension (line 10), where a RefVar
with a context is introduced. A hybrid concept (lines 1–8) defines the requirements for adding
a new kind of variable to the language. A template is created (lines 9–12). By using template
parameters, the Expression language is once again extended in a generic way. Finally, the template
is instantiated with a Clock (line 13).

The language TimedStateMachine that results from the four steps can be instantiated as shown
in Listing 4.6, which shows a elevator door metaDepth model. All five states (lines 7–11), two
of all the transitions (lines 13–16) and both clocks (lines 2–3) from Figure 4.2 can be recognised.
There are three input symbols (line 4) and the variable TD is declared (line 5). The conditions and
actions are expressions and assignments conforming to the Expression module. They are listed
below (line 18–29), and include RefVars to reference clocks (lines 18–19), a Variable to reference
the regular variable TD, and literals, assignments and operations. The syntax is quite verbose,
especially for the conditions and actions, which become similar to abstract syntax trees. Naturally,
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1 TimedStateMachine elevatordoor {
2 Clock x { time = 0; }
3 Clock y { time = 0; }
4 Symbol open; Symbol close; Symbol obstacle;
5 DeclaredVariable TD { value = 3; }
6

7 State doors_closed { initialflag = true; finalflag = true; }
8 State doors_open { finalflag = true; }
9 State doors_closing { finalflag = true; }

10 State doors_opening { finalflag = true; }
11 State elevator_moving { finalflag = true; }
12

13 Transition startmove { incoming = doors_closed; outgoing = elevator_moving;
14 condition = x2; action = [initx]; }
15 Transition obs { incoming = doors_closing; outgoing = doors_opening;
16 symbol = obstacle; action= [TDminx]; }
17 //...
18 RefVar varx { context = x; }
19 RefVar vary { context = y; }
20 Variable vartd { context = TD; }
21 Literal zero { value = 0; }
22 Literal two { value = 2; }
23 //...
24 Assignment initx { op1 = varx; op2 = zero; }
25 Assignment TDminx { op1 = varx; op2 = minus; }
26 //...
27 Equals x2 { op1 = varx; op2 = two; }
28 //...
29 Minus minus { op1 = vartd; op2 = varx; }
30 }

Listing 4.6: The elevator door model as an instance of the TimedStateMachine.

a simpler, more intuitive syntax is desirable, which is defined next.

4.2.4 Composing Concrete Syntax

In metaDepth, textual concrete syntax can be defined by creating a TextualSyntax model as
described in detail in [43]. Similar to defining the abstract syntax, we use the four steps described
above and the extension mechanisms in combination with the TextualSyntax language to obtain the
textual syntax model. The TextualSyntax model is compiled to an ANTLR grammar with semantic
actions, so that the parsing results in a metaDepth model. Just like the abstract syntax model, the
concrete syntax model is composed modularly with maximal reuse of existing models. In contrast,
the template and composition mechanisms are used at the model level, as we are building and
composing instances of the TextualSyntax metamodel. It is important to note however that the
compiler to ANTLR does not incorporate inheritance, which can be considered an important tool
for the extension mechanism. This limitation will result in some particular design choices in this
approach.

The textual concrete syntax model of the Expression module is shown in Listing 4.7. This is a
normal textual syntax model as presented in [43], where every model and node have an associated
concrete syntax definition. The Expression abstract syntax model of Listing 4.1 is imported (line
2) so that all its elements become accessible. The concrete syntax of the Expression module is
defined by assigning the reference model (as a string), name, and a parser rule stating that the
Texpr rule should be parsed (line 3). As expected in an expression language, the Texpr rule (line
4) defines its parser rule as a number of declarations, followed by one of all available (by an
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1 load "TextualSyntax"
2 TextualSyntax ExpressionSyntax imports Expression {
3 TModel TExpression { refModel = "Expression"; name = "Expression"; tempExp = ["&Texpr"]; }
4 TNode Texpr { tempExp = ["(( Tdecl ))* (( &Tlit | &TabsVar | &Tass | &Teq | &Tgt | ... ))|"]; }
5 TNode Texpr2 : Texpr {} // to avoid name clashes if Texpr is used twice in a rule
6 TNode Tdecl { refNode = DeclaredVariable; tempExp = ["var __id := #value ;"]; }
7 TNode Tlit { refNode = Literal; tempExp = ["#value"]; }
8 TNode Tvar { refNode = Variable; tempExp = ["< #context >"]; }
9 TNode Tass { refNode = Assignment;

10 tempExp = ["&TabsVar := &Texpr"]; creationExp = ["#op1 = &TabsVar", "#op2 = &Texpr"]; }
11 TNode Teq { refNode = Equals;
12 tempExp = ["( &Texpr = &Texpr2 )"]; creationExp = ["#op1 = &Texpr", "#op2 = &Texpr2"]; }
13 TNode Tgt { refNode = GreaterThan;
14 tempExp = ["( &Texpr > &Texpr2 )"]; creationExp = ["#op1 = &Texpr", "#op2 = &Texpr2"]; }
15 // ...
16 genPackage = "serializers";
17 fileExtension = "expression";
18 permitsLoad = true;
19 }

Listing 4.7: TextualSyntax model that describes concrete syntax for Expression.

or-operation, abbreviated) possible rules. Texpr2 is defined inheriting the parser rule of Texpr (line
5), in order to allow two uses of Texpr in subsequent parser rules. This is a technical issue: if twice
the same reference is used, a name clash will occur in the generated ANTLR code. Below, all
subrules are defined as recursive rules referring the Texpr rule. The TNode instances consist of
the node they will generate when this rule is parsed, an expression tempExp denoting the parser
rule that can directly reference attributes or use references to other parser rules, and an optional
number of expressions creationExp that assign results of referenced parser rules to attributes. In
the expression language, brackets are mandatory because the model is converted to a left-recursive
parser. Finally, some parser options are specified (lines 16–18).

It is important to note that TabsVar is not defined at this time. TabsVar will serve as an entry
point for later extension and is therefore currently left undefined. The reason for this was briefly
mentioned before: in TextualSyntax models, unfortunately, rules that inherit from an abstract
TNode such as TabsVar are not taken into account when TabsVar is used as reference in a tempExp.
If one wants to use the Expression module autonomously, one would have to extend this textual
syntax model with:
TNode TabsVar { tempExp = ["&Tvar"]; }

Step 1. Listing 4.8 shows a concept and template for the concrete syntax of the StateMachine
module of Listing 4.2. It defines the syntax for a StateMachine module (lines 9–10), Symbol
instances (lines 13–14), State instances (lines 15–19) and Transitions (lines 21–26). The syntax
for states and transition each consists of several possibilities, each modelled as its own rule.
Analogue to the StateMachine module, its concrete syntax consists of a concept and a model
template, so that the parser rules for Transition can reference the parser rule defined for the
template parameters &TCond and &TAct. They will become available when the model template is
instantiated (line 29), and additional rules are defined to make them usable in parser rules (lines
11–12), because template parameters cannot be directly used in parser rules. The template is
instantiated using ExpressionSyntax (see Listing 4.7). The textual syntax of the conditions and
actions are the template parameters &TCond and &TAct, that have to be TNodes in TextualSyntax
model &TConditionModel according to the ModelTNode2 concept (lines 1–6).
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1 concept ModelTNode2(&ModelSyntax2, &theTNode1, &theTNode2) {
2 TextualSyntax &ModelSyntax2 {
3 TNode &theTNode1;
4 TNode &theTNode2;
5 }
6 }
7 template <&TConditionModel, &TCond, &TAct> requires ModelTNode2(&TConditionModel, &TCond, &TAct)
8 TextualSyntax StateMachineSyntax imports StateMachine, &TConditionModel {
9 TModel TMachine { refModel = "StateMachine"; name = "StateMachine";

10 tempExp = ["StateMachine __id { (( (( &TSymbol | &TState | &TTransition ))| ))* } "]; }
11 TNode Tcond : &TCondition;
12 TNode Tact : &TAction;
13 TNode TSymbols { tempExp = ["alphabet (( &TSymbol ))+ ;"]; }
14 TNode TSymbol { refNode = Symbol; tempExp = ["__id"]; }
15 TNode TStates { tempExp = ["states (( (( &TState1 | &TState2 | &TState3 | &TState4 ))| ))+ ;"]; }
16 TNode TState1 { refNode = State; tempExp = ["__id"]; }
17 TNode TState2 { refNode = State; tempExp = ["> __id"]; creationExp = ["#initialflag = true"]; }
18 TNode TState3 { refNode = State; tempExp = ["__id !"]; creationExp = ["#finalflag = true"]; }
19 TNode TState4 { refNode = State;
20 tempExp = ["> __id !"]; creationExp = ["#initialflag = true", "#finalflag = true"]; }
21 TNode TTransition {
22 tempExp = ["(( &TTransition1 | &TTransition2 | &TTransition3 | &TTransition4 ))|"]; }
23 // ...
24 TNode TTransition3 { refNode = Transition;
25 tempExp = ["#incoming -> #outgoing #symbol [ &Tcond ] / (( [ &Tact ] ))* ;"];
26 creationExp = ["#condition = &Tcond", "#action = &Tact"]; }
27 // ...
28 }
29 StateMachineSyntax<ExpressionSyntax, ExpressionSyntax::Texpr, ExpressionSyntax::Tass> SMCSyntax;

Listing 4.8: TextualSyntax model that describes concrete syntax for StateMachine.

1 TextualSyntax TSMSyntax imports TSM, SMCSyntax {
2 TNode TClock {
3 refNode = Clock;
4 tempExp = ["clock __id #time ;"];
5 }
6 }

Listing 4.9: Adding the clock feature.

Step 2. Listing 4.9 shows how extension is used to define a concrete syntax for a Clock,
resulting in the concrete syntax of the TSM module.

Step 3. As shown in Listing 4.10, a parser rule for the reference variable RefVar is added to the
concrete syntax of the ExpressionTemplate module (line 12). Since inheritance is not supported
in parser rules, TabsVar is defined in this template as either applying the Tvar parser rule of the
original Expression concrete syntax model, or as the new TrefVar rule (line 11). Note how the
TModel parser rule replaces the one of the StateMachine concrete syntax model of Listing 4.8, and
adds the newly defined element references. Since parser rules are represented as strings, this is the
only way to extend the model parser. Nonetheless, the modularity of the parser expressions keep
the impact of this replacement limited.

Step 4. The parser rule for Clock is linked to the concrete syntax model by defining a concept
stating that a concrete syntax model with a TNode should be provided (lines 1–5). On line 16, the
above described template is instantiated with the TClock parser rule resulting in a concrete syntax
model for TimedStateMachine. On lines 12–14 it is stated where to save the generated code, that
the file extension for a TimedStateMachine is “.tsm” and that TimedStateMachine can be loaded in
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1 concept ModelTNode(&ModelSyntax, &theTNode) {
2 TextualSyntax &ModelSyntax {
3 TNode &theTNode;
4 }
5 }
6 template <&TContextModel, &TContext> requires ModelTNode(&TContextModel, &TContext)
7 TextualSyntax ExpressionTemplateSyntax imports TimedStateMachine, TSM, &TContextModel {
8 TModel TTimedStateMachine { refModel = "TimedStateMachine"; name = "TimedStateMachine";
9 tempExp = ["TimedStateMachine __id { (( (( &Tdecl | &TSymbols | &TClock | &TStates | &TTransition ))| ))* } "]; }

10 TNode TabsVar { tempExp = ["(( &TrefVar | &Tvar ))|"]; }
11 TNode TrefVar { refNode = RefVar; tempExp = ["#context"]; }
12 genPackage = "serializers";
13 fileExtension = "tsm";
14 permitsLoad = true;
15 }
16 ExpressionTemplateSyntax<TSMSyntax, TSMSyntax::TClock> TimedStateMachineSyntax;

Listing 4.10: Linking the Variable element to a clock.

1 TimedStateMachine elevatordoor {
2 alphabet open close obstacle;
3 clock x 0;
4 clock y 0;
5 var TD := 3;
6 states doors_open! doors_closing! >doors_closed! doors_opening! elevator_moving!;
7 doors_open->doors_open close [(y>1)] / [y:=0];
8 doors_open->doors_closing [(x=5)] / [x:=0];
9 doors_open->doors_closing [(y=1)] / [x:=0];

10 doors_closing->doors_opening open / [x:=(<TD>-x)];
11 doors_closing->doors_opening obstacle / [x:=(<TD>-x)];
12 doors_closing->doors_closed [(x=<TD>)] / [x:=0];
13 doors_closed->elevator_moving [(x=2)] / [x:=0];
14 doors_closed->doors_opening open / [x:=0];
15 elevator_moving->doors_opening [(x=5)] / [x:=0];
16 doors_opening->doors_open [(x=<TD>)] / [x:=0];
17 doors_opening->doors_closing close / [x:=(<TD>-x)];
18 }

Listing 4.11: The elevator door model using the modularly composed concrete syntax.

metaDepth.
Listing Listing 4.11 shows the elevator door model of Figure 4.2 as an instance of the Timed-

StateMachine, using the concrete syntax. The model is much more concise and clear, compared to
the same model using the default abstract syntax description (see Listing 4.6), especially for the
conditions and actions. Due to the limits of the TextualSyntax language and the associated left-
recursive parser, some inconveniences remain, such as using brackets around every (sub)expression,
using angle brackets to reference declared variables (line 11), and using semicolons to end nota-
tions. In this approach, no support is provided for parsing error notification, syntax highlighting,
automatic completion or other typical parser extensions for textual syntax. In order to implement
such support, the underlying ANTLR data structures can be used. Nonetheless, according to MPM
principles, support should be provided in metaDepth, at the modelling level.

4.2.5 Composing Operational Semantics

Abstract and concrete syntax are composed following the same outline. This is possible, as they
are both implemented as metaDepth models (metamodels in the case of the abstract syntax).
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1 operation DeclaredVariable setValue(value : Boolean) { self.value := value; }
2 operation DeclaredVariable getValue() : Boolean { return self.value; }
3 operation Literal eval() : Integer { return self.value; }
4 operation TrueLit eval() : Boolean { return true; }
5 operation FalseLit eval() : Boolean { return false; }
6 operation Assignment eval() { self.op1.context.setValue(self.op2.eval()); }
7 operation Equals eval() : Boolean { return self.op1.eval() = self.op2.eval(); }
8 // ...
9 operation Minus eval() : Integer { return self.op1.eval() - self.op2.eval(); }

10 // ...
11 operation Variable eval() : Integer { return self.context.getValue(); }

Listing 4.12: Operations for the Assignment and Equals elements of Expression.

1 concept ExecutableTimedStateMachine(&M, &S, &T, &C) {
2 Model &M {
3 Node &S {
4 operation isInitial() : boolean;
5 operation isFinal() : boolean;
6 }
7 Node &T {
8 operation incoming() : &S;
9 operation outgoing() : &S;

10 operation canFire(symbol : int) : boolean;
11 operation action();
12 }
13 Node &C {
14 operation getValue() : int;
15 operation setValue(value : int);
16 }
17 }
18 }

Listing 4.13: Concept for binding semantics to a Timed State Machine.

This means that the same composition mechanisms can be used. In this chapter, semantics are
implemented as EOL programs, a generic way of implementing operational semantics. This
means that the approach is not limited (nor tailored) to operational semantics as e.g., rule-based
transformations. Since semantics are implemented as EOL programs, other mechanisms, namely
hybrid concepts, operation templates and binding, have to be used.

The operational semantics of the expression module is shown in Listing 4.12. Operations
are eval methods that can be called on all language constructs (lines 3–11). For every operands,
eval operations are recursively called. For DeclaredVariable instances, getValue and setValue
operations can be called returning or setting the value (lines 1–2). These are used when evaluating
Assignments (line 6) and Variables (line 6).

Step 1. A concept ExecutableTimedStateMachine is defined in Listing 4.13, representing
requirements for a Timed State Machine simulator. This is a hybrid concept, as it requires both a
binding and an implementation of some operations. The concept requires a Model M and Nodes &S
modelling states, &T modelling transitions, and &C playing the role of clocks. For each element,
the concept defines which operations need to be implemented as they will be used by the simulator.
This way, semantics are decoupled from any specific metamodel. To make the associated simulator
executable, a binding is required, plus the implementation of some operations. In contrast to the
abstract syntax and concrete syntax after step 1, the clocks already have to be incorporated in the
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1 @concept(name="ExecutableTimedStateMachine")
2 operation main() {
3 // ...
4 current := &S.select( s | s.isInitial() ).first();
5 ws := 0;
6 while (ws < input.size()) {
7 ('step='+ws.toString()+' current='+current.name+' ').print();
8 symb := input.at(ws);
9 ws := ws+1;

10 for (c in &C.all()) { (c + '=' + c.getValue()+' ').print(); }
11 ('symbol=<'+symb+'> ').print();
12 x := &T.all().select( t | t.incoming()=current and t.canFire(symb) );
13 if (x.size()>0) {
14 'TRANSITION'.println();
15 currenttrans := x.first();
16 current := currenttrans.outgoing();
17 for (a in currenttrans.action) a.eval();
18 } else {
19 ('SKIP').println();
20 }
21 for (c in &C.all()) c.setValue(c.getValue()+1);
22 }
23 }

Listing 4.14: Simulator for Timed State Machines.

1 bind Evaluatable(SMC, SMC::Exp, SMC::Assignment) requires "ExpressionOps.eol"

Listing 4.15: Binding the operations to the Evaluatable language.

template according to this concept. The coupling can be chosen to be more loose however, such as
having a more generic doStep method, rather than a more limiting getValue and setValue.

Listing 4.14 shows the core of the semantics for the state machine language. The operation
uses the template parameters defined in the previous concept, and their operations, as stated in line
1. First, the initial state is set as the currently active state (line 4). Each iteration of the while-loop
(lines 6–22), the next symbol on a given input sequence is fed to the state machine. This is done by
first finding all enabled transitions (line 12). If there is at least one enabled transition (although
not specifically handled here, more than one transition should not be enabled as this language is
nondeterministic), the first (only) one is fired (line 16), and all associated actions are triggered
(line 17). In any case, even if there is no enabled transition, all clock values are incremented (line
21). When all input symbols are consumed, the simulator stops.

Listing 4.15 shows how the operations of Listing 4.12, implemented in the file Expres-
sionOps.eol, are bound to the SMC module. The Evaluatable concept was already shown in
Listing 4.3. As a result, the eval operations become available to the simulator.

These eval operations are used in the implementation of the operations declared in the concept
shown in Listing 4.13, such as isInitial, canFire or setValue. Listing 4.16 shows implementations
of the operations for the TimedStateMachine metamodel. The operation canFire (lines 5–7) and
action (line 8) in particular make use of the eval operations. The first four operations (lines 1–4)
are helper operations to enhance the reusability of the simulator. The simulator also makes use of
eval operations on line 17.

Step 2. Listing 4.17 shows implementations of the operations on Clocks. The time attribute
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1 operation State isInitial() : Boolean { return self.initialflag; }
2 operation State isFinal() : Boolean { return self.finalflag; }
3 operation Transition incoming() : State { return self.incoming; }
4 operation Transition outgoing() : State { return self.outgoing; }
5 operation Transition canFire(symbol : Symbol) : Boolean {
6 return (not self.symbol.isDefined() or self.symbol = symbol)
7 and (not self.condition.isDefined() or self.condition.eval()); }
8 operation Transition action() { for (action in self.action) { action.eval(); } }

Listing 4.16: Operations needed for state machine semantics.

1 operation Clock getValue() : Integer { return self.time; }
2 operation Clock setValue(value : Integer) { self.time := value; }

Listing 4.17: Operations needed for the Clock construct.

1 operation RefVar eval() : Integer { return self.context.getValue(); }

Listing 4.18: Operation needed to get a clock value.

1 bind ExecutableTimedStateMachine(TimedStateMachine, TimedStateMachine::State,
2 TimedStateMachine::Transition, TimedStateMachine::Clock)
3 requires "TimedStateMachineOps.eol"

Listing 4.19: Binding the operations to the ExecutableTimedStateMachine language.

can be set or retrieved.
Step 3. Listing 4.18 shows an implementation of the added eval operation For the RefVar

element. As a result, RefVars can now be evaluated and their time can be set or retrieved. This
means that the eval operation of the Assignment element is also applicable, as it sets a context
value through the setValue operation.

Step 4. Finally, Listing 4.19 shows the binding of the concept to the TimedStateMachine
metamodel defined in Listing 4.5. All parameters need to structurally correspond to the concept,
an must have the required operations. Note that both conditions and actions (which is depicted as
step 1 in Figure 4.3), and the clock are bound in this step.

4.2.6 Evaluation

We have demonstrated the use of different composition mechanisms to define abstract syntax,
concrete syntax and semantics of a language in a modular way. Abstract syntax and concrete
syntax are defined through metamodels and models, and therefore template models and concepts
are used. Semantics are defined differently, through an EOL program. They can be defined using a
hybrid concept, which gathers the elements and operations needed by the simulator template.

Listing 4.20 shows a trace of executing the model of Figure 4.2, after parsing the model of
Listing 4.11. A line is printed after every execution step (i.e., an iteration of the while loop in
the simulator), and represents a second. A certain input sequence of symbols is given, which
is consumed by the model in a step-by-step manner. The current symbol (often none) at every
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step=0 current=doors_closed y=0 x=0 symbol=<> SKIP
step=1 current=doors_closed y=1 x=1 symbol=<> SKIP
step=2 current=doors_closed y=2 x=2 symbol=<> TRANSITION
step=3 current=elevator_moving y=3 x=1 symbol=<> SKIP
step=4 current=elevator_moving y=4 x=2 symbol=<> SKIP
step=5 current=elevator_moving y=5 x=3 symbol=<> SKIP
step=6 current=elevator_moving y=6 x=4 symbol=<> SKIP
step=7 current=elevator_moving y=7 x=5 symbol=<> TRANSITION
step=8 current=doors_opening y=8 x=1 symbol=<close> TRANSITION
step=9 current=doors_closing y=9 x=3 symbol=<> TRANSITION
step=10 current=doors_closed y=10 x=1 symbol=<> SKIP
step=11 current=doors_closed y=11 x=2 symbol=<> TRANSITION
step=12 current=elevator_moving y=12 x=1 symbol=<> SKIP
step=13 current=elevator_moving y=13 x=2 symbol=<> SKIP
step=14 current=elevator_moving y=14 x=3 symbol=<> SKIP
step=15 current=elevator_moving y=15 x=4 symbol=<> SKIP
step=16 current=elevator_moving y=16 x=5 symbol=<> TRANSITION
step=17 current=doors_opening y=17 x=1 symbol=<> SKIP
step=18 current=doors_opening y=18 x=2 symbol=<close> TRANSITION
step=19 current=doors_closing y=19 x=2 symbol=<> SKIP
step=20 current=doors_closing y=20 x=3 symbol=<> TRANSITION
step=21 current=doors_closed y=21 x=1 symbol=<open> TRANSITION
step=22 current=doors_opening y=22 x=1 symbol=<> SKIP
step=23 current=doors_opening y=23 x=2 symbol=<> SKIP
step=24 current=doors_opening y=24 x=3 symbol=<> TRANSITION
step=25 current=doors_open y=25 x=1 symbol=<> SKIP
step=26 current=doors_open y=26 x=2 symbol=<> SKIP
step=27 current=doors_open y=27 x=3 symbol=<> SKIP
step=28 current=doors_open y=28 x=4 symbol=<> SKIP
step=29 current=doors_open y=29 x=5 symbol=<> TRANSITION
step=30 current=doors_closing y=30 x=1 symbol=<> SKIP
step=31 current=doors_closing y=31 x=2 symbol=<obstacle> TRANSITION
step=32 current=doors_opening y=32 x=2 symbol=<> SKIP
step=33 current=doors_opening y=33 x=3 symbol=<> TRANSITION
step=34 current=doors_open y=34 x=1 symbol=<> SKIP
step=35 current=doors_open y=35 x=2 symbol=<> SKIP
step=36 current=doors_open y=36 x=3 symbol=<close> TRANSITION
step=37 current=doors_open y=1 x=4 symbol=<> TRANSITION
step=38 current=doors_closing y=2 x=1 symbol=<> SKIP
step=39 current=doors_closing y=3 x=2 symbol=<> SKIP
step=40 current=doors_closing y=4 x=3 symbol=<> TRANSITION
step=41 current=doors_closed y=5 x=1 symbol=<> SKIP
step=42 current=doors_closed y=6 x=2 symbol=<> TRANSITION
step=43 current=elevator_moving y=7 x=1 symbol=<> SKIP
step=44 current=elevator_moving y=8 x=2 symbol=<> SKIP
step=45 current=elevator_moving y=9 x=3 symbol=<open> SKIP
step=46 current=elevator_moving y=10 x=4 symbol=<> SKIP
step=47 current=elevator_moving y=11 x=5 symbol=<> TRANSITION
step=48 current=doors_opening y=12 x=1 symbol=<> SKIP
step=49 current=doors_opening y=13 x=2 symbol=<> SKIP
step=50 current=doors_opening y=14 x=3 symbol=<> TRANSITION
step=51 current=doors_open y=15 x=1 symbol=<> SKIP
step=52 current=doors_open y=16 x=2 symbol=<> SKIP
step=53 current=doors_open y=17 x=3 symbol=<open> SKIP
step=54 current=doors_open y=18 x=4 symbol=<> SKIP

Listing 4.20: An execution trace of the elevator door model of Figure 4.2.

step is shown between angle brackets after symbol. Furthermore, the current state is given, the
clock values are given and it is shown whether or not a transition is fired. The trace shows that the
elevator autonomously starts moving, and after five seconds it stops moving and starts opening
the door. After one second, the close button is pressed, causing the door to close for one second.
Further in the trace, a closing door is opened again with a open button (step 21) and the detection
of an obstacle (step 31). Also, it is shown how manually closing the door happens after a delay
(step 36–38). Furthermore, it is shown that pressing the open button does not have effect when
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Step 1 Step 2 Step 3 Step 4
(SMC) (TSM) (Expression-

Template)
(TimedState-
Machine)

Abstract syntax hybrid concept
+ template

extension extension hybrid concept
+ template

Concrete syntax concept
+ template∗

extension extension concept
+ template

Semantics operation tem-
plate
+ binding†

operations operations hybrid concept
+ binding†

Table 4.1: Comparison of the degree of automation between the state of the art and ProMoBox.

moving (line 45) and when the doors are already open (line 53).

Table 4.1 summarises the use of composition mechanisms for each step. The correspondence
between abstract syntax and concrete syntax is clear. For abstract syntax, a hybrid concept is used
rather than a regular concept, to incorporate requirements about semantics, but apart from this,
the same mechanisms are used. One remark ∗ has to be made about defining the concrete syntax:
a parser rule for AbsVar must be intentionally left out to support later extension of the concrete
syntax model. Nonetheless, it can be concluded that, using the composition mechanisms, abstract
syntax and concrete syntax both can be combined in a modular, structured way.

The correspondence with the semantics is less straightforward however. The remarks † in
the Table 4.1 represent the issue that the actual binding of step 1 is only done in step 4, thus
entangling the different steps, at the expense of modularity. Also, the semantics of the clocks
have to be introduced in the simulation loop in step 1. This illustrates the core of the problem: a
more complex entanglement of semantics cannot be easily supported when using a programming
language. Many solutions exist in programming to tackle this problem, such as aspect-oriented
programming [97]. In the next section we investigate, according to MPM principles, an approach
that is specific to the simulation of modelling languages.

Additionally, the trace of Listing 4.20 reveals that the execution is not optimal. The Timed
State Machine language combines event-based logic (i.e., pressing buttons an timed events) with
continuous-time concepts (i.e., opening and closing the door). To obtain a less coarse execution
of the system, an execution step could be shortened to one millisecond or microsecond, but this
exposes the weakness of the approach: every step would need an entire evaluation of the model,
even if nothing is happening at that step. Clearly, the combination of heterogeneous formalisms is
not addressed with this approach.

In the next section, a solution to the combination of semantics of (heterogeneous) languages is
presented. Because of the inherent heterogeneity of the to be combined formalisms, the approach
will not combine simulators at the metalevel as done in this section, but will rather present a way
to communicate between heterogeneous simulators.

141



CHAPTER 4. COMPOSITION OF DOMAIN-SPECIFIC MODELLING LANGUAGES

4.3 A DSML and Execution Semantics for Semantic Adap-
tation

As concluded in the previous section, there is a need for composing models with heterogeneous
semantics, especially in the context of multi-paradigm modelling. We aim for a modular approach,
meaning that we should be able to compose heterogeneous models without modifying them. To
illustrate semantic adaptation, the elevator door example is adapted. It is subsequently modelled
and simulated using existing tools for heterogeneous modelling. The example is used to present a
DSML for heterogeneous modelling and another DSML for semantic adaptation.

The principles of heterogeneous modelling and semantic adaptation are explained in Sec-
tion 4.3.1. A more realistic version of the running example is presented in Section 4.3.2. Next,
a DSML for heterogeneous modelling, based on ModHel’X, is introduced in Section 4.3.3. In
Section 4.3.4 a second DSML is presented for the textual modelling of semantic adaptation, which
is put into operation in Section 4.3.5. A final discussion on semantic adaptation is presented in
Section 4.3.6.

4.3.1 Semantic Adaptation

The composition of semantics in the context of simulation is called semantic adaptation. in this
technique, composition laws are defined to enable run-time communication of heterogeneous
simulators, represented as models of computation in this context.

In [23, 24], the authors propose to consider semantic adaptation between heterogeneous parts
of a model along three axes:

— Adaptation of data. The adaptation of data consists in transforming data from a modelling
paradigm to data in another paradigm at the boundary between heterogeneous parts of a model.
For instance, an event with a value may be transformed into an input symbol for a state machine
according to some decoding table;

— Adaptation of control. The adaptation of control describes when different parts of the model
should be given control, so that they can process their inputs and produce outputs. This can be
quite complex because the requirements of different models of computation for the execution
of a model can interfere in complex ways. For instance, a model that processes a periodically
sampled signal should be given control only at its sampling instants, not when some input
becomes available for it. Some components may require that all of their inputs be available
before they are given control. For other components, the relationship between the availability
of inputs and control may be conditional. For instance, a logical OR gate needs to know the
value of its second input only when the other input is false. Control may also depend on a mix
of the occurrence of an event and meeting a deadline, for instance when a state machine has
both regular and timed transitions leaving its current state;

— Adaptation of time. The adaptation of time takes care of modelling the different time scales
used in different parts of an heterogeneous model. We consider here that time may be multi-
form [5] and counted in seconds in one model, in degrees of rotation in another, and in meters
in a third one. The semantic adaptation of time can be used to model the relationship between
the crankshaft and camshaft rotation angles in an engine, or to model the different paces at
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which time flows in GPS satellites and in a GPS receiver on ground as predicted by general
relativity.

The design of reusable semantic adaptation modules is difficult and error prone. Semantic
adaptation aims at defining a framework to reduce the semantic gap between adaptation behaviours
and low level coding in a general purpose language. The decomposition along three axes and the
use of models of time from MARTE [4] and CCSL [71] were a first step presented by Boulanger
et al. [23]. This work takes this a step further with an execution model for semantic adaptation, all
supported by DSMLs.

ModHel’X is a framework for modelling and simulating heterogeneous models developed by
Boulanger and Hardebolle et al. [23, 81]. ModHel’X allows for modular semantic adaptation by
explicitly defining an interface block between the parent model and the embedded model. In this
framework, semantic adaptation is modelled explicitly in a modular way using interface blocks [23],
and is considered along the three axes of data, control and time. The adaptation of time is necessary
when two models use different time scales. Interface blocks are similar to tag conversion actors
as presented in [28], but can perform more complex operations. In ModHel’X, control and time
adaptation rely on a model of time which is inspired from the MARTE UML profile [4, 71], and
can be considered as a restriction of the Clock Constraints Specification Language [71], extended
with time tags [22]. In this chapter, we use the name adaptation block instead of interface block,
to stress that the adaptation block is not just an interface, but also contains behaviour.

4.3.2 Motivating Example Revisited

As discussed in Section 4.2.6, the elevator door example semantically consists of two different
models: a controller representing the reactive behaviour, which actuates a plant model representing
a physical process. Therefore, modelling the elevator door in the Timed State Machines formalism
is not in accordance of MPM’s principle of modelling in the most appropriate formalism. A more
accurate solution is to model an elevator door controller as a Timed Finite State Machine (TFSM)
and the plant model as a Synchronous Data Flow (SDF) model.

The TFSM model differs from the Timed State Machines formalism of Section 4.2 in that there
is no concept of variables, clocks and expressions. A TFSM reacts purely on events, and can as an
action send events. Additionally, a transition can fire after a given timeout. All control logic of the
elevator door is implemented in this formalism. It models how the system reacts to button presses
or predetermined timeouts. As a result, the TFSM formalism is more appropriate for modelling
reactive behaviour with time, without the additional calculus of clock timeouts as with the Timed
State Machines formalism. Only “pure” timeouts are used here: in the example only one timeout
is defined, which models that the doors automatically close after 5 seconds. For simplicity, the
delay after pressing the close button when the elevator doors are open is left out in this example.
Timeouts that are inferred from other events, such as opening or closing doors, are not part of the
elevator door controller. Instead, events can be sent to the controller indicating that the door is
open or closed, or that the elevator is moving or has stopped. Together with the tree input events of
Figure 4.2 (open, close and obstacle), this totals in seven possible input events. The output events
are related to the motor of the elevator door: it can go inward to close (motor_in), outward to open
(motor_out) or stop (motor_stop).

The dynamics of the plant model for opening and closing an elevator door could be modelled
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Figure 4.4: The ModHel’X metamodel (adapted from [23]).

using differential equations, but for making the example easier to understand, we discretise its
behaviour and represent it using difference equations, for which a SDF is suitable. SDF is a data
flow formalism in which data represents discretised continuous signals. Data flows over arcs
through blocks, which represent functions. Continuity in SDF is approximated by using a fixed
time step. In our example, the plant model calculates according to an incoming motor signal, the
position of the door at a given time and whether the door is completely open or completely shut.
For simplicity, no acceleration is taken into account in this model.

Next, an implementation in AToM3 for heterogeneous modelling is presented in which the
above described example is implemented. The remaining part of this section will focus on how
these to models are simulated together by means of adaptation blocks.

4.3.3 A DSML for Heterogeneous Modelling

Although models and adaptation blocks can be programmed with ModHel’X, the language engineer
still has to code his/her models in Java, which is perceived tedious and error prone. Simple modelled
systems easily take several hundreds of lines of code. To this end, we introduce a DSML for
modelling block diagrams in AToM3. AToM3 is the most appropriate tool for this task, as an
advanced concrete syntax (i.e., geometric-based rather than connection-based [37]) is defined.

DSML Metamodel

The metamodel for the DSML for heterogeneous modelling is shown in Figure 4.4 and is heavily
influenced by the design of ModHel’X. Unsurprisingly, the semantics of the DSML is a mapping to
ModHel’X. This mapping is relatively straightforward, as most DSML elements directly correspond
to ModHel’X counterparts. Since ModHel’X revolves around generic modelling, a Model has an
associated ModelOfComputation that contains its execution algorithm. A Model also consists of a
number of Blocks that have a given BlockType. Blocks can be AtomicBlocks, that represent a simple
function, or AdaptationBlocks that contain another Model. Semantic adaptation is implemented
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Figure 4.5: The main DE model of an elevator door in AToM3.

in AdaptationBlocks, which thus introduces a hierarchical composition of models. Models and
Blocks alike can be connected through their input and output Pins. Output Pins of one Block
or Model can be connected to input Pins of another. Pins can have data Tokens on them during
simulation, which are managed by the ModelOfComputations. All NamedEntitys have properties to
represent static parameters (as name-value pairs), which are different depending on the BlockType
or ModelOfComputation. An Engine starts the simulation of the root Model, according to its
ModelOfComputation. This ModelOfComputation manages data (how data values are passed),
control (when which block is simulated) and time (at what moment simulation steps need to be
taken) between all Blocks in the Model. If a Block is an AdaptationBlock, it adapts data, control
and time for its embedded innerModel. The Engine and the ModelOfComputations rely on Clocks
that are of a specific type to keep track of advanced time during simulation. Clocks can have
several types of TagRelations (describing a relationship between clocks with a tag calculus to
define different clock scales) and ImplicationRelations (describing causal relationships between
a master and a slave Clock). The specific Clocks and relations that are used in the example are
explained below. A more detailed explanation on this metamodel and the workings of ModHel’X
can be found in [23].
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Figure 4.6: The TFSM model of an elevator door controller in AToM3.

A Model of the Elevator Door

The main model of the elevator door is shown in Figure 4.5. A Model is visualised as a large
rectangle, with its clock in the lower left corner. Inside, its Block elements are visualised as
white squares, with input Pins on the left and output Pins on the right. The Relation between
output Pins and input Pins is visualised by arrows. As usual in ModHel’X, the main model is
a Discrete Event (DE) model. This will allow for a more optimal simulation of the model, as
a DE model of computation only reacts when something happens. Intermediate time points are
skipped. Because DE is typically used as an outer model, blocks like scenario to specify a scenario
similar to an input model of Chapter 2, and plotter and display to show output traces similar to
visualising output models in Chapter 2. In between the actual model consists of a feedback loop
between the controller and a plant model, with a delay in between in order to avoid algebraic
loops. The controllerAB block is an adaptation block responsible for the semantic adaptation of
DE to TFSM, and doorAB is an adaptation block for the semantic adaptation of DE to SDF. In
conclusion, the controller and plant model communicate through an outer DE model representing
a communications bus between door and button panel. The bus is not modelled as a component
of the system for the sake of simplicity, and is modelled as a medium for propagating discrete
events instead. In [48] the approach presented in this section is however used to explicitly generate
different bus architectures.

Outside of the DE Model, the simulation Engine exec is shown, with its two clocks Snapshot
that keeps track of when new simulation steps need to be performed, and Stop that has the
sole purpose to end the simulation when triggered. There is a FilteredImplication between Stop
and Snapshot saying that Stop will be triggered after 10000 simulation steps. Additionally, the
ASAPClock denotes that the simulation will happen as soon as possible, so not in real-time.

In the DSML, elements are created and attribute values are set through a dialog box when double
clicking the element. In case of a AdaptationBlock, one of the dialog options is opening the inner
model. The path to the ModHel’X API is set, so that all available BlockTypes, ModelOfComputations
and AdaptationBlock types are collected. In the DSML, the type of each Block is subsequently
chosen via a drop-down box listing all options.

Figure 4.6 shows the inner Model called controller of the controllerAB block, which models the
elevator door controller. Instead of using a block diagram to model the TFSM, a different concrete
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Figure 4.7: The DSF model of an elevator door plant model in AToM3.

syntax is used that is more commonly interpreted as a state machine. The semantics are the same
though, as the TFSM is transformed to a ModHel’X block diagram. There are six DE Pins at
the left edge outside of controller and one on the right, corresponding to the input and output DE
Pins of the controllerAB. They are connected to the input and from the output TFSM Pins of the
controller, which represent simple TFSM input or output events that can occur. Data adaptation is
done here by converting DE values (which can have any integer value) to TFSM values (which
can be true or false) by setting properties on Pins. The five upper input TFSM Pins directly take
over the values from the DE Pins that originally come from the scenario block, which are 0 or
1. The bottom DE Pin represents whether the door is fully open, fully closed, or neither, and is
converted to two input events: open (if the DE Pin gets value 1, which is set as a properties entry)
and close (if the DE Pin gets value 0). Input events are not subject to zero-order hold, meaning that
they are not held afterwards if the condition is still valid, but they only occur when a value of the
associated Pin changes. The three output Pins of controller are converted to a Pin representing the
motor signal. The motor_out event (the door will go outward to open the door) is converted to a
motor signal of 1, the motor_in event to -1 and the motor_stop event to 0. Similarly, the conversion
is not subject to zero-order hold.

Figure 4.7 shows the plant model inside doorAB, which is executed every simulation step after
controllerAB. The default block diagram syntax is once again used, as it is a recognisable notation
for SDF. The simple plant model consists of three Blocks to calculate the position of the door:

— scale scales the motor input according to the step size, to obtain a realistic door movement
speed;

— integ sums up the door position increases and decreases by the motor to obtain the new position;

— lim models whether the door is fully open or closed, which will be directed through a Delay
block back to the controller. lim returns 1 if the position value is at least 5 (fully open), -1 if the
position value is at most 0 (fully closed), and 0 if the position value is in between these two
values.

The SDF Pin values can be directly forward from/to the doorAB DE Pins. Furthermore, the step
size can be set in the adaptation block as a properties entry. As a result, the global model of the
elevator door is a heterogeneous model involving three different modelling paradigms: DE, TFSM
and SDF. The semantic adaptation of the adaptation block between DE and SDF is more complex,
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Figure 4.8: The simulation trace without semantic adaptation.

and is the subject of the next section.

4.3.4 A DSML and Execution Semantics for Semantic Adaptation

If the example is executed with standard adaptation blocks (such as presented in e.g., Ptolemy
II [56]), the behaviour is not as expected: the plant model is not sampled periodically, meaning
that the door is not opening or closing with a constant speed. This is because it receives control
each time the controller sends a command to it, and it has therefore no proper dynamics. The result
is shown in Figure 4.8, where a large time step is chosen to clearly show the effect of a lack of
semantic adaptation. Whenever a button is pressed (i.e., when its signal is 1), the SDF model only
gets control for one time step and the door is opened or closed with the according distance (in this
case, 0.5). This time step may be at an irregular (i.e., not according to its periodic clock) moment.
Clearly, there is a need for semantic adaptation, more specifically the adaptation of data, control
and time in an adaptation block.

The DSML for semantic adaptation provides the modeller with the concepts that are necessary
for specifying the glue between heterogeneous models. By insulating the modeller from platform
specific issues, it allows him to focus on the problem at hand, and it also reduces the semantic gap
between what should be specified and how it is realised. A DSML implementing this metamodel,
the presented semantics and a concrete textual syntax are defined in metaDepth [42]. The solution
includes an ANTLR-based parser, an EOL script for generating code for the rules, and an EGL
script [43] for generating Java code for ModHel’X. These steps ensure that the transformation from
DSML code to Java code is entirely automated.
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Figure 4.9: Extension of AdaptationBlock in the ModHel’X metamodel.

The Adaptation Block Metamodel

Figure 4.9 shows an extension of the ModHel’X metamodel of Figure 4.4 where the AdaptationBlock
is decomposed. Through the input Pins of the AdaptationBlock, data Tokens can be received during
simulation from the parent Model, and if needed saved in a Store. The output Pins transmit data to
the parent Model. The Store explicitly models the state of the AdaptationBlock and can be a very
simple data structure to save the current Token on an input Pin but also a complex Buffer to store
multiple previous Token of an input Pin. Besides the Store, the AdaptationBlock can also register a
new Clock in the Engine. This Clock can be used to request observation of the embedded Model at
different time instances during execution.

The DSML for describing the behaviour of an adaptation block is based on Rules, which
are evaluated and return true when they match. DataRules and ControlRules are used to match
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conditions for the semantic adaptation of data and control. The order in which Rules are evaluated
is controlled by a RuleSchedule. Two different scheduling policies are defined: the AndSchedule
evaluates the rules in order as long as they return true, and it returns true if all rules returned true;
the OrSchedule evaluates the rules in order until one returns true, in which case true is returned.
The return value is only important for ControlRules, as it decides whether control must be given to
the embedded model (see also below for a description of the execution semantics).

DataRules are responsible for the adaptation of the data from the parent Model to the embedded
Model and vice versa. DataRules have a left-hand side (LHS), denoting pre-condition for the
applicability of the rule and a right-hand side (RHS) providing the needed action when the LHS
is matched. DataRules have access to Pins and a Store of the AdaptationBlock which serves as
a map of variables (variable key - value pairs). ControlRules are responsible for executing the
embedded model (i.e., giving control) at the current time instant. ControlRules have access to the
Store to create complex trigger events but they also access the AdaptationBlock Clock to create an
observation request in the future.

To ease the creation of Rules, we identified some common rule patterns, shown as subclasses
of DataRule and ControlRule in Figure 4.9:

• SimpleDataRule: this data rule is evaluated for every parameter Pin. If its LHS evaluates to
true, its RHS is executed. If onData is true, the RHS can only be executed if there are new
Tokens on the Pins;

• AggregateDataRule: this data rule allows for more complex patterns over multiple parameter
Pins, and will only be evaluated once. If its LHS evaluates to true, its RHS is executed;

• PeriodicOnRule: this control rule periodically gives control to the AdaptationBlock, and vari-
able names are given for period and offset so that they can be set when the AdaptationBlock
is used in a Model. The clock calculus in ModHel’X will make sure that the AdaptationBlock
is updated at the specified moments;

• StoreTriggeredRule: this control rule gives control to the embedded Model if its LHS (with
access to the Store) evaluates to true;

• ForAllPinsStoreTriggeredRule: same as a StoreTriggeredRule, but the LHS must be valid for
each Pin;

• ImpliedByRule: this control rule gives control to the embedded Model whenever a given Clock
is triggered and its LHS evaluates to true. This Clock can be triggered by ImplicationRelations.

This concludes the support for adaptation of data and control. For the semantic adaptation of
time, an AdaptationBlock can contain TagRelations between Clocks, which allows to convert dates
between their time scales.

The remainder of the DSML is composed of a small programming language consisting of
expressions that can be used in the LHS and RHS of Rules. In contrast to the Java code of
ModHel’X, the DSML includes domain-specific primitives. Many domain-specific expressions are
included to improve the intuitive notation of the adaptation block. The language is not considered
complete, and can be extended with more kinds of expressions if necessary. All implemented
expressions are listed below with a short explanation, and if necessary, an example showing the
concrete syntax:

— Exp: a statement or expression that does not necessarily have a return value;

— Expression: an expression with a return value;
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— StatementBlock: a block of Exp statements used as action in an RHS;

— Condition: an expression with a boolean return value, that can be used as LHS;

— ListExpression: an expression with a list return value;

— UnOp: a unary operation that has one Expression operand;

— BinOp: a binary operation that has two Expression operands;

— Variable: returns the value of a floating point variable that is external of the rule;

— Literal: returns a literal floating point value;

— Null: returns the null value. Expressed as NULL;

— CurVal: returns the Token value of the context Pin. The context Pin is the Pin that is the current
Pin in the lexical scope. Expressed as VALUE;

— PrevVal: returns the previous Token value of the context Pin, which is implicitly stored in the
Store. Can be used to e.g., see whether a token value has increased or decreased. Expressed as
PREVVAL;

— FromStore: returns the value from the Store that has the context Pin as key. Expressed as
FROMSTORE;

— ToStore: stores a value in the Store with Pin as key. Expressed as TOSTORE;

— Not, And, Or, Equals, GreaterThan, SmallerThan, NEquals, GEquals, LEquals: returns the
result of the corresponding operation;

— TrueLit: returns true. Expressed as TRUE or ALWAYS, so that it can serve as an empty LHS;

— FalseLit: returns false. Expressed as FALSE;

— ForwardToPins: forwards the value given as first operand to the Pin(s) given in the second
operand. Expressed as Forward <op1> TO <op2>;

— Successors: returns all Pins connected to the context Pin. Expressed as SUCCESSORS;

— WhereSelection: returns all elements of the first list parameter, for which the second condition
expression is true (with an iterator as context). Expressed as SELECT <op1> WHERE <op2>;

Execution Semantics in Five Phases

As shown in Figure 4.9, the adaptation block has five rule schedules for adapting data and control.
The semantics of these five different phases are shown in Figure 4.10. Each phase has its own
schedule (containing a set of rules), and each phase is provided with a set of pins as parameters so
that, besides the store, token values on pins become accessible in the rules. In case of the Data-in,
Control-rules and Data-update-in phases, parameter pins are the input pins of the adaptation block.
In case of the Data-update-out or Data-out phases the parameter pins are the output pins of the
embedded model. The phases are executed in the following order when control has been given to
the adaptation block:

— Data-in (data rules): when the adaptation block receives control, rules are executed to update
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Figure 4.10: Execution of an adaptation block.

the store of the block according to the incoming data tokens. More complex operations
(e.g., calculating an average of all token values) transform the data for further processing;

— Control (control rules): control rules decide if control should be passed to the embedded model
at the current instant according to the store of the block and the data on the input pins. Control
rules also create new observation request on the clock of the adaptation block so that it receives
control later (e.g., to emulate a timeout);

— Data-update-in (data rules): if the control rules give control to the embedded model, the
Data-update-in schedule is executed before control is passed to the embedded model. These
rules provide the internal model with correct inputs according to the values in the store and the
data on the input pins of the adaptation block. These rules are not evaluated if control is not
given to the embedded model;

— Data-update-out (data rules): after the execution of the embedded model, the Data-update-out
rules are used to update the store with the data available on the output pins of the embedded
model;

— Data-out (data rules): finally, the Data-out rules are in charge of producing the outputs of the
adaptation block from the data available in the store. This phase is executed even when control
is not given to the embedded model because the adaptation block may have to produce some
outputs any way (e.g., in case of zero-order hold).
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1 operation ForwardToPins compile() : String {
2 return "forwardToPins(" + self.op1.compile() + ", " + self.op2.compile() + ")"; }
3 operation Successors compile() : String { return "p.getSuccessorPins()"; }
4 operation CurVal compile() : String { return "cur_value"; }
5 operation PrevVal compile() : String { return "prev_value"; }
6 operation TrueLit compile() : String { return "true"; }
7 operation ToStore compile() : String { return "toStore(p, " + self.op1.compile() + ")"; }
8 operation FromStore compile() : String { return "fromStore(p)"; }
9 operation NEquals compile() : String {

10 return "!" + self.op1.compile() + ".equals(" + self.op2.compile() + ")"; }
11 // ...

Listing 4.21: Selected operations for compiling Exps.

Compilation to the Java ModHel’X API

The compilation to Java is performed in two steps, and can be implemented relatively straightfor-
ward because of the strict DSML structure. In a preprocessing phase, all Exps are compiled to Java
code snippets using EOL. The second phase is the actual code generation phase, written in EGL,
where the complete Java code is generated from the entire model.

The first phase is partly shown in Listing 4.21. The LHS and RHS Exp structures are transformed
to strings of Java code and added as fields to the LHS and RHS elements, called respectively
lhsstring and rhsstring. The code relies on name-based conventions, such as using cur_value

and prev_value (lines 4–5), as well as a generic API, partly from ModHel’X itself (e.g., the
getSuccessorPins method on line 3), and partly specifically implemented for the DSML (e.g., the
forwardToPins method on lines 1–2 and the toStore and fromStore methods on lines 7–8).

In Listing 4.22 the compilation of the data-in phase (lines 1–7), an OrSchedule (lines 9–23),
and SimpleDataRules (lines 25–45) are shown.

The data-in phase overrides a ModHel’X AdaptationBlock method called adaptIn (lines 1–2)
which is automatically called during simulation. If a RuleSchedule is set for the data-in phase, the
respective private method is called (lines 4–6).

An OrSchedule is compiled to a private method with a Boolean return value (lines 9–10). If
the schedule contains no rules, true is set as return value (lines 12–14). Then, a call to the private
method implementing each of the schedule’s rule is made (lines 15–16), and when one of them
evaluates to true, the return value of the schedule is set to true (line 17). A line is printed to the
console if the debug field in AdaptationBlock is set to true (line 20), and the return value is returned
(line 21).

Rules are compiled to private methods (lines 25–26) with the respective (as explained above)
Pins as parameter. Then, the rule is evaluated for every Pin. In case the onData field in the Rule
is true, an additional check for Tokens is performed (lines 29–31). Next, the cur_value and
prev_value variables are set, so that CurVal and PrevVal expressions can be used in LHS and RHS
(lines 32–35). The cur_value value is retrieved from the Pin Token, the prev_value value is
retrieved from the Store. Next the LHS is evaluated (lines 36–37) and if it returns true, the RHS
is executed (line 38). Because a DataRule’s return value is not relevant (only ControlRule return
values influence the AdaptationBlock behaviour), the method simply returns true (line 44).

Other rules are compiled similarly, and necessary generic helper functions (e.g., fromStore)
are generated during compilation. Additionally, the fields of AdaptationBlock are compiled to set
up the ModHel’X AdaptationBlock adequately.
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Listing 4.22: The EGL code for compiling the data-in phase, an OrSchedule and SimpleDataRules.

1 @Override
2 public void adaptIn() {
3 // Update input values when events occur
4 [% if (IB.datarulesin.asString() <> '') { %]
5 [%=IB.datarulesin %](this.getInputPins());
6 [% } %]
7 }
8 // ...
9 [% for (schedule in OrSchedule.allInstances()) { %]

10 private boolean [%=schedule %](Collection<Pin> pins) {
11 boolean returnvalue = false;
12 [% if (schedule.rules.size() = 0) { %]
13 returnvalue = true;
14 [% } %]
15 [% for (rule in schedule.rules) { %]
16 if ([%=rule %](pins)) {
17 returnvalue = true;
18 }
19 [% } %]
20 if (debug) System.out.println(" "+"Schedule [%=schedule %] returning " + returnvalue);
21 return returnvalue;
22 }
23 [% } %]
24 // ...
25 [% for (rule in SimpleDataRule.allInstances()) { %]
26 private boolean [%=rule %](Collection<Pin> pins) {
27 if (debug) System.out.println(" "+"SimpleDataRule [%=rule %]");
28 for (Pin p : pins) {
29 [% if (rule.ondata) { %]
30 while (p.hasToken()) {
31 [% } %]
32 Object cur_value = null;
33 try { cur_value = p.getToken(true).getValue(); } catch (IndexOutOfBoundsException e) {}
34 Object prev_value = null;
35 try { prev_value = this.fromStore(p); } catch (IndexOutOfBoundsException e) {}
36 boolean condition = [%=rule.lhsstring/*.replace("\\n", "\n").replace("\'", "\"")*/ %];
37 if (condition) {
38 [%=rule.rhsstring/*.replace("\\n", "\n").replace("\'", "\"")*/ %]
39 }
40 [% if (rule.ondata) { %]
41 }
42 [% } %]
43 }
44 return true;
45 }
46 [% } %]

4.3.5 A Semantic Adaptation DSML in Practice

In this section, we reconstruct the default composition behaviour that results in the simulation trace
of Figure 4.8 and the correct semantic adaptation between DE and SDF for the elevator door. The
models presented in this section are transformed using the metaDepth framework into ModHel’X
models in Java code.

Listing 4.23 and Listing 4.24 show adaptation blocks for both behaviours as a textual DSML
model. The first 8 lines state the structural properties of the adaptation block and are the same for
both behaviours. Line 1 presents the model name. On lines 2–3, the Java class and package are
specified for the code generator. Line 4 presents the clock of the adaptation block. In this case the
adaptation block has a timed clock, meaning that events occur at specific dates on a time scale (as
opposed to an untimed clock, where events have no date). Lines 5–6 and 7–8 respectively present
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1 AdaptationBlock {
2 IMPLEMENTS "DE_SDF_AdaptationBlock"
3 IN "tests.elevatordoor"
4 TIMED CLOCK abClock
5 EXTERNAL MODEL de (
6 "AbstractDEMoC" WITH TIMED CLOCK deClock)
7 INTERNAL MODEL sdf (
8 "SDFMoC" WITH UNTIMED CLOCK sdfClock)
9 RULES:

10 IN
11 CONTROL
12 UPDATEIN
13 FORALLPINS ALWAYS ->
14 FORWARD VALUE TO SUCCESSORS;
15 UPDATEOUT
16 FORALLPINS ALWAYS ->
17 FORWARD VALUE TO SUCCESSORS;
18 OUT
19 }

Listing 4.23: Model of the default
Ptolemy II behaviour

1 AdaptationBlock {
2 IMPLEMENTS "DE_SDF_AdaptationBlock"
3 IN "tests.elevatordoor"
4 TIMED CLOCK abClock
5 EXTERNAL MODEL de (
6 "AbstractDEMoC" WITH TIMED CLOCK deClock)
7 INTERNAL MODEL sdf (
8 "SDFMoC" WITH UNTIMED CLOCK sdfClock)
9 RULES:

10 IN
11 FORALLPINS ON DATA: ALWAYS -> TOSTORE(VALUE);
12 CONTROL
13 PERIODIC AT "init_time" EVERY "period"
14 UPDATEIN
15 FORALLPINS ALWAYS ->
16 FORWARD FROMSTORE TO SUCCESSORS;
17 UPDATEOUT
18 FORALLPINS ON DATA:
19 VALUE != FROMSTORE ->
20 TOSTORE(VALUE);
21 FORWARD VALUE TO SUCCESSORS;
22 OUT
23 TAG RELATION deClock = abClock
24 }

Listing 4.24: Model of the adaptation
block with semantic adaptation

the external (parent) model and internal (embedded) model. The parent model is called de and
adheres the ModHel’X AbstractDEMoC with a timed clock named deClock. Similarly, the
embedded model uses SDF, which is by nature untimed.

From line 9 onward, the rules that model the execution semantics are specified. These differ in
both models. The five rule phases, in their execution order, can be recognised from line 10 onward.

The default composition behaviour of Listing 4.23 does little semantic adaptation. No particular
Data-in rules are given, since the store is not used. There is no Control rule, because whenever the
adaptation block receives control, it will immediately give control to the embedded model. On
Data-update-in, the tokens on the input ports are forwarded with no adaptation to the embedded
model. This is modelled as the data rule on lines 13–14, which should be read as LHS→ RHS.
As a SimpleDataRule (denoted by FORALLPINS, EGL compilation code shown in Listing 4.22),
it is executed for every input pin of the adaptation block. The LHS is ALWAYS, as there are
no restrictions on when to forward data. The RHS specifies that the current token value CurVal
(VALUE) should be forwarded to the embedded model’s input pins to which the adaptation block
input pins are connected to (SUCCESSORS). In the Data-update-out phase on lines 16–17, the
tokens generated by the embedded model are similarly forwarded in another SimpleDataRule. As
mentioned before, in this phase VALUE and SUCCESSORS – which depend on the parameter pins
– refer to the token values and the successors of the embedded model’s output pins. In summary,
the default composition behaviour forwards all data instantaneously.

The intended behaviour with semantic adaptation of the DE to SDF adaptation block is shown
in Listing 4.24. Its simulation trace is shown in Figure 4.11, where the door steadily goes up and
down according to the scenario. The correct behaviour is more distinguishable when focusing on a
stop event around 33 seconds with large SDF steps of 0.5 seconds, as shown in Figure 4.12. The
adaptation block delays giving control to the SDF model until a new time step has started.
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Figure 4.11: The simulation trace with semantic adaptation.
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Figure 4.12: A part of the simulation trace with semantic adaptation with a very large SDF step
size.

The adaptation block periodically samples the SDF model. Data is provided to the embedded
model by applying zero-order hold from the input pins of the parent model to the input pins of
the embedded model, meaning that the last known value should be used. The Data-in rule on line
11 saves the data from the input pins in the store, each time a token is received (ON DATA). The
PeriodicOnRule on line 13 specifies the periodic sampling of the embedded model, starting at time
“init_time”, with a step of “period”, which can be set in the instance model. The Data-update-in
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Figure 4.13: An AToM3 screenshot from showing how a generated AdaptationBlock can be set as
BlockType.

rule on lines 15–16 implements the zero-order hold functionality by providing the input pins of
the embedded model with data from the store. Note that first-order hold (linear extrapolation)
could also be modelled by calculating new values based on the previous ones (stored the store)
every time the adaptation block is updated. A Data-update-out SimpleDataRule rule (lines 18–21)
checks for every pin whether the embedded model’s output value changed, by comparing it with
the previous one, which was stored. Initially the value in the store is null making sure the LHS
evaluates to true. Only when the output of the embedded model changes, tokens are forwarded
to the parent model. No event is consequently produced when the window is inactive. Finally a
SameTagRelation on line 23 specifies that time is measured the same way in the adaptation block
and in the embedding model. Note that in both models rules never had to explicitly scheduled, as
every phase contained at most a single rule.

4.3.6 Discussion

The DSML for heterogeneous modelling allows one to graphically model generic models, and
assign a different model of computation to every model. The DSML for semantic adaptation
allows one to explicitly specify the adaptation behaviour intended at the boundary between two
heterogeneous parts of a model. Both DSMLs address a different part of a heterogeneous system,
and are meant to be used together. First, an AdaptationBlock is specified using textual syntax
such as in Listing 4.24, and a Java class (such as DE_SDF_AdaptationBlock) is generated. Then, a
heterogeneous model is created in AToM3 such as Figure 4.5, with an AdaptationBlock instance for

157



CHAPTER 4. COMPOSITION OF DOMAIN-SPECIFIC MODELLING LANGUAGES

which the BlockType is set to the previously generated AdaptationBlock as shown in the AToM3

screenshot of Figure 4.13.
The use of both DSMLs is an improvement in three respects. First, models are created in a

graphical tool, which makes the topology of the models clear. Second, semantic adaptation is
clearly stated and configurable. Third, our approach leaves the models unchanged. This improves
modularity, as a given model may be embedded as is in different contexts; what needs to be
changed each time is just the adaptation layer defined using our DSML.

The proposed DSML was used to model the adaptation of the DE model to the TFSM model
of the elevator door system. The DSML is able to model all the needed constructs for the
adaptation block and generate Java code. Some constructs necessary for the adaptation of a wide
variety of models of computation may not be available in the DSML for semantic adaptation yet.
Nevertheless, the DSML offers a solid base, both syntactically and semantically, to which new
language constructs can be added.

The improvements mentioned here (specifying adaptation between models explicitly while
keeping the modularity of models) have been available in ModHel’X for a few years. However in
ModHel’X adaptation is coded in Java, so there is a semantic gap between high-level adaptation
mechanisms and the way it is actually written as low-level code that makes minute manipulations
of data structures. Moreover, an adaptation block in ModHel’X is scattered in several methods,
which makes its behaviour hard to follow. The five phased execution semantics and the DSML are
focused and concise: they bridge this semantic gap. More than 300 lines of Java code are reduced
to less than 25 lines of DSML code.

4.4 Related Work

According to the structure of this chapter, we split up related work in two parts: composition of
modelling languages, and heterogeneous modelling and semantic adaptation.

4.4.1 Composition of Modelling Languages

In [181], the authors propose a language embedding technique for creating families of DSMLs.
The abstract syntax is defined through metamodelling, the textual concrete syntax is specified
by means of a mapping between metaelements and keywords, and the translational semantics
is expressed by means of a proper transformation language. All the methodology relies on a
“host” language (in this case Ruby) that has to be expressive enough to allow the definition of
keyword extensions, scope restrictions, type and operator extensions, and overrides. A similar
approach is proposed in [156] by using the ATLAS Transformation Language (ATL) to combine
DSMLs semantics. The main distinction with the technique discussed in this work is the expressive
power of the template/binding mechanisms, which allow us to obtain extensive forms of language
combinations. In contrast, in [181, 156], merging and importing methods are exploited to address
modularity.

Other approaches provide host language mechanisms to support composition at the program-
ming language level of abstraction [60, 211]. While they succeed in composing abstract and
concrete syntaxes, they typically face semantics composition issues.
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In [202], the author discusses mechanisms for combining DSMLs with a particular focus on
multiview-based modelling approaches. A similar approach in [52] combines software architecture
DSMLs. DSMLs can be combined in several interesting ways by drawing correspondences among
different languages, though these approaches do not offer combination facilities comparable to the
template/binding mechanism illustrated in this work. Semantics combination is addressed only
in [52] and limited to the software architecture domain. Moreover, in general, merging graphical
concrete syntaxes discloses additional and non-trivial issues inherent to visual languages and
implicit semantics associated to symbols [52, 202]. That problem does not occur in our work
because of the exploitation of textual concrete syntaxes.

The work in [213] proposes to exploit feature diagrams to combine and refine DSMLs in a
product line approach fashion. Feature diagrams allow to select the set of features to be imported
by each language. While such technique is intuitive from the syntax points of view, it is not clear
how semantics can be combined.

The use of templates in modelling is not new. They are already present in the UML 2.0
specification [153], as well as in approaches like Catalysis’ model frameworks [54] and package
templates, and the aspect-oriented metamodelling approach of [33]. Interestingly, while all of them
consider templates for metamodels or class diagrams, none consider concepts or model templates.
Moreover, they do not consider concrete syntax or semantics.

In chapter 4 of his thesis [126], Mannadiar presents a template-based approach for the design
of modelling languages. The three aspects of a language, namely abstract syntax, (visual) concrete
syntax and (translational) semantics. The combination of semantics is restricted to discrete-event
semantics.

During the course of his master’s thesis at the University of Antwerp, Ugaz presented a survey
of composition of modelling languages [199]. Composition techniques in modelling, such as
aspect-oriented modelling, are extensively discussed, as well as approaches that combine visual
concrete syntax. The survey distinguishes eleven composition techniques, and subsequently,
these techniques are analysed. Most of the composition techniques are homogeneous, as they
combine models in the same language. Language composition in metaDepth is homogeneous,
semantic adaptation is heterogeneous because different models of computation can be combined
(although it can be considered syntactically homogeneous as well). The only other technique that
is heterogeneous is interfacing [59]. The number of generic and specific composition techniques
are evenly spread, and many techniques focus on the composition of UML models [153, 98, 214],
and more specifically of Class Diagrams [115, 59, 155, 167]. We focus on generic techniques that
can be applied to a wide variety of DSMLs. Other techniques also provide a generic solution [164,
10, 202, 144, 63]. It is concluded that semantic adaptation is the only technique that supports
continuous-time models. Furthermore, the composition of modelling languages in metaDepth
is the only approach that is implemented and that addresses all three components of a language
(abstract syntax, concrete syntax and semantics). Interestingly, Pedro et al. use the parametrisation
technique to combine visual concrete syntax [157]. According to the survey, the techniques used in
this chapter are unique in the sense that the actual composition is done at run-time. The reason for
this is that we focus on the combination of semantics, which we consider to be operational in this
chapter. The approaches presented in this chapter require manual composition, and are considered
highly modular. We focus on manual composition to enhance the expressive power of the language
engineer. In contrast, a number of approaches define an automatic composition [153, 10, 101, 167,
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63]. Unlike our approach, where it is assumed that there are no conflicts, other approaches include
conflict resolution [164, 63] or avoidance [167, 38, 101].

4.4.2 Heterogeneous Modelling and Semantic Adaptation

To focus of the related work for semantic adaptation is on three different tools for heterogeneous
modelling and simulation: Ptolemy II [56], Simulink®/Stateflow®2 and ModHel’X [23]. All of
these support heterogeneous modelling and they all use hierarchy as a mechanism for composing
the heterogeneous parts of a model. Other types of approaches are described in detail in [81].

In Simulink®/Stateflow®, a power window system which has many similarities compared to
the elevator door, has been studied at different levels of detail. The resulting models are available
as demos in the tool and became the seminal case study for semantic adaptation3. Consequently
the power window system is also modelled using Ptolemy II and ModHel’X, and the resulting
models are available online4.

Ptolemy II also explicitly supports the principle of models of computation. However, Ptolemy II
does not provide a default semantic adaptation between heterogeneous parts of a model. In the
power window example, the Window component (analogue to the elevator door plant model),
which is modelled using SDF, is interpreted as a DE component by the DE director. It is therefore
activated each time it receives an input event, and each data sample it produces is considered as a
DE event on its outputs. This results in a similar simulation trace as shown in Figure 4.8.

In order to model this semantic adaptation, the main DE model has to be modified in a way
that depends on the details of the realisation of the window model. If another modelling paradigm
is to be used for the plant model however, this adaptation would have to be changed. However, the
modification depends on the internals of the window model, so the global model is not modular.
Moreover, it is not easy to make a difference between a block which is part of the model and a
block which is there for semantic adaptation. Semantic adaptation is therefore diffuse and difficult
to specify and understand. We have successfully applied our approach to the power window
case [135].

In Simulink®/Stateflow®, which is a powerful and efficient simulation tool for heterogeneous
modelling, semantic adaptation is even more diffuse. The global semantics of a heterogeneous
model (for instance a Simulink® model including a Stateflow® submodel) is given by one solver
which is used to compute its execution. The solver uses parameters of the blocks and their ports,
in particular a parameter called “sample time”5, to determine when to compute the value of the
different signals. These parameters can be considered a form of semantic adaptation of control and
time. The resulting execution of the model depends on the value of these parameters and on the
type and parameters of the solver itself. Even if default values for these parameters are determined
by the simulation engine, the user must have a deep understanding of the solver’s mechanisms
and fine tune different simulation parameters to adapt the resulting execution semantics to her/his
needs. A part of the semantic adaptation can also be performed using blocks like in Ptolemy II or

2http://www.mathworks.fr/products/simulink/
3See the online documentation at http://www.mathworks.fr/fr/help/simulink/examples/

simulink-power-window-controller-specification.html
4Ptolemy II model: http://wwwdi.supelec.fr/software/downloads/ModHelX/

power_window_fulladapt.moml
ModHel’X model: http://wwwdi.supelec.fr/software/ModHelX/PowerWindow

5http://www.mathworks.fr/fr/help/simulink/ug/types-of-sample-time.html
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truth tables or functions, but with the same drawbacks. As a counterpart, the solvers of Simulink®

are very efficient and configurable.
ModHel’X was presented in Section 4.3.1 and aims for modular semantic adaptation to over-

come the shortcomings of Ptolemy II and Simulink®. An issue with ModHel’X is that the semantic
adaptation is specified using calls to a Java API in different methods of an adaptation block.
Therefore, constructing an adaptation block is tedious and error prone. The approach presented
in Section 4.3 attempts to improve ModHel’X by providing DSMLs for modelling systems and
modelling semantic adaptation. We used our approach to adapt hybrid languages that stem from
legacy systems and are combined as black boxes. We use the Functional Mock-up Interface (FMI)
standard for the communication between different language components over a bus. This allows
users to reuse legacy simulators. In addition, the approach allows users to generate different bus
architectures, depending on her/his needs.

4.5 Conclusion and Future Work

In this chapter we have shown how composition mechanisms extension, concepts and templates in
metaDepth are used for composing languages. The three aspects of a modelling language, namely
abstract syntax, concrete syntax and semantics, are combined. We have shown how there are clear
correspondences between combining abstract syntax and concrete syntax. Combining semantics in
metaDepth is done in a less structured way however, despite the use of hybrid concepts to explicitly
model what operations are required. Different composition steps get mixed up while composing
semantics, and more advanced semantic compositions lose all modularity.

These more advanced semantic compositions bring us to the concept of heterogeneous mod-
elling and semantic adaptation. The heterogeneity of the elevator door was tackled by using
models in a DSML with a visual concrete syntax and by assigning different models of computation.
Semantic adaptation is the “glue” that gives well-defined semantics to the composition of heteroge-
neous models. A second DSML in metaDepth with textual syntax was introduces to bridge the
cognitive gap between the implementation and specification of such semantic adaptation blocks.
The model of an adaptation block explicitly specifies the adaptation of data, control and time using
a set of rules. Furthermore, a model-to-text transformation is defined to generate the adaptation
block code for the ModHel’X framework. The DSML enables the modeller to easily customise
adaptation blocks that fit the heterogeneous models in a modular way, as involved models are left
untouched. The approach was illustrated on the elevator case study by reconstructing in ModHel’X
both the implicit Ptolemy II adaptation and the specific one needed between DE and SDF to
obtain the expected behaviour. We believe that the DSML and the execution semantics are, as a
principle, expressive enough to model different semantic adaptations of heterogeneous models,
though additional constructs might be needed for additional behaviours.

To summarise, we return to the reconsider the research questions stated in Section 4.1.

— RQ 3.1. How can abstract syntax be combined using these composition mechanisms?
We showed that abstract syntax can be composed by using extension to combine two metamod-
els and concepts to combine metamodels with templates in Section 4.2.3;

— RQ 3.2. How can textual concrete syntax be combined using these composition mechanisms?
We showed how to compose concrete syntax in a similar way to abstract syntax in Section 4.2.4.

161



CHAPTER 4. COMPOSITION OF DOMAIN-SPECIFIC MODELLING LANGUAGES

We determined the need for support for inheritance in the specification of concrete syntax;

— RQ 3.3. How can operational semantics be combined using these composition mechanisms?
We showed that operational semantics can be composed by using operations, hybrid concepts
and binding in Section 4.2.5. We observed however that composition of semantics is not
strongly linked to composition of abstract syntax, so operational semantics cannot be composed
as structured a way as is possible for abstract syntax;

— RQ 3.4. What are the assumptions and limitations of the approach?
In addition to the above-mentioned complications, we concluded in Section 4.2.6 that the
composition mechanisms do not suffice for more complex composition of operational semantics.
This further emphasises the need for a dedicated approach;

— RQ 4.1. What is an appropriate formalism for heterogeneous modelling?
We presented a visual DSML for heterogeneous modelling in AToM3 in Section 4.3.3, including
a mapping to the ModHel’X Java framework for heterogeneous modelling. We were able to
reuse a formalism in AToM3 for timed finite state machines. The visual syntax of the DSML
better reflects the graph-like nature of the models;

— RQ 4.2. What is an appropriate formalism for semantic adaptation?
We described a textual DSML for semantic adaptation in metaDepth in Section 4.3.4. We
enhanced the ModHel’X metamodel and introduced a rule-based language for defining the
adaptation of data, control and time. Expressions in the DSML are highly specific to the
domain of semantic adaptation;

— RQ 4.3. How is creating semantic adaptation improved by this formalism?
We were able to reconstruct the default Ptolemy II semantic adaptation of Discrete Event models
to Synchronous Data Flow models, and corrected it with our own model in Section 4.3.5. The
DSML models are only tens of lines of code, and are transformed to hundreds of lines of Java
code;

— RQ 4.4. What are the assumptions and limitations of the approach?
In our approach, we assume a step-wise behaviour of models of computation. More specif-
ically, a model of computation should be able to execute a finite step. This means that the
necessary abstraction steps need to be made to map e.g., continuous models to the approach.
Successfully modelling semantic adaptation depends on the granularity of the involved models
of computation, and the divisibility of its execution steps. Additionally, we do not guarantee
the applicability of our DSML for semantic adaptation to any possible model of computation.
To counter this, the DSML can be extended with new language constructs.

Future work is necessary to determine the exact boundaries of the composition mechanisms as
presented in metaDepth. While it is clear from this chapter that language composition is possible,
the question arises what the limitations are, and how modularity can be ensured. Also, some slight
adaptations can be done to metaDepth to alleviate the minor inconveniences for e.g., composing
concrete syntax. Additionally it remains to be seen whether these techniques are also applicable to
a visual concrete syntax. Rafael Ugaz explored this topic in his master thesis at the University of
Antwerp [200]. His work also includes an extensive survey of existing techniques [199].

In the context of semantic adaptation, the models and semantic adaptation between them were
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explicitly modelled. What has been left implicit are the models of computation. By lack of explicit
models of computation, they were considered as black boxes in this chapter. In future work, models
of computation can be modelled explicitly. For this, a DSML could be again devised. This DSML
can be based on a time calculus [22] to reason about simulation steps. In the context of this chapter,
the main benefit of explicitly modelling models of computation is that constraints can be added
extensively to the DSML for semantic adaptation to make sure that the semantics of adaptation
blocks are correct. Additionally, an explicit model of computation also results in better modularity,
reuse possibilities, analysis possibilities, platform independence, inter-tool operability and other
benefits of DSM. Mustafiz et al. continue our work and combine models of computation that are
represented as a combination of Statecharts and Class Diagrams [148]. In contrast with our work,
their approach assumes that models of computation are white boxes.

A final remark is that when discussing the combination of semantics, we solely focused on
operational semantics. Further research can be conducted to investigate how to compose languages
with translational semantics. The combined language modules might map to the same semantic
domain, or to different but possibly overlapping semantic domains. Related to this, composition of
code generators of two language modules is interesting future work.
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5.1 Summary

The ever increasing complexity in systems we analyse and design results in the rise of Model-Driven
Engineering (MDE) [182]. Such complex systems require solutions for various disparate problems.
This heterogeneity is tackled in Multi-Paradigm Modelling (MPM) by explicitly modelling all
aspects of the system under study and modelling processes using the most appropriate modelling
language(s), at the most appropriate level(s) of abstraction [146, 45]. The goal is to minimize
“accidental” (as opposed to “essential”) complexity [25] by capturing only the essence of a problem.

In Domain-Specific Modelling (DSM) [74] the general goal is to provide means for domain
users to model systems in their problem domain. Techniques such as metamodelling and model
transformation enable users to create Domain-Specific Modelling Languages (DSMLs) for domain
users. Current DSM techniques allow users to model at the domain level and simulate the model,
optimise the model, transform the model to other formalisms, test the model, synthesise code,
generate documentation, etc. According to MPM principles, multiple aspects/views as well as
subsystems are modelled using distinct DSMLs, which are specifically designed to address a
specific facet of a problem. This implies that not only system modelling, but also modelling
language engineering, becomes part of the development process. Modelling language engineering
is thus a vital part of DSM. In this thesis, we assume that modelling languages are defined by
a metamodel, a concrete syntax model and operational or translational semantics, all of which
are explicitly modelled. This section summarises the three presented contributions to modelling
language engineering, compatible with the MPM principles.

5.1.1 Verification for Domain-Specific Languages (Chapter 2)

Verifying whether a model satisfies a set of requirements is considered to be an important challenge
in DSM [65]. It is nevertheless mostly neglected by current DSM approaches. Verification has been
achieved by translating models to formal representations. Logic-based formulas in formalisms
such as Linear Temporal Logic (LTL) [162] and Computation Tree Logic (CTL) [58] are used to
represent the temporal properties that need to be verified [171]. These temporal properties can
be verified using e.g., model checking techniques [34]. Currently, domain users need to have a
profound knowledge of some logic to express properties. This violates the principles of MPM.
As with design models, the level of abstraction for specification and verification tasks needs to
be raised to the domain level, as domain users should not be exposed to underlying notations and
techniques [210]. In this sense, DSM should not only address modelling the design of a system, but
also its properties, its environment, its run-time state, and its execution traces, which should all be
modelled at the domain level, in their own DSML. No general DSM solution exists for specifying
properties at a domain-specific level, matching the domain-specific level at which design models
are specified. Furthermore, such domain-specific property specification requires the means to
automatically verify whether a system design satisfies these properties. This led to the following
research question:

RQ 1. Can we find a general MPM solution to support the specification of (temporal) properties,
as well as their verification? This solution should include support for verifying these properties.
The user should only be exposed to domain-specific concepts. The solution should weigh as little
as possible on the lightweight DSM process, and should be an extension of the existing DSM
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techniques for design languages.
We presented a solution in the form of ProMoBox, a framework that integrates the definition

and verification of temporal properties in discrete-time behavioural DSMLs, whose semantics can
be described as a schedule of graph rewrite rules. Thanks to the expressiveness of graph rewriting,
this covers a very large class of problems. With ProMoBox, the domain user models not only the
system with a DSML, but also its properties, input model, run-time state and output trace. A DSML
is thus comprised of five sublanguages, which share domain-specific syntax. The sublanguages
are generated from a single metamodel to keep them consistent and to avoid duplication, that is
annotated to denote the role of each language concept. The operational semantics of the DSML
is modelled as a transformation and is annotated with information about input and output. The
modelled system and its properties are transformed to Promela, and properties are verified with
Spin, a tool for explicit state model checking. In case a counterexample is found, its execution
trace is transformed to the domain-specific level as a trace model, which can be played out. Thus,
whilst modelling and verifying properties, the domain user is shielded from underlying notations
and techniques. Following MPM principles, the process of the ProMoBox framework is explicitly
modelled in a Formalism Transformation Graph and Process Model.

We evaluated the ProMoBox approach in three ways. Firstly, we assessed the verification
time in Spin of the generated Promela model, and anecdotally showed that execution times and
memory consumption are no worse than their hand-made counterparts. Secondly, we showed
that ProMoBox is a lightweight solution by comparing to existing DSM approaches. Thirdly, we
investigated the impact of evolution of models in ProMoBox, to evaluate the approach’s sensitivity
to change. This included replacing the verification backbone of Promela and LTL by Groove
and CTL. In conclusion, ProMoBox provides a solution for the specification and verification of
properties in a highly flexible and automated way, according to MPM principles.

I was responsible for most of the ideas in this chapter. These ideas were shaped by collab-
orations with Manuel Wimmer (Vienna University of Technology). He introduced the idea of
translating rule-based semantics to Promela. During this research, I also worked together with my
advisor Hans Vangheluwe, Levi Lucio (McGill University), Eugene Syriani (Universié de Mon-
tréal), and Romuald Deshayes (Universié de Mons), who helped shape ProMoBox. Furthermore, I
was responsible for the implementation and evaluation of ProMoBox.

5.1.2 Evolution of Domain-Specific Languages (Chapter 3)

In software engineering, the evolution of software artifacts is ubiquitous [131]. Diverse artifacts
such as programs, data, requirements, and documentation may evolve. In DSM, where modelling
languages play a central role, evolution occurs not only at the level of models, but also at the level
of modelling languages. Language evolution applies in particular to DSMLs, where relatively
frequent changes in the problem domain as well as in the implementation target domain (e.g., due
to external technical or strategic decisions) must be reflected in the respective languages. Possibly
large numbers of modelling artifacts such as instance models or transformation models become
invalid and unusable when a related DSML is modified/evolved. Consequently, support for
(semi-)automated co-evolution of language artifacts is needed. Ad hoc approach are tedious
and error-prone [197]. The reason for this is that syntax of languages such as UML [153] and
BPMN [151], which have evolved considerably over the last few years, easily comprise several
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hundreds of elements. Also, the semantic differences resulting from this evolution, either intended
or intentional, can be subtle. Hence, dealing with evolution requires in-depth knowledge of the
language as a whole. Without a proper scientific foundation, as well as methods, techniques and
tools to support evolution DSM cannot live up to its promise of ten-fold productivity increase [96].
This becomes apparent when projects span longer periods of time [180]. Most contributions in this
field are focused on (semi-)automatic model differencing [30] and on the co-evolution of instance
models [86]. Nevertheless, in a DSML relational ecosystem, there are other modelling artifacts
that might have to co-evolve, which may in its turn trigger co-evolution of more modelling artifacts.
In our work, we present a solution to the following research question:

RQ 2. What is a solution according to MPM principles for dealing with the consequences of
language evolution?

We presented a framework that deals with all possible consequences of language evolution
in a DSML relational ecosystem. In the framework, language evolution is de-constructed in a
selection of possible delta operations, and associated migration operations to co-evolve instances,
based on related work. Contrary to related approaches at the time of this work, we focus on
the neglected problem of transformation co-evolution. We de-constructed the consequences
of evolution and identified four basic evolution scenarios: model evolution, image evolution,
domain evolution and transformation evolution, which can each be handled (semi-)automatically.
Consequently, co-evolution of a transformation can be achieved by chaining, where necessary,
inverse migration transformations before and migration transformations behind the transformation
to make it applicable to evolved models. We described the projection problem that prevents the
full automation of transformation model migration by use of the migration transformation for
instance models. The projection problem occurs when the DSML semantically evolves (i.e., its
properties change), in contrast to refactoring. Nevertheless, by de-constructing language evolution,
our approach isolates such manual interventions. Furthermore, when taking the DSML relational
ecosystem into account, we showed that the co-evolution of related artifacts can be mapped onto
these basic scenarios. Moreover, the basic evolution scenarios can be combined to address all
complex language evolution scenarios. We identified a goal to satisfy consistency and continuity,
meaning that the evolution must be syntactically correct (i.e., the conformance relation is preserved
throughout the system) and semantically correct (i.e., the system has evolved according to the
intended changes). These concepts were related to our framework.

Finally, we defined and implemented an approach for instance co-evolution and transformation
co-evolution. We introduced a flexible and modular migration pipeline, that can be reused for
instance model migration as well as transformation model migration. The pipeline offers a high
degree of automation by maximally employing coupled migration operations and a high degree of
control by isolating manual adaptation which is deliberately syntactically constrained. From these
building blocks, we re-constructed a solution for transformation evolution. We distinguished three
levels of automation and we explored all possible consequences of modelling language evolution
in a feature diagram, and discussed the level of automation possible. We provided an algorithm
that forms the backbone of our framework. The algorithm uses techniques that are introduced or
discussed throughout the chapter and constitutes a coherent solution for the problem of modelling
language evolution. The completeness of the framework is achieved by showing how artifacts
and their relations can be mapped on a general DSML relational ecosystem. This is backed by
the related work after the time of our research: we could not find any work that cannot be fit
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into the framework. We defined the technological prerequisites for maximally automating the
consequences of language evolution.

This chapter presents a top-down approach to the problem of language evolution. We strove
to make the chapter comprehensive, so this work can be used as a guideline for further research.
This is demonstrated by related work done after the time of our research, which can be mapped to
(parts of) our framework. For transformation co-evolution however, we present a specific approach
and prototype implementation, as this was missing in existing approaches.

The work on evolution of modelling languages was my first topic as a Ph.D. candidate. The
general idea for tackling transformation co-evolution, in particular the commuting diagram, was
presented by my advisor Hans Vangheluwe. Further developments were the result of discussions
with my advisor, and with Antonio Cicchetti (Mälardalen University), Manuel Wimmer (Vienna
University of Technology) and Jonathan Sprinkle (University of Arizona), and of individual work.
I was responsible for defining the framework and for the prototype in metaDepth.

5.1.3 Composition of Domain-Specific Languages (Chapter 4)

Techniques such as metamodelling and model transformation greatly facilitate the development
of DSMLs. However, these methods for development require the language engineer to develop
DSMLs from scratch. Nevertheless, there are similarities between DSMLs: one might need
a new variant of Petri nets, a different kind of automaton, or the combination of a number of
formalisms. Therefore, there is a clear need for reuse of existing languages, or language modules.
In other domains, such as generic programming, a similar need for composition is addressed by
the development of generic mechanisms [75]. We selected three composition mechanisms from
the metaDepth tool, namely, extension, concepts and templates and investigated whether they are
sufficient to allow composition of modelling languages in a structured way. All three concepts,
abstract syntax, (textual) concrete syntax and (operational) semantics, of a modelling language
need to be combined using these mechanisms. By using these mechanisms, we aim for general
applicability of our approach, provided that these composition mechanisms are supported.

The combination of the operational semantics of languages can be very complex, but necessary
in Multi-Paradigm Modelling. Languages can be semantically entangled, requiring a dedicated
approach for the combination of semantics. These so-called heterogeneous systems must be
executed correctly, while still maintaining modularity of languages, to enable reuse, and to allow
the combination of languages as black boxes. A solution is to define “composition laws” for
heterogeneous parts of a model, which have to be explicitly described. These composition laws
are captured in a technique called semantic adaptation [23]. The authors developed ModHel’X, a
tool for heterogeneous modelling and semantic adaptation. Semantic adaptation can be explicitly
described separately from models and languages. Often complex semantic adaptations have to be
coded however, which is tedious and error prone. Semantic adaptation too should be modelled
explicitly, at the most appropriate level(s) of abstraction, in the most appropriate formalism(s).
In this thesis, the work on composition of DSMLs is narrowed down to the following research
questions:

RQ 3. Can we extend generic model composition mechanisms, inspired by generic program-
ming, to the composition of DSMLs, in its three aspects, namely, abstract syntax, (textual) concrete
syntax and (operational) semantics?
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RQ 4. What is a solution according to MPM principles for dealing with execution of heteroge-
neous modelling and semantic adaptation?

We have shown how composition mechanisms extension, concepts and templates in metaDepth
can be used for composing languages. The three aspects of a modelling language, namely abstract
syntax, concrete syntax and semantics, are combined. Abstract syntax can be composed by using
extension for combining two metamodels and concepts for combining metamodels with templates.
We have shown that there are correspondences between combining abstract syntax and combining
concrete syntax. We identified the need for support for inheritance in the specification of concrete
syntax. Operational semantics can be composed by using (a) operations, (b) hybrid concepts to
explicitly model what operations are required, and (c) binding of such concepts. In contrast to
composition of concrete syntax, composition of semantics is not strongly linked to composition
of abstract syntax. Different composition steps get mixed up while composing semantics, and
more advanced semantic compositions lose all modularity. Consequently, using these composition
mechanisms, operational semantics cannot be composed in a structured way. In addition to the
above-mentioned complications, we concluded that the composition mechanisms do not suffice
for more complex composition of operational semantics. This further emphasises the need for a
dedicated approach for combining semantics. We illustrated the approach with a elevator door
example, for which a Timed State Machine language is composed from a State Machine language,
a language for Expressions, and a language modelling the concept of a Clock.

The need for more advanced semantic compositions was illustrated by the elevator door
example. Reactive behaviour (e.g., pressing buttons) and continuous-time behaviour (e.g., door
movement) are combined, but can be best modelled heterogeneously. This brought us to the
concept of heterogeneous modelling and semantic adaptation. The heterogeneity of the elevator
door was implemented as heterogeneous models that combine Discrete Event, Finite State Machine
and Synchronous Data Flow models of computation. We introduced a DSML with a visual concrete
syntax in AToM3 for heterogeneous modelling. Semantic adaptation acts as the “glue” between
heterogeneous models, modelled as an adaptation block. We defined a second DSML in metaDepth
with textual syntax to bridge the cognitive gap between the implementation and specification
of such semantic adaptation blocks. The model of an adaptation block explicitly specifies the
adaptation of data, control and time using a set of rules. Expressions in the DSML are highly
specific to the domain of semantic adaptation. We believe that the DSML and the execution
semantics are, as a principle, expressive enough to model different semantic adaptations, though
additional constructs might be needed for additional behaviours. Furthermore, a model-to-text
transformation is defined to generate the adaptation block code for the ModHel’X framework. The
DSML enables the modeller to easily customise adaptation blocks that fit the heterogeneous models
in a modular way, as the combined models are left untouched. We were able to reconstruct the
default Ptolemy II [56] semantic adaptation of Discrete Event models to Synchronous Data Flow
models, and corrected it with our own model. The DSML models are only tens of lines of code,
and are transformed to hundreds of lines of Java code. Both DSMLs are mapped to the ModHel’X
Java framework. The visual syntax of the DSML in AToM3 for heterogeneous modelling reflects
the graph-like nature of the models. Moreover, dozens of elements are translated to hundreds of
lines of Java code. Similarly, the adaptation block models are only tens of lines of code, and are
transformed to hundreds of lines of Java code.

Our work on the composition of languages presents solutions in a specific context: we employed
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metaDepth’s extension mechanisms on the one hand and ModHel’X’s heterogeneous modelling
framework on the other hand. In contrast to previous chapters, these contributions stem from
bottom-up needs in existing frameworks. We refrained from presenting an overall view on the
broad topic of composition. In short, this chapter describes research that is more anecdotal than
that in the previous chapters.

The work on the syntactic composition of modelling languages in metaDepth was the result of
a collaboration with Juan de Lara and Esther Guerra (Universidad Autónoma de Madrid), who
built metaDepth. I implemented the approach with the support of Juan de Lara. The work on
heterogeneous modelling and semantic adaptation in ModHel’X was joint research with Joachim
Denil (University of Antwerp). We worked together with Frédéric Boulanger, Christophe Jacquet
and Cécile Hardebolle (École Supérieure d’Électricité), the builders of ModHel’X, and Hans
Vangheluwe. Joachim Denil and I elaborated the approach and I implemented the DSMLs in
AToM3 and metaDepth.

5.2 Future Work

The presented research led to the identification of important threads for future work in the domain
of Multi-Paradigm modelling. The following is future work that I believe can have a significant
impact.

5.2.1 Modelling of Semantics

In current DSM approaches, the semantic mapping is modelled as a transformation. From the
research presented in this thesis, it becomes clear that this often does not suffice. We presented an
approach for modelling properties, which can be considered models of requirements that encompass
a significant part of the system’s semantics, describing its intent. Our contribution in property
modelling is however only the first step to achieving this. Relationships could be defined on these
properties, so that it becomes possible to reason about abstraction and refinement. In the context
of language evolution, this can be an important tool to ensure language continuity. In this thesis,
evolution is modelled as a delta model. Properties could be used to capture the intent of a language
evolution. This additional information might further automate the consequences of evolution.
Recent work by Barroca et al. takes on this challenge by combining ontology engineering with
MPM [12]. In their work, both properties and models are explicitly modelled. An ontology is
represented by a set of properties and their relations. An ontological conformance relationship
can be defined between models and ontologies. Consequently, relationships between properties
result in relationships between models, enabling one to reason about consistency, abstraction and
refinement.

In the context of simulation, the semantics of a language can be captured in a model of
computation. In simulation, approximations are made to result in a computable (i.e., discrete-time)
execution. Hence, this execution can be modelled in terms of execution steps [61] as (a variant
of) a timed automaton. Additionally, we believe that many of the concepts we presented in this
thesis for semantic adaptation can be reused, such as time calculus, expressions about pin values,
etc. Using automata as a model of computation provides the means to instrument the model of
computation. In the context of language composition, this allows fine-grained composition of
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semantics by weaving different models of computation. In the context of semantic adaptation,
constraints on adaptation blocks can be defined to make sure that it models a correct semantic
adaptation between the given models of computation. Other potential benefits are better modularity,
opportunities for reuse, analysis, platform independence, inter-tool operability and other benefits
of MPM. Moreover, Van Mierlo et al. aim for explicitly modelling of debugging using a similar
approach [139]. Note that this assumes a white box approach, as opposed to the approach presented
in this thesis.

5.2.2 Tool Support for Multi-Paradigm Modelling

Metamodelling and model transformations are the enablers for language engineering in Domain-
Specific Modelling. Many tools have been developed that support metamodelling and model
transformation, including the tools used in this thesis, AToMPM, metaDepth and AToM3. To
maximally benefit from MPM, mature tools are necessary that adhere to MPM principles. To
our knowledge, there are currently no tools that offer a fully modelled linguistic metalanguage,
including the expressiveness of an action language and inter-model relationships. A model
repository called the Modelverse is currently under development by our research group MSDL to
support this [196].

An essential part of modelling tools is how models are represented and manipulated. In
the context of language engineering, this brings us to concrete syntax modelling. In terms
of visual syntax, approaches are still at their infancy [143]. No de facto approach such as
metamodelling exists for modelling concrete syntaxes. Additionally, DSM approaches mainly
focus on visualisation. For model manipulation, standard modelling environments are used.
MPM’s credo “using the most appropriate formalism” should be extended to the development of
the most appropriate modelling environments. These modelling environments should themselves
be modelled according to MPM principles. Since the environment’s behaviour is reactive and
contains complicated objects, a combination of Statecharts and Class Diagrams is a promising
basis from modelling such environments. Concrete syntax modelling, both for representation
and manipulation, can follow a “default first” approach. Often, quick prototyping is desired, and
the language engineer does not want to get lost in extensive modelling of concrete syntax and
modelling environment. In that case, default concrete syntax (e.g., object diagrams) and default
modelling environments (e.g., AToM3’s or AToMPM’s generated DSML environments) can be
used so that no effort at all is required for concrete syntax modelling. The other extreme is a
fully customised modelling environment, with custom icons, different views on the model, custom
reaction to keystrokes, custom layout algorithms, etc. Such an environment could be useful for
e.g., the metamodelling language, potentially supporting the same user experience as hard-coded
UML tools. The benefits over hard-coded UML tools are manifold: analysis of user interaction,
custom debugging, fine-grained undo and redo operations, customisation and extension of the
environment, etc.

5.2.3 Standardisation and Availability of Model Repositories

Once new approaches for MPM have been researched, there is a need for usability studies and
empirical research in order to validate research. To carry out usability studies, adequate tool support
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of the framework under study is required, as described above, in order to avoid that the results of
the usability studies are polluted by accidental complexity that comes with a malfunctioning tool.

Empirical research requires a collection of available models. In contrast to research in code-
base software engineering, there is a lack of widely available model repositories. The ReMoDD
initiative by France et al. tries to address this issue [64] and aim for a generally accessible model
repository. For interoperability, a standard model format needs to be proposed. Currently, the
Ecore metamodel of the Eclipse Modeling Framework (EMF) [188] is the most widely used format.
This does not include a standard for metamodelling (including constraints and actions), concrete
syntax modelling and model transformation.

Additionally, in order to share their models, companies need the ability to hide sensitive data.
Subsequently models need to be sanitised or obfuscated, so that the model can be only queried in a
controlled way. An implementation can be found in the VIATRA transformation tool [39].

5.2.4 Industrial Adoption

DSM has been successfully used in industry, notably by use of MetaCase’s DSM tool MetaEdit+ [96].
The topics of this thesis however, are contributions to the foundations of DSM, and more specif-
ically MPM. We supported our findings with implementation prototypes, but our contributions
do not have the maturity for industrial adoption. An important factor for industrial adoption is a
usable tool. This implies that usability studies have to be conducted, as discussed above. Moreover,
in the context of our contributions, an adequate MPM tool is a prerequisite for a user-friendly
implementation of our contributions. Of all contributions in this thesis, the ProMoBox framework
of Chapter 2 is the most advanced candidate for a usability study. A second factor, related to
usability, is the simplification of our contributions so that solutions to the “most common” problems
are supported. The goal is to lower the bar for learning the solutions. A third factor is empirical
research to further validate the claims of this thesis in an industrial context and to assess what the
“most common” problems are.
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APPENDIX A. MANUALLY CREATED ELEVATOR MODEL

(#floors,
#buttons)

original [134] adapted (Figure A.1)

states trans. time
(s)

mem.
(KB)

states trans. time
(s)

mem.
(KB)

(4, 4) 3145 17948 0.021 240 5989 13765 0.032 594
(5, 5) 16456 110261 0.139 1444 15362 40617 0.096 1699
(6, 6) 81451 620053 0.847 7768 37423 111737 0.266 4568

Table A.1: Comparison of the results of the adapted manual Promela model and the original model
by [134].

The algorithm of Listing A.1 is based on an exemplary Promela model from Merz and Navet’s
“on the verification of real-time systems” [134]. The original model consists of four floors and four
buttons, each requesting a floor. The elevator controller and each of the four buttons each run in a
parallel process. The different possibilities of the controller are options in a do loop, including
moving up or down and opening the door (which is our interpretation of moving == false), or
changing directions in case no further can be moved or if a request is in the elevator’s path. Every
step is atomic, which means that a button cannot be pressed during the execution of a step.

Our adaptation has the following differences to make it semantically equivalent to our DSML:

— the concept of UpButtons and DownButtons is introduced, for which the elevator will not stop
when it is traveling in the opposite direction;

— rules are split to correspond to the rules of the operational semantics of Figure 1.7, and so that
conceptual steps (moment of input and output) correspond;

— the application of the environment (i.e., pressing a button) is more restricted and can only
happen after a state change, according to the annotated operational semantics. To implement
this, an inner do loop is introduced to apply rules as long as no conceptual step has finished;

— the variables tried1 and tried2 are introduced to denote rules that have been tried. This is
necessary because many rules have conditions that are spread over multiple conditions. Without
these extra variables, an infinite loop occurs if a rule is partly, but not fully, matched;

— after finishing a conceptual step (i.e., step_taken becomes true), at most one button can be
pressed.

As a result of these changes, the adaptation yields slightly lower performance in case of four
floors, and a better performance than the original model for larger numbers of floors as shown in
Table A.1.

176



1 #define FLOORS 3
2 int floor = 0;
3 bool doors_open = false; bool going_up = true;
4

5 typedef Floor {
6 bool button = false;
7 bool up = false;
8 bool down = false;
9 }

10

11 bool step_taken = false
12

13 Floor f[FLOORS];
14

15 proctype lift() {
16 int j, k;
17 bool tried1, tried2;
18 do ::
19 // tried variables, to avoid infinite loop trying to match
20 // one option that has an inner condition
21 tried1 = false;
22 tried2 = false;
23 do
24 :: !step_taken ->
25 if
26 // open door
27 :: !doors_open && going_up && f[floor].button -> atomic {
28 doors_open = true; f[floor].button = false; step_taken = true }
29 :: !doors_open && going_up && f[floor].up -> atomic {
30 doors_open = true; f[floor].up = false; step_taken = true }
31 :: !doors_open && !going_up && f[floor].button -> atomic {
32 doors_open = true; f[floor].button = false; step_taken = true }
33 :: !doors_open && !going_up && f[floor].down -> atomic {
34 doors_open = true; f[floor].down = false; step_taken = true }
35 // close door
36 :: !tried1 && doors_open -> atomic {
37 tried1 = true;
38 j = 0;
39 do
40 :: j == FLOORS -> break
41 :: j < FLOORS && (f[j].button || f[j].up || f[j].down) ->
42 // there are other requests
43 doors_open = false; step_taken = true; break
44 :: else -> j++
45 od }
46 // move
47 :: !tried1 && !doors_open && going_up && !f[floor].button && !f[floor].up -> atomic {
48 tried1 = true;
49 j = floor+1;
50 do
51 :: j == FLOORS -> break
52 :: j < FLOORS && (f[j].button || f[j].up || f[j].down) ->
53 // request in the elevator's path
54 floor++; step_taken = true; break
55 :: else -> j++
56 od }
57 :: !tried1 && !doors_open && !going_up && !f[floor].button && !f[floor].down -> atomic {
58 tried1 = true;
59 j = floor-1;
60 do
61 :: j < 0 -> break
62 :: j >= 0 && (f[j].button || f[j].up || f[j].down) ->
63 // request in the elevator's path
64 floor--; step_taken = true; break
65 :: else -> j--
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66 od }
67 // change directions
68 :: !tried2 && going_up && !f[floor].button && !f[floor].up -> atomic {
69 tried2 = true;
70 j = floor+1;
71 do
72 :: j == FLOORS -> // no requests in the elevator's path
73 k = floor-1;
74 do
75 :: k < 0 -> j++; break
76 :: k >= 0 && (f[k].button || f[k].up || f[k].down) ->
77 // requests in the reversed path, change direction
78 going_up = false; j++; tried1 = false; tried2 = false; break
79 :: else -> k--
80 od
81 // still requests in the elevator's path, do not change direction
82 :: j < FLOORS && (f[j].button || f[j].up || f[j].down) -> break
83 // if successfullychanged direction, break out of this loop
84 :: j > FLOORS -> break
85 :: else -> j++
86 od }
87 :: !tried2 && !going_up && !f[floor].button && !f[floor].down -> atomic {
88 tried2 = true;
89 j = floor-1;
90 do
91 :: j == -1 -> // no requests in the elevator's path
92 k = floor+1;
93 do
94 :: k == FLOORS -> j--; break
95 :: k < FLOORS && (f[k].button || f[k].up || f[k].down) ->
96 // requests in the reversed path, change direction
97 going_up = true; j--; tried1 = false; tried2 = false; break
98 :: else -> k++
99 od

100 // still requests in the elevator's path, do not change direction
101 :: j >= 0 && (f[j].button || f[j].up || f[j].down) -> break
102 // if successfullychanged direction, break out of this loop
103 :: j < -1 -> break
104 :: else -> j--
105 od }
106 :: else -> break // if there are no requests
107 fi;
108 :: else -> break // step was taken
109 od;
110 step_taken = true;
111 if
112 :: !step_taken -> skip
113 fi
114 od
115 }
116

117 proctype button_(int myfloor) {
118 do :: atomic { step_taken ->
119 if
120 :: true -> skip
121 :: f[myfloor].button == false -> f[myfloor].button = true
122 fi;
123 step_taken = false; }
124 od
125 }
126

127 proctype upbutton_(int myfloor) {
128 do :: atomic { step_taken ->
129 if
130 :: true -> skip
131 :: f[myfloor].up == false -> f[myfloor].up = true
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132 fi;
133 step_taken = false; }
134 od
135 }
136

137 proctypedownbutton_(int myfloor) {
138 do :: atomic { step_taken ->
139 if
140 :: true -> skip
141 :: f[myfloor].down == false -> f[myfloor].down = true
142 fi;
143 step_taken = false; }
144 od
145 }
146

147 init {
148 run lift();
149 int i = 0; do :: i < FLOORS -> run button_(i); i++ :: else -> break od;
150 i = 0; do :: i < FLOORS-1 -> run upbutton_(i); i++ :: else -> break od;
151 i = 1; do :: i < FLOORS -> run downbutton_(i); i++ :: else -> break od;
152 }
153

154 ltl reachesFloor {
155 [](!(f[0].button || f[0].up)
156 ||<>((f[0].button || f[0].up) && <>(doors_open && floor == 0))) &&
157 [](!(f[1].button || f[1].down || f[1].up)
158 ||<>((f[1].button || f[1].down || f[1].up)
159 && <>(doors_open && floor == 1))) &&
160 [](!(f[2].button || f[2].down)
161 ||<>((f[2].button || f[2].down) && <>(doors_open && floor == 2))) }

Listing A.1: .]A manually created elevator model, based on [134].
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This appendix lists the definitions of all delta operations of Table 3.1. Similar to Herrmannsdör-
fer’s list of metamodel changes [86], more operations can be added by creating a new definition.

Generalise property

Description: Generalise the multiplicity of a property (attribute or association), allowing more
instances.
Type: additive
Impact: non-breaking
Migration operation: none
Inverse operation: Restrict property
Function signature: GeneraliseProperty(prop, lowsrc, highsrc[, lowdst, highdst])

Parameters:

— prop (property): the property to be generalised

— lowsrc (integer): the new lower bound at the source

— highsrc (integer): the new upper bound at the source

— lowdst (integer): (in case of an association) the new lower bound at the target

— highdst (integer): (in case of an association) the new upper bound at the target

Preconditions:

— highsrc > 0, highdst > 0

— all new bounds are the same or more general

Add class

Description: Add a new class, determine whether it is abstract and determine the superclass. In
case of an abstract class, this change is in fact updative.
Type: additive
Impact: non-breaking
Migration operation: none
Inverse operation: Eliminate class
Function signature: AddClass(name, superclass, abstract)

Parameters:

— name (string): the name of the new class

— superclass (class): the superclass of the new class, or none

— abstract (boolean): whether the new class is abstract

Preconditions:

— name is not yet taken
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Add non-obligatory property

Description: Add a new property (attribute or association), with non-restrictive lower multiplica-
tions of 0.
Type: additive
Impact: non-breaking
Migration operation: none
Inverse operation: Eliminate property
Function signature: AddNonObligatoryProperty(name, owner, highsrc, type[, highdst][, de-

fault])

Parameters:

— name (string): name of the new property

— owner (class): the owner of the property

— highsrc (integer): the upper bound at the source

— type (type or class): the target (in case of an association) or type (in case of an attribute) of the
property

— highdst (integer): (in case of an association) the upper bound at the target

— default (any): (in case of an attribute, optional) the default value

Preconditions:

— highsrc > 0, highdst > 0

— default is of type type, or none

— name is not yet taken by another of owner’s properties

Make class concrete

Description: Make an abstract class non-abstract.
Type: additive
Impact: non-breaking
Migration operation: none
Inverse operation: Make class abstract
Function signature: MakeClassConcrete(class)
Parameters:

— class (class): the class to be made non-abstract

Preconditions:

— class is abstract

Extract abstract superclass

Description: Extract an abstract superclass from given subclasses.
Type: updative
Impact: non-breaking
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Migration operation: none
Inverse operation: Flatten abstract hierarchy
Function signature: ExtractAbstractSuperclass(name, subclasses)

Parameters:

— name (string): the name of the new class

— subclasses (set<class>): the subclasses of the new class

Preconditions:

— no inheritance cycles can be introduced

Extract superclass

Description: Extract a non-abstract superclass from given subclasses.
Type: additive
Impact: non-breaking
Migration operation: none
Inverse operation: Flatten hierarchy
Function signature: ExtractSuperclass(name, subclasses)

Parameters:

— name (string): the name of the new class

— subclasses (set<class>): the subclasses of the new class

Preconditions:

— no inheritance cycles can be introduced

Flatten abstract hierarchy

Description: Remove an abstract class, propagating all properties and inheritance links to its
subclasses, while maintaining inheritance links between subclasses and superclass.
Type: updative
Impact: non-breaking
Migration operation: none
Inverse operation: Extract abstract superclass
Function signature: FlattenAbstractHierarchy(class)
Parameters:

— class (class): the subclasses of the new class

Preconditions:

— class is abstract

Push property from abstract class

Description: Move a property in an abstract class to all of its owner’s subclasses.
Type: updative
Impact: non-breaking
Migration operation: none
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Inverse operation: Pull property to abstract class
Function signature: PushPropertyFromAbstractClass(prop)
Parameters:

— prop (property): the property that will be moved to the subclasses

Preconditions:

— prop’s owner has at least one subclass

— prop’s owner is abstract

Pull property to abstract class

Description: Move a common property to its owner’s abstract superclass that has no concrete
(indirect) subclasses other than the property’s owner.
Type: updative
Impact: non-breaking
Migration operation: none
Inverse operation: Push property from abstract class
Function signature: PullPropertyToAbstractClass(prop)
Parameters:

— prop (property): the property that will be moved to the superclass

Preconditions:

— prop’s owner has a superclass

— prop’s owner is abstract

— prop’s owner does not transitively have non-abstract subclasses other than prop’s owner

— prop is present and the same in all subclasses of prop’s owner’s superclass

Eliminate class

Description: Remove a class, and its properties, while maintaining inheritance links between
subclasses and superclass.
Type: subtractive
Impact: breaking and resolvable
Migration operation: eliminate instances
Inverse operation: Add class and Add non-obligatory property
Function signature: EliminateClass(class)
Parameters:

— class (class): the class to be removed

Preconditions:

— none
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Eliminate property

Description: Remove a property.
Type: subtractive
Impact: breaking and resolvable
Migration operation: eliminate property instances
Inverse operation: Add (non-)obligatory property
Function signature: EliminateProperty(prop)
Parameters:

— prop (property): the property that will be removed

Preconditions:

— none

Make class abstract

Description: Make a non-abstract class abstract.
Type: subtractive
Impact: breaking and resolvable
Migration operation: eliminate class instances
Inverse operation: Make class concrete
Function signature: MakeClassAbstract(class)
Parameters:

— class (class): the class to be made abstract

Preconditions:

— class is not abstract

Extract class

Description: Extract a class and a number of properties to a new class, and add an association with
multiplicity 1 from the old class to the new class.
Type: updative
Impact: breaking and resolvable
Migration operation: for each instance, create additional instance and move properties
Inverse operation: Inline class
Function signature: ExtractClass(features, name, associationname)

Parameters:

— features (set<feature>): features to be extracted

— name (string): name of the new class

— associationname (string): name of the new association

Preconditions:

— features are all of the same class
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Inline class

Description: Inline a class and its properties to a class to which it is associated with a one-to-one
mapping, and remove the association with multiplicity 1.
Type: updative
Impact: breaking and resolvable
Migration operation: for each instance, remove properties and instance
Inverse operation: Inline class
Function signature: ExtractClass(features, name, associationname)

Parameters:

— class (class): the to be inlined class

— property (property): the to be inlined property

Preconditions:

— property has multiplicity 1 on both sides

Flatten Hierarchy

Description: Remove a non-abstract class, propagating all properties and inheritance links to its
subclasses, while maintaining inheritance links between subclasses and superclass.
Type: subtractive
Impact: breaking and resolvable
Migration operation: eliminate superclass instances
Inverse operation: Extract superclass
Function signature: FlattenHierarchy(class)
Parameters:

— class (class): the subclasses of the new class

Preconditions:

— class is not abstract

Push property

Description: Move a property in a non-abstract class to all subclasses.
Type: subtractive
Impact: breaking and resolvable
Migration operation: eliminate properties from superclass instances
Inverse operation: Pull property
Function signature: PushProperty(prop)
Parameters:

— prop (property): the property that will be moved to the subclasses

Preconditions:

— prop’s owner has at least one subclass

— prop’s owner is not abstract
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Rename class

Description: Rename a given class.
Type: updative
Impact: breaking and resolvable
Migration operation: change type of instances
Inverse operation: Rename class
Function signature: RenameClass(class, name)

Parameters:

— class (class): the class to be renamed

— name (string): the new name of the class

Preconditions:

— name is not yet taken

Rename property

Description: Rename a given property.
Type: updative
Impact: breaking and resolvable
Migration operation: change type of property instances
Inverse operation: Rename property
Function signature: RenameProperty(prop, name)

Parameters:

— prop (property): the property to be renamed

— name (string): the new name of the property

Preconditions:

— name is not yet taken by another of prop’s owner’s properties

Add obligatory property

Description: Add a new property (attribute or association) with lower multiplicity of at least 1
Type: additive
Impact: breaking and unresolvable
Migration operation: add property instances with default values
Inverse operation: Eliminate property
Function signature: AddObligatoryProperty(name, owner, lowsrc, highsrc, type[, lowdst, high-

dst][, default])

Parameters:

— name (string): name of the new property

— owner (class): the owner of the property

— lowsrc (integer): the lower bound at the source

— highsrc (integer): the upper bound at the source
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— type (type or class): the target (in case of an association) or type (in case of an attribute) of the
property

— lowdst (integer): (in case of an association) the lower bound at the target

— highdst (integer): (in case of an association) the upper bound at the target

— default (any): (in case of an attribute, optional) the default value

Preconditions:

— highsrc > 0, highdst > 0, lowsrc ≤ highsrc, lowdst ≤ highdst, lowsrc > 0 or lowdst

> 0

— default is of type type, or none

— name is not yet taken by another of owner’s properties

Pull property

Description: Move a common property to the superclass.
Type: additive (or updative, in the case where the superclass is abstract and it has no concrete
(indirect) subclasses other than the property’s owner)
Impact: breaking and unresolvable
Migration operation: add property instances with default values for superclass instances
Inverse operation: Push property
Function signature: PullProperty(prop)
Parameters:

— prop (property): the property that will be moved to the superclass

Preconditions:

— prop’s owner has a superclass

— prop is present and the same in all subclasses of prop’s owner’s superclass

Restrict property

Description: Restrict the multiplicity of a property (attribute or association), allowing less instances.
Type: subtractive
Impact: breaking and unresolvable
Migration operation: remove property instance if non-compliant
Inverse operation: Generalise property
Function signature: RestrictProperty(prop, lowsrc, highsrc[, lowdst, highdst])

Parameters:

— prop (property): the property to be generalised

— lowsrc (integer): the new lower bound at the source

— highsrc (integer): the new upper bound at the source

— lowdst (integer): (in case of an association) the new lower bound at the target

189



APPENDIX B. DELTA OPERATIONS

— highdst (integer): (in case of an association) the new upper bound at the target

Preconditions:

— highsrc > 0, highdst > 0, lowsrc ≤ highsrc, lowdst ≤ highdst

— all new bounds are the same or more restricted
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Figure C.1: Evolution of the Elevator language and co-evolution of instance models with
metaDepth.

In this appendix the approach of Section 3.3 is illustrated with an prototype of the Elevator
evolution scenario. First, a detailed implementation for language evolution and model co-evolution
is presented. Then, an example of co-evolution of the operational semantics transformation is
presented.

A prerequisite to the approach is metamodel transformation. Unfortunately, this is only
limitedly supported by metaDepth, as there is no explicit metamodel of metamodels. To this end
we created a metamodelling language called MetaModels with a code generator to metaDepth
metamodels. This way, MetaModels instances can be subjected to transformations. Additionally
metaDepth metamodels can be generated to maintain the metamodelling support (inheritance,
conformance, links, attributes, etc.). This can be considered an implementation of the operationalise
relationship presented in Section 1.2.4.

The following is assumed in this implementation:

— the difference model is available;

— for simplicity, only one intermediate metamodel is generated instead of one for each operation;

— for simplicity, the migration pipeline is not optimised, meaning that the checkout transforma-
tions γi are still evaluated;

— transformations can be executed on models conform to the intermediate metamodel. This means
that conversion steps from and to the intermediate model are not needed in this implementation.

The metaDepth implementation of language evolution and model co-evolution is summarised
in Figure C.1. The step-by-step approach produces following models:

1. ElevatorMM (see Listing C.2): a metamodel is created, as an instance of the MetaModels
language (see Listing C.1). This is a simple metalanguage modelling classes with inheritance,
properties (attributes or associations) and a number of constraints in EOL. The metamodel is
an explicit element and serves as a container of all metamodel elements which will be useful
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in transformations for iterating over all elements1. In the instance, the container can be left
empty so that nu redundant information needs to be modelled. If left empty, all elements
will be automatically set by a transformation that relies on this attribute.

2. ElevatorDSML (see Listing C.4): from ElevatorMM a metaDepth metamodel ElevatorDSML
will be generated as explained above, by the CompileMM EGL script (see Listing C.3). The
script finds all classes and associations either in the elements container, or by finding all
class and association instances. The names of classes are extended with “Type”, to avoid
name clashes with ElevatorMM elements. The resulting model can be loaded as a metamodel
in metaDepth and is the metaDepth equivalent of the Elevator metamodel presented in
Figure 1.4.

3. ThreeFloors (see Listing C.5): an instance of ElevatorDSML is modelled. This is the
metaDepth equivalent of Figure 1.6. This model imports the delta model called ElevatorEvo,
as this will be necessary in later steps.

4. ElevatorEvo (see Listing C.7): the delta model ElevatorEvo is a model containing the delta
operations of Table 3.3. It is an instance of DeltaModels (see Listing C.6), a DSML for
difference modelling, containing all operations as presented in Table 3.1, and more detailed
in Appendix B. For each operation, the parameters are attributes and the attribute constraints
(only shown for one operation) are modelled as EOL constraints. Names of classes or
properties are strings, because it might be possible that, when loading the difference model
in metaDepth, referenced classes cannot be found yet as they are created or renamed in an
earlier delta step. This is the case for CallButton. The delta model imports the metamodel
ElevatorMM, which is necessary for subsequent steps.

5. EElevatorDSML (see Listing C.10): the evolved metamodel ElevatorDSML is generated
by first applying the delta model ElevatorEvo to the original metamodel ElevatorMM and
then compiling the metamodel with CompileMM. Applying the delta model is done by the
Apply transformation (see Listing C.8), which implements a generic apply operation for
every delta operation. The Apply transformation relies on helper operations defined in (see
Listing C.9 – not shown in Figure C.1), which includes operations on the metalevel, instance
level and concerning instantiation. Note that because of a technical issue, not all links of a
certain association with n-to-n multiplicity might be retrieved. In the Elevator example this
issue does not apply, because there is no such association.

6. IElevatorDSML (see Listing C.12): in a similar way, the intermediate metamodel IEleva-
torDSML is generated by first merging the delta model ElevatorEvo to the original metamodel
ElevatorMM and then compiling the metamodel with CompileMM. The Intermediate trans-
formation (see Listing C.11) implements the merge by again providing a generic operation
for each delta operation. For some operations (e.g., EliminateClass) nothing needs to be
changed to obtain the intermediate metamodel. The output trace of executing Intermediate
is shown in Listing C.13. This concludes the operation on the language level. What remains
is the actual migration of instances.

1Usually, all instances of a certain node in the scope of a model can be iterated, but it turns out that after transformation,
metamodel elements might be scattered across different models. To this end, the elements container serves as the correct
reference for all elements of the metamodel in question.
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Figure C.2: Co-evolution of the operational semantics transformation with metaDepth.

7. ThreeFloorsI (see Listing C.14): the ThreeFloors instance model is converted to the in-
termediate metamodel to become a virtual version 0 instance. In this process, all rename
operations δr are applied. The conversion is done outside of metaDepth by a generated
search-and-replace Python script. This is done with a script because it is not possible to
cast an instance to a different metamodel in metaDepth, and a full copy transformation is
cumbersome and not straightforward for such a simple task. Note that this rename issue is
well-known in co-evolution [77]. Apart from renaming, the model is still exactly the same
as ThreeFloors.

8. MThreeFloorsI: the virtual version 0 instance ThreeFloorsI is migrated to the virtual version 1
instance MThreeFloorsI by applying the customised ElevatorEvoM migration transformation
(see Listing C.16). This transformation starts from the default migration operations, which
are implemented in the Migrate transformation (see Listing C.15). In metaDepth, the
migration operations are not generated from the delta model. Instead, a migration operation
is defined for every delta operation, but is applied to the instance model. Non-breaking
operations have an empty operation body. ElevatorEvoM starts from these default migration
operations and allows the language engineer to define customised migration operations, such
as replacing UpButtons and DownButtons with FloorButtons with the right up_direction value.
They are inserted in the migration pipeline. The output trace of execution ElevatorEvoM is
shown in Listing C.17.

9. MThreeFloors (see Listing C.18): the virtual version 1 instance MThreeFloorsI is retyped
with a generated Python script to produce the migrated MThreeFloors instance.

The metaDepth implementation of transformation co-evolution is summarised in Figure C.2.
The transformation implementing the Elevator operational semantics is migrated. Note that
this is an endogenous transformation, which means that after evolution of the Elevator DSML,
the transformation is both subject to domain evolution and image evolution. As explained in
Section 3.3, a number of artifacts produced by the model migration phase can be reused. The
step-by-approach uses or produces the following models:

194



1. MThreeFloors (see Listing C.18): we start from the migrated instance of the model migration
phase, and retyped and inverse rename operations δ−1

r are applied by a generated Python
script to produce MThreeFloorsI, the same virtual version 1 instance as in the model migration
phase;

2. ElevatorEvoInv (see Listing C.19): starts from the default migration operations of the
inverse delta operations and allows the language engineer to define customised migration
operations, such as replacing FloorButtons with UpButtons and DownButtons. The result
of this transformation is ThreeFloorsI, the same virtual version 0 instance as in the model
migration phase;

3. ElevatorSim (see Listing C.20): the original operational semantics transformation as pre-
sented in Section 1.3, which produces the virtual version 0 instance TThreeFloorsI. The
output trace of executing ElevatorSim is shown in Listing C.21.

4. MTThreeFloors (see Listing C.22): TThreeFloorsI is migrated to the virtual version 1 artifact
MTThreeFloorsI, and is converted using the generated Python script from the model migration
phase to produce the migrated MTThreeFloors instance.

Note that in this case, the transformation model was not edited. In order to incorporate Emer-
gencyButtons in the operational semantics, it needs to be edited. This would however require the
operational semantics to include an environment, as discussed in Section 2, so that buttons can be
pressed at run-time.
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APPENDIX C. PROTOTYPE OF LANGUAGE EVOLUTION IN METADEPTH

1 Model MetaModels {
2 enum PrimitiveType { BOOLEAN, INT, DOUBLE, STRING }
3 Node MetaModel[1] { elements : MetaElement[*]; }
4 abstract Node MetaElement {}
5 Node MetaClass : MetaElement {
6 is_abstract : boolean = false;
7 superclass : MetaClass[0..1];
8 properties : MetaProperty[*]; }
9 abstract Node MetaProperty : MetaElement {

10 lowsrc : int = 0;
11 highsrc : int = -1;
12 lowsrcValid : $self.lowsrc >= 0 and (self.highsrc == -1 or self.lowsrc <= self.highsrc)$
13 highsrcValid : $self.highsrc > 0 or self.highsrc == -1$ }
14 Node MetaAttribute : MetaProperty {
15 type : PrimitiveType;
16 lowsrc : int = 1;
17 highsrc : int = 1;
18 default : String = ""; } // default value is always a string; its value will be parsed depending on the type
19 Node MetaAssociation : MetaProperty {
20 target : MetaClass;
21 lowdst : int = 0;
22 highdst : int = -1;
23 lowdstValid : $self.lowdst >= 0 and (self.highdst == -1 or self.lowdst <= self.highdst)$
24 highdstValid : $self.highdst > 0 or self.highdst == -1$ }
25 noInheritanceCycles : $MetaClass.allInstances()
26 .includingAll(MetaModel.allInstances().first().elements
27 .select(e | e.isTypeOf(MetaClass)))
28 .asSet().forAll(n1 | not MetaClass.allInstances()
29 .includingAll(MetaModel.allInstances().first().elements
30 .select(e| e.isTypeOf(MetaClass)))
31 .asSet().select(n2 | n2 == n1)
32 .closure(parent | parent.superclass).includes(self))$
33 presentInNode : $MetaProperty.allInstances()
34 .includingAll(MetaModel.allInstances().first().elements
35 .select(e | e.isTypeOf(MetaProperty)))
36 .asSet().forAll(p | MetaClass.allInstances()
37 .includingAll(MetaModel.allInstances().first().elements
38 .select(e | e.isTypeOf(MetaClass)))
39 .asSet().select(n | n.properties.isDefined()
40 and n.properties.includes(p)).size() == 1)$
41 }

Listing C.1: MetaModels.mdepth: the model of the metalanguage.

1 load "MetaModels"
2 MetaModels ElevatorMM {
3 MetaModel ElevatorDSML { elements = []; }
4 MetaClass Elevator { properties = [doors_open, going_up, currentfloor, elevator_button]; }
5 MetaClass Floor { properties = [nr, next]; }
6 MetaClass Button { is_abstract = true; properties = [pressed, requests]; }
7 MetaClass ElevatorButton { superclass = Button; }
8 MetaClass FloorButton { superclass = Button; is_abstract = true; }
9 MetaClass UpButton { superclass = FloorButton; }

10 MetaClass DownButton { superclass = FloorButton; }
11 MetaAttribute nr { type = INT; }
12 MetaAttribute doors_open { type = BOOLEAN; }
13 MetaAttribute going_up { type = BOOLEAN; }
14 MetaAttribute pressed { type = BOOLEAN; }
15 MetaAssociation currentfloor { target = Floor; lowsrc = 1; highsrc = 1; lowdst = 0; highdst = -1;}
16 MetaAssociation next { target = Floor; lowsrc = 0; highsrc = 1; lowdst = 0; highdst = 1; }
17 MetaAssociation requests { target = Floor; lowsrc = 1; highsrc = 1; lowdst = 0; highdst = -1; }
18 MetaAssociation elevator_button { target = ElevatorButton; lowsrc = 0; highsrc = -1; lowdst = 1; highdst = 1; }
19 }

Listing C.2: ElevatorMM.mdepth: the metamodel of Elevator as an instance of the metalanguage.
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1 // generated
2 [%
3 var MetaClasses : Bag(MetaClass);
4 if (MetaModel.allInstances().first().elements.size() > 0) {
5 MetaClasses = MetaModel.allInstances().first().elements.select(e | e.isTypeOf(MetaClass));
6 } else {
7 MetaClasses = MetaClass.allInstances().asBag();
8 }
9 var MetaAssociations : Bag(MetaAssociation);

10 if (MetaModel.allInstances().first().elements.size() > 0) {
11 MetaAssociations = MetaModel.allInstances().first().elements.select(e | e.isTypeOf(MetaAssociation

));
12 } else {
13 MetaAssociations = MetaAssociation.allInstances().asBag();
14 }
15 %]
16 Model [%= MetaModel.allInstances().first() %] {
17 [% var compiled : Sequence(MetaClass); %]
18 [% while (MetaClasses.size() <> compiled.size()) { %]
19 [% var n : MetaClass = MetaClasses.select(n | not compiled.includes(n) and (not n.superclass.

isDefined() or compiled.includes(n.superclass))).first(); %]
20 [% compiled.add(n); %]
21 [% if (n.is_abstract) { %] abstract Node[% } else { %] Node[% } %] [%= n %]Type[% if (n.

superclass.isDefined()) { %] : [%= n.superclass %]Type[% } %] {
22 [% for (a in n.properties.select( f | f.isTypeOf(MetaAttribute))) { %]
23 [%= a %] : [% if (a.type.toString() == "STRING") { %]String[% } else {%][%= a.type.toString().

toLowerCase() %][% } %][% if (not (a.lowsrc == 1 and a.highsrc == 1)) { %][[%= a.lowsrc
%]..[% if (a.highsrc == -1) { %]*[% } else { %][%= a.highsrc %][% } %]][% } %][% if (a.
default.isDefined()) { %] = [%= a.default %][% } %];

24 [% } %]
25 [% for (a in n.properties.select( f | f.isTypeOf(MetaAssociation))) { %]
26 [%= a %]_outgoing : [%= a.target %]Type[[%= a.lowsrc %]..[% if (a.highsrc == -1) { %]*[% } else

{ %][%= a.highsrc %][% } %]];
27 [% } %]
28 [% for (src in MetaClasses.select(src | src.properties.select(f | f.isTypeOf(MetaAssociation) and

f.target == n).size() > 0)) { %]
29 [% for (a in src.properties.select( f | f.isTypeOf(MetaAssociation) and f.target == n)) { %]
30 [%= a %]_incoming : [%= src %]Type[[%= a.lowdst %]..[% if (a.highdst == -1) { %]*[% } else {

%][%= a.highdst %][% } %]];
31 [% } %]
32 [% } %]
33 }
34 [% } %]
35 [% for (a in MetaAssociation.allInstances()) { %]
36 [% var src : MetaClass = MetaClasses.select(n | n.properties.includes(a)).first(); %]
37 Edge [%= a %] ([%= src %]Type.[%= a %]_outgoing, [%= a.target %]Type.[%= a %]_incoming) {}
38 [% } %]
39 }

Listing C.3: CompileMM.egl: code generation of a metaDepth metamodel.
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APPENDIX C. PROTOTYPE OF LANGUAGE EVOLUTION IN METADEPTH

1 // generated
2

3 Model ElevatorDSML {
4 Node FloorType {
5 nr : int;
6 next_outgoing : FloorType[0..1];
7 next_incoming : FloorType[0..1];
8 requests_incoming : ButtonType[0..*];
9 currentfloor_incoming : ElevatorType[0..*];

10 }
11 abstract Node ButtonType {
12 pressed : boolean;
13 requests_outgoing : FloorType[1..1];
14 }
15 Node ElevatorButtonType : ButtonType {
16 elevator_button_incoming : ElevatorType[1..1];
17 }
18 Node ElevatorType {
19 doors_open : boolean;
20 going_up : boolean;
21 currentfloor_outgoing : FloorType[1..1];
22 elevator_button_outgoing : ElevatorButtonType[0..*];
23 }
24 abstract Node FloorButtonType : ButtonType {
25 }
26 Node UpButtonType : FloorButtonType {
27 }
28 Node DownButtonType : FloorButtonType {
29 }
30 Edge next (FloorType.next_outgoing, FloorType.next_incoming) {}
31 Edge elevator_button (ElevatorType.elevator_button_outgoing, ElevatorButtonType.elevator_button_incoming) {}
32 Edge requests (ButtonType.requests_outgoing, FloorType.requests_incoming) {}
33 Edge currentfloor (ElevatorType.currentfloor_outgoing, FloorType.currentfloor_incoming) {}
34 }

Listing C.4: ElevatorDSML.mdepth: the generated metaDepth metamodel.

1 load "ElevatorDSML"
2 load "ElevatorEvo"
3 ElevatorDSML ThreeFloors imports ElevatorEvo {
4 ElevatorType e { doors_open = false; going_up = false; }
5 FloorType f1 { nr = 1; }
6 FloorType f2 { nr = 2; }
7 FloorType f3 { nr = 3; }
8 ElevatorButtonType b1 { pressed = false; }
9 ElevatorButtonType b2 { pressed = false; }

10 ElevatorButtonType b3 { pressed = true; }
11 UpButtonType u1 { pressed = false; }
12 UpButtonType u2 { pressed = false; }
13 DownButtonType d2 { pressed = true; }
14 DownButtonType d3 { pressed = false; }
15 next n1 (f1, f2) {}
16 next n2 (f2, f3) {}
17 currentfloor c (e, f1) {}
18 elevator_button eb1 (e, b1) {}
19 elevator_button eb2 (e, b2) {}
20 elevator_button eb3 (e, b3) {}
21 requests r1 (b1, f1) {}
22 requests r2 (b2, f2) {}
23 requests r3 (b3, f3) {}
24 requests r4 (u1, f1) {}
25 requests r5 (u2, f2) {}
26 requests r6 (d2, f2) {}
27 requests r7 (d3, f3) {}
28 }

Listing C.5: ThreeFloors.mdepth: an instance of the ElevatorDSML metamodel.
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1 load "MetaModels"
2 Model DeltaModels imports MetaModels {
3 Node DeltaModel { operations : DeltaOperation[*] {ordered}; }
4 Node DeltaOperation {}
5 Node GeneraliseProperty : DeltaOperation {
6 prop : String; lowsrc : int; highsrc : int; lowdst : int; highdst : int;
7 pre1 : $self.highsrc > 0 and self.highdst > 0$
8 pre2 : $self.lowsrc <= prop.lowsrc and self.lowdst <= prop.lowdst
9 and self.highsrc >= prop.highsrc and self.highdst >= prop.highdst$ }

10 Node AddClass : DeltaOperation { name : String; superclass : String[0..1]; abstract_ : boolean = false;
11 pre1 : $not model.exists(c | c.toString() == name)$ }
12 Node ExtractAbstractSuperClass : DeltaOperation { name : String; subclasses : String[*]; }
13 Node MakeClassConcrete : DeltaOperation { class : String; }
14 Node PullPropertyToAbstractClass : DeltaOperation { prop : String; }
15 Node EliminateClass : DeltaOperation { class : String; }
16 Node EliminateProperty : DeltaOperation { prop : String; }
17 Node RenameClass : DeltaOperation { class : String; name : String; }
18 Node RenameProperty : DeltaOperation { prop : String; name : String; }
19 Node AddObligatoryProperty : DeltaOperation {
20 name : String; owner : String; lowsrc : int; highsrc : int; type : String[0..1];
21 target : String[0..1]; lowdst : int[0..1]; highdst : int[0..1]; default : String[0..1]; }
22 Node RestrictProperty : DeltaOperation { prop : String; lowsrc : int; highsrc : int; lowdst : int; highdst : int; }
23 // ...
24 }

Listing C.6: DeltaModels.mdepth (partial): the metamodel for modelling metamodel differences.

1 load "DeltaModels"
2 load "ElevatorMM"
3 DeltaModels ElevatorEvo imports ElevatorMM {
4 DeltaModel ElevatorEvo { operations = [deltar, delta1, delta2, delta3, delta4, delta5, delta6, delta7, delta8,

delta9]; }
5 RenameClass deltar { class = Button; name = "CallButton"; }
6 RestrictProperty delta1 { prop = "requests"; lowsrc = 0; highsrc = 3; lowdst = 1; highdst = 1; }
7 ExtractAbstractSuperClass delta2 { name = "Button"; subclasses = ["CallButton"]; }
8 PullPropertyToAbstractClass delta3 { prop = "pressed"; }
9 AddClass delta4 { name = "EmergencyButton"; superclass = "Button"; }

10 MakeClassConcrete delta5 { class = "FloorButton"; }
11 AddObligatoryProperty delta6 { name = "up_direction"; owner = "FloorButton"; lowsrc = 1; highsrc = 1; type = "

BOOLEAN"; default = "False"; }
12 EliminateClass delta7 { class = "UpButton"; }
13 EliminateClass delta8 { class = "DownButton"; }
14 EliminateProperty delta9 { prop = "nr"; }
15 }

Listing C.7: ElevatorEvo.mdepth: the delta model of the evolution of the Elevator metamodel.
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APPENDIX C. PROTOTYPE OF LANGUAGE EVOLUTION IN METADEPTH

1 import "Helpers.eol";
2 operation main() {
3 // first, put all metaelements in a container so we can add new elements
4 var m : MetaModel = MetaModel.allInstances().first();
5 m.elements = MetaElement.allInstances();
6 // rename container
7 m.name("E" + m.toString());
8 // apply delta operations
9 ("Applying the delta operations to create the new version of the metamodel " + m).println();

10 for (delta in DeltaModel.allInstances().first().operations) {
11 (delta.toString() + " " + delta.type().toString()).println();
12 delta.apply(m);
13 }
14 }
15 operation MakeClassConcrete apply(m : MetaModel) { self.class.getClass().is_abstract := false; }
16 operation AddClass apply(m : MetaModel) {
17 var c : MetaClass = new MetaClass;
18 c.name(self.name);
19 c.superclass = self.superclass.getClass();
20 c.is_abstract = self.abstract_;
21 m.elements.add(c); }
22 operation ExtractAbstractSuperClass apply(m : MetaModel) {
23 var class : MetaClass = new MetaClass;
24 class.name(self.name);
25 class.is_abstract = true;
26 for (subclass in self.subclasses) { subclass.getClass().superclass = class; }
27 m.elements.add(class); }
28 operation EliminateClass apply(m : MetaModel) {
29 var class : MetaClass = self.class.getClass();
30 m.elements.remove(class);
31 for (prop in class.properties.includingAll(m.elements.select(e | e.isTypeOf(MetaAssociation) and e

.target == class))) {
32 m.elements.remove(prop);
33 if (prop.getOwner().isDefined()) { prop.getOwner().properties.remove(prop); }
34 delete prop;
35 }
36 delete class;
37 }
38 operation RenameClass apply(m : MetaModel) { self.class.getClass().name(self.name); }
39 operation RestrictProperty apply(m : MetaModel) {
40 var prop : MetaProperty = self.prop.getProperty();
41 prop.lowsrc = self.lowsrc;
42 prop.highsrc = self.highsrc;
43 prop.lowdst = self.lowdst;
44 prop.highdst = self.highdst;
45 }
46 // ...

Listing C.8: Apply.eol (partial): the transformation in EOL that applies a delta model to a
metamodel.
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1 operation String getClass() { // get class by name
2 return MetaClass.allInstances().select(c | c.toString() == self).first(); }
3 operation String getProperty() { // get property by name
4 return MetaProperty.allInstances().select(p | p.toString() == self).first(); }
5 operation MetaProperty getOwner() : MetaClass { // get owner of property
6 return MetaClass.allInstances().select(c | c.properties.includes(self)).first(); }
7 operation MetaClass getProperties() : Bag(MetaProperty) { // return all (inherited) properties
8 var classes : Sequence(MetaClass)=self.asSet().closure(c|c.superclass).includingAll(self.asSet());
9 return classes.collect(c | c.properties).includingAll(MetaProperty.allInstances()

10 .select(p | p.isTypeOf(MetaAssociation) and classes.includes(p.target))).flatten();}
11 operation MetaClass allInstances_() : Sequence(Node) { // return all instances of a given metaclass
12 var classes : Sequence(String); classes.add(self);
13 classes.addAll(classes.closure(c | MetaClass.allInstances()
14 .select(s | s.superclass.asString() = c.asString())));
15 return Node.allInstances().select(n | classes.collect(c | c.asString()+"Type")
16 .includes(n.type().toString()));
17 }
18 // return all instances of a given metaproperty Bug alert! flatten() doesn't work!
19 // because association end is a not-eol type [x, y, z] it cannot be flattened
20 // hence an extra test (to filter these out) n.get(fieldname).type().toString() == self.asString()
21 // consequently n-to-n association instances cannot be found,
22 // in that case, try self.getAllInstances() instead but this method is not always available (?!)
23 operation MetaProperty allInstances_() : Sequence(Any) {
24 var fieldname : String = self.asString();
25 if (self.target == self.getOwner()) {
26 fieldname = self.asString()+self.asString()+"_incoming";
27 }
28 return Node.allInstances().select(n | n.hasField(fieldname)
29 and n.get(fieldname).type().toString() == self.asString())
30 .collect(n | n.get(fieldname)).flatten();
31 }
32 // remove link (needs removing of references and therefore not just "delete" should be used)
33 operation removeLink(link) {
34 var typename : String = link.type().asString();
35 // remove source references
36 var src : Any = link.get(typename+"_incoming");
37 if (src.hasField(typename+"_outgoing")) src.fields.remove(src.getField(typename+"_outgoing"));
38 if (src.hasField(typename+"_incoming")) src.fields.remove(src.getField(typename+"_incoming"));
39 // remove target references
40 var tgt : Any = link.get(typename+"_outgoing");
41 if (tgt.hasField(typename+"_incoming")) tgt.fields.remove(tgt.getField(typename+"_incoming"));
42 if (tgt.hasField(typename+"_outgoing")) tgt.fields.remove(tgt.getField(typename+"_outgoing"));
43 // remove link
44 delete link;
45 }
46 // remove all instances of a given type
47 operation MetaElement removeInstances() {
48 if (self.isTypeOf(MetaAssociation)) {
49 // remove all links and their references
50 for (link in self.allInstances_()) { removeLink(link); }
51 } else if (self.isTypeOf(MetaClass)) {
52 // remove all node links
53 for (prop in self.getProperties().select(p | p.isTypeOf(MetaAssociation))) {
54 // remove links from/to an instance of the given type
55 for (link in prop.allInstances_().select(l |
56 l.get(prop.asString()+"_outgoing").type().toString() == self.asString()+"Type"
57 or l.get(prop.asString()+"_incoming").type().toString() == self.asString()+"Type")) {
58 removeLink(link);
59 }
60 }
61 // remove all instances
62 for (node in self.allInstances_()) { delete node; }
63 }
64 }

Listing C.9: Helpers.eol (not shown in Figure C.1): helper operations in EOL.
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APPENDIX C. PROTOTYPE OF LANGUAGE EVOLUTION IN METADEPTH

1 // generated
2 Model EElevatorDSML {
3 Node FloorType {
4 next_outgoing : FloorType[0..1];
5 next_incoming : FloorType[0..1];
6 requests_incoming : CallButtonType[0..3];
7 currentfloor_incoming : ElevatorType[0..*];
8 }
9 Node ElevatorType {

10 doors_open : boolean;
11 going_up : boolean;
12 currentfloor_outgoing : FloorType[1..1];
13 elevator_button_outgoing : ElevatorButtonType[0..*];
14 }
15 abstract Node ButtonType {
16 pressed : boolean;
17 }
18 abstract Node CallButtonType : ButtonType {
19 requests_outgoing : FloorType[1..1];
20 }
21 Node ElevatorButtonType : CallButtonType {
22 elevator_button_incoming : ElevatorType[1..1];
23 }
24 Node FloorButtonType : CallButtonType {
25 up_direction : boolean;
26 }
27 Node EmergencyButtonType : ButtonType {
28 }
29 Edge next (FloorType.next_outgoing, FloorType.next_incoming) {}
30 Edge elevator_button (ElevatorType.elevator_button_outgoing,
31 ElevatorButtonType.elevator_button_incoming) {}
32 Edge requests (CallButtonType.requests_outgoing, FloorType.requests_incoming) {}
33 Edge currentfloor (ElevatorType.currentfloor_outgoing, FloorType.currentfloor_incoming) {}
34 }

Listing C.10: EElevatorDSML.mdepth: the evolved DSML, result of applying ElevatorEvo to
ElevatorMM, followed by compiling the metamodel by Listing C.3.
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1 // Execute in a DeltaModels context, with imported MetaModels
2 import "Helpers.eol";
3 operation main() {
4 // first, put all metaelements in a container so we can add new elements
5 var m : MetaModel = MetaModel.allInstances().first();
6 m.elements = MetaElement.allInstances();
7 // rename container
8 m.name("IM" + m.toString());
9 ("Merging the delta operations to create the intermediate metamodel " + m).println();

10 // apply rename operations
11 for (delta in DeltaModel.allInstances().first().operations
12 .select(o | o.isTypeOf(RenameClass) or o.isTypeOf(RenameProperty))) {
13 (delta.toString() + " " + delta.type().toString()).println();
14 delta.apply(m);
15 }
16 // apply delta operations
17 for (delta in DeltaModel.allInstances().first().operations
18 .select(o | not o.isTypeOf(RenameClass) and not o.isTypeOf(RenameProperty))) {
19 (delta.toString() + " " + delta.type().toString()).println();
20 delta.merge(m);
21 }
22 }
23 operation RenameClass apply(m : MetaModel) { self.class.getClass().name(self.name); }
24 operation RenameProperty apply(m : MetaModel) { self.prop.getProperty().name(self.name); }
25 operation MakeClassConcrete merge(m : MetaModel) { self.class.getClass().is_abstract := false; }
26 operation AddClass merge(m : MetaModel) {
27 var class : MetaClass = new MetaClass;
28 class.name(self.name);
29 class.superclass = self.superclass.getClass();
30 class.is_abstract = self.abstract_;
31 m.elements.add(class); }
32 operation ExtractAbstractSuperClass merge(m : MetaModel) {
33 var class : MetaClass = new MetaClass;
34 class.name(self.name);
35 class.is_abstract = true;
36 for (s in self.subclasses) { s.getClass().superclass = class; }
37 m.elements.add(class); }
38 operation PullPropertyToAbstractClass merge(m : MetaModel) {
39 var prop : MetaProperty = self.prop.getProperty();
40 var owner : MetaClass = prop.getOwner();
41 owner.properties.remove(prop);
42 owner.superclass.properties = new Bag(MetaProperty)
43 .includingAll(owner.superclass.properties).including(prop); }
44 operation EliminateClass merge(m : MetaModel) {}
45 operation EliminateProperty merge(m : MetaModel) { self.prop.getProperty().lowsrc = 0; }
46 operation RestrictProperty merge(m : MetaModel) {}
47 operation AddObligatoryProperty merge(m : MetaModel) {
48 var prop : MetaAttribute = new MetaAttribute;
49 prop.name(self.name);
50 self.owner.getClass().properties = new Bag(MetaProperty)
51 .includingAll(self.owner.getClass().properties).including(prop);
52 prop.lowsrc = 0;
53 prop.highsrc = self.highsrc;
54 prop.type = self.type;
55 m.elements.add(prop);
56 }
57 // ...

Listing C.11: Intermediate.eol (partial): the transformation that creates the intermediate
metamodel from a metamodel and a delta model.
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APPENDIX C. PROTOTYPE OF LANGUAGE EVOLUTION IN METADEPTH

1 // generated
2 Model IElevatorDSML {
3 Node FloorType {
4 nr : int[0..1];
5 next_outgoing : FloorType[0..1];
6 next_incoming : FloorType[0..1];
7 requests_incoming : CallButtonType[0..*];
8 currentfloor_incoming : ElevatorType[0..*];
9 }

10 Node ElevatorType {
11 doors_open : boolean;
12 going_up : boolean;
13 currentfloor_outgoing : FloorType[1..1];
14 elevator_button_outgoing : ElevatorButtonType[0..*];
15 }
16 abstract Node ButtonType {
17 pressed : boolean;
18 }
19 abstract Node CallButtonType : ButtonType {
20 requests_outgoing : FloorType[1..1];
21 }
22 Node ElevatorButtonType : CallButtonType {
23 elevator_button_incoming : ElevatorType[1..1];
24 }
25 Node FloorButtonType : CallButtonType {
26 up_direction : boolean[0..1];
27 }
28 Node UpButtonType : FloorButtonType {}
29 Node DownButtonType : FloorButtonType {}
30 Node EmergencyButtonType : ButtonType {}
31 Edge next (FloorType.next_outgoing, FloorType.next_incoming) {}
32 Edge elevator_button (ElevatorType.elevator_button_outgoing,
33 ElevatorButtonType.elevator_button_incoming) {}
34 Edge requests (CallButtonType.requests_outgoing, FloorType.requests_incoming) {}
35 Edge currentfloor (ElevatorType.currentfloor_outgoing, FloorType.currentfloor_incoming) {}
36 }

Listing C.12: IElevatorDSML.mdepth: the intermediate Elevator metamodel.

Merging the delta operations to create the intermediate metamodel IElevatorDSML
delta1 RestrictProperty
delta2 ExtractAbstractSuperClass
delta3 PullPropertyToAbstractClass
delta4 AddClass
delta5 MakeClassConcrete
delta6 AddObligatoryProperty
delta7 EliminateClass
delta8 EliminateClass
delta9 EliminateProperty

Listing C.13: Output trace of the Intermediate transformation.
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1 // generated by generated Python script
2 load "IElevatorDSML"
3 load "ElevatorEvo"
4 IElevatorDSML ThreeFloorsI imports ElevatorEvo {
5 ElevatorType e { doors_open = false; going_up = false; }
6 FloorType f1 { nr = 1; }
7 FloorType f2 { nr = 2; }
8 FloorType f3 { nr = 3; }
9 ElevatorButtonType b1 { pressed = false; }

10 ElevatorButtonType b2 { pressed = false; }
11 ElevatorButtonType b3 { pressed = true; }
12 UpButtonType u1 { pressed = false; }
13 UpButtonType u2 { pressed = false; }
14 DownButtonType d2 { pressed = true; }
15 DownButtonType d3 { pressed = false; }
16 next n1 (f1, f2) {}
17 next n2 (f2, f3) {}
18 currentfloor c (e, f1) {}
19 elevator_button eb1 (e, b1) {}
20 elevator_button eb2 (e, b2) {}
21 elevator_button eb3 (e, b3) {}
22 requests r1 (b1, f1) {}
23 requests r2 (b2, f2) {}
24 requests r3 (b3, f3) {}
25 requests r4 (u1, f1) {}
26 requests r5 (u2, f2) {}
27 requests r6 (d2, f2) {}
28 requests r7 (d3, f3) {}
29 }

Listing C.14: ThreeFloorsI.mdepth: the converted instance, that has been subjected to µr and is
conform to the intermediate metamodel.
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1 import "Helpers.eol";
2 operation main() {
3 ("Migrating model").println();
4 Migrate(Operations());
5 }
6 operation Operations() : Sequence(Any) { return DeltaModel.allInstances().first().operations; }
7 // for subscribing custom migration operations
8 operation Sequence(Any) Subscribe(op : String, i : Integer) {
9 var fullOps : Sequence = self.select(o | not o.isTypeOf(RenameClass)

10 and not o.isTypeOf(RenameProperty));
11 var offset : Integer = self.size() - fullOps.size();
12 return self.select(op | self.indexOf(op) < offset + i - 1)
13 .including(op).includingAll(self.select(op | self.indexOf(op) >= offset + i - 1));
14 }
15 // do the migration
16 operation Migrate(operations : Sequence(Any)) {
17 for (delta in operations) {
18 (delta + " " + delta.type()).println();
19 delta.migrate();
20 }
21 }
22 operation EliminateClass migrate() {
23 for (instance in self.class.getClass().allInstances_()) {
24 ("removing " + instance).println();
25 // go over all edges
26 for (field in instance.fields.select(f | not f.isDataType()
27 and not Node.allInstances().includes(f.get()))) {
28 ("removing " + field.get()).println();
29 // remove field references at target
30 var assoc : MetaAssociation = field.toString().getProperty(); // find all metaproperties
31 for (targetinstance in assoc.target.allInstances_()) {
32 var assocvalue : Any = targetinstance.get(assoc.toString()+"_incoming");
33 if (assoc.highdst <> 1) {
34 assocvalue.remove(instance);
35 } else {
36 assocvalue.setSet(false);
37 }
38 }
39 // remove field
40 delete field.get();
41 }
42 delete instance;
43 }
44 }
45 // ...
46 operation String migrate() {
47 custom(self);
48 }

Listing C.15: Migrate.eol (partial): the transformation that implements the default migration
operations.
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1 import "Migrate.eol";
2 operation main() { ElevatorEvoM(); }
3 operation ElevatorEvoM() {
4 ("Custom migration model").println();
5 var operations : Sequence(Any) = Operations();
6 operations = operations.Subscribe("migrate5_8", 5);
7 operations = operations.Subscribe("migrate1", 1);
8 operations.println();
9 Migrate(operations);

10 }
11 operation custom(op : String) {
12 if (op == "migrate1") { migrate1(); }
13 else if (op == "migrate5_8") { migrate5_8(); }
14 }
15 operation migrate1() { /* do nothing */ }
16 operation migrate5_8() {
17 for (instance in UpButton.allInstances_().includingAll(DownButton.allInstances_())) {
18 var name : String = instance.toString();
19 var floorbutton : FloorButtonType = new FloorButtonType;
20 if (UpButton.allInstances_().includes(instance)) {
21 floorbutton.up_direction = true;
22 } else {
23 floorbutton.up_direction = false;
24 }
25 floorbutton.pressed = instance.pressed;
26 floorbutton.requests = instance.requests;
27 delete instance;
28 floorbutton.name(name);
29 }
30 }

Listing C.16: ElevatorEvoM.eol: The manually adapted migration operations.

1 Custom migration model
2 Sequence {deltar, migrate1, delta1, delta2, delta3, delta4, migrate5_8, delta5, delta6, delta7, delta8, delta9}
3 deltar RenameClass
4 deltar ignored
5 migrate1 org.eclipse.epsilon.eol.types.EolPrimitiveType@1ed828d
6 delta1 RestrictProperty
7 delta2 ExtractAbstractSuperClass
8 delta2 ignored
9 delta3 PullPropertyToAbstractClass

10 delta3 ignored
11 delta4 AddClass
12 delta4 ignored
13 migrate5_8 org.eclipse.epsilon.eol.types.EolPrimitiveType@1ed828d
14 delta5 MakeClassConcrete
15 delta5 ignored
16 delta6 AddObligatoryProperty
17 delta7 EliminateClass
18 delta8 EliminateClass
19 delta9 EliminateProperty
20 removing nr in f1
21 removing nr in f2
22 removing nr in f3

Listing C.17: Output trace of the Migration transformation.
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1 // generated by generated Python script
2 load "EElevatorDSML"
3 EElevatorDSML MThreeFloors {
4 ElevatorType e { doors_open=false; going_up=false; }
5 FloorType f1 {}
6 FloorType f2 {}
7 FloorType f3 {}
8 ElevatorButtonType b1 { pressed=false; }
9 ElevatorButtonType b2 { pressed=false; }

10 ElevatorButtonType b3 { pressed=true; }
11 FloorButtonType u1 { pressed=false; up_direction=true; }
12 FloorButtonType u2 { pressed=false; up_direction=true; }
13 FloorButtonType d2 { pressed=true; up_direction=false; }
14 FloorButtonType d3 { pressed=false; up_direction=false; }
15 next n1(f1,f2) {}
16 next n2(f2,f3) {}
17 currentfloor c(e,f1) {}
18 elevator_button eb1(e,b1) {}
19 elevator_button eb2(e,b2) {}
20 elevator_button eb3(e,b3) {}
21 requests r1(b1,f1) {}
22 requests r2(b2,f2) {}
23 requests r3(b3,f3) {}
24 requests r4(u1,f1) {}
25 requests r5(u2,f2) {}
26 requests r6(d2,f2) {}
27 requests r7(d3,f3) {}
28 }

Listing C.18: MThreeFloors.mdepth: the final migrated instance after the migration and conversion
step, conform to the EElevatorDSML metamodel.

1 // ...
2 operation migrate9inv() {
3 var current : FloorType = Floor.allInstances_().select(f | not f.next_incoming.isDefined()).first

();
4 var n : Integer = 1;
5 while (current.isDefined()) {
6 current.nr = n;
7 n = n+1;
8 current = current.next_outgoing;
9 }

10 }
11 operation migrate5_8inv() {
12 for (instance in FloorButton.allInstances_()) {
13 var name : String = instance.toString();
14 var floorbutton : FloorButtonType;
15 if (instance.up_direction) {
16 floorbutton = new UpButtonType;
17 } else {
18 floorbutton = new DownButtonType;
19 }
20 floorbutton.pressed = instance.pressed;
21 floorbutton.requests = instance.requests;
22 delete instance;
23 floorbutton.name(name);
24 }
25 }

Listing C.19: ElevatorEvoInv.eol: the manually created inverse migration operations.
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1 import "Helpers.eol";
2 @model(potency=0)
3 operation main() { ElevatorSim(); }
4 operation ElevatorSim() {
5 var e : ElevatorType = Elevator.allInstances_().first(); // only one elevator
6 while (pressedButtons().size() > 0) {
7 var currentFloor : FloorType = e.currentfloor.currentfloor_outgoing;
8 printState();
9 // open door

10 if (not e.doors_open and pressedButtons().select(b |
11 b.requests.requests_outgoing = currentFloor and
12 (b.type().asString() = "ElevatorButtonType"
13 or (b.type().asString() = "UpButtonType" and e.going_up)
14 or (b.type().asString() = "DownButtonType" and not e.going_up))).size() > 0) {
15 "open door".println();
16 for (button in pressedButtons().select(b | b.requests.requests_outgoing = currentFloor)) {
17 if (not e.doors_open) e.doors_open := true;
18 button.pressed := false;
19 }
20 // close door
21 } else if (e.doors_open and pressedButtons().select(b |
22 b.requests.requests_outgoing <> currentFloor).size() > 0) {
23 "close door".println();
24 e.doors_open := false;
25 // move
26 } else if (not e.doors_open and e.going_up and pressedButtons().select(b |
27 b.requests.requests_outgoing.nr > currentFloor.nr).size() > 0) {
28 "move up".println();
29 e.currentfloor.currentfloor_outgoing := currentFloor.next_outgoing;
30 } else if (not e.doors_open and not e.going_up and pressedButtons().select(b |
31 b.requests.requests_outgoing.nr < currentFloor.nr).size() > 0) {
32 "move down".println();
33 e.currentfloor.currentfloor_outgoing := currentFloor.next_incoming;
34 // change dir
35 } else if ((e.going_up
36 and not (pressedButtons().select(b |
37 b.requests.requests_outgoing.nr > currentFloor.nr).size() > 0)
38 and pressedButtons().select(b |
39 b.requests.requests_outgoing.nr <= currentFloor.nr).size() > 0)
40 or (not e.going_up
41 and not (pressedButtons().select(b |
42 b.requests.requests_outgoing.nr < currentFloor.nr).size() > 0)
43 and pressedButtons().select(b |
44 b.requests.requests_outgoing.nr >= currentFloor.nr).size() > 0)) {
45 "change dir".println();
46 e.going_up := not e.going_up;
47 } else {
48 break;
49 }
50 }
51 "DONE".println();
52 }
53 operation pressedButtons() : Sequence(ButtonType) {
54 return Button.allInstances_().select(b | b.pressed);
55 }

Listing C.20: ElevatorSim.eol: the operational semantics transformation.
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close door
change dir
move up
move up
open door
close door
change dir
move down
open door
DONE

Listing C.21: The execution trace of transforming ThreeFloorsI with ElevatorSim.

1 // generated by generated Python script
2 load "EElevatorDSML"
3 EElevatorDSML MThreeFloors {
4 ElevatorType e { doors_open=true; going_up=false; }
5 FloorType f1 {}
6 FloorType f2 {}
7 FloorType f3 {}
8 ElevatorButtonType b1 { pressed=false; }
9 ElevatorButtonType b2 { pressed=false; }

10 ElevatorButtonType b3 { pressed=false; }
11 FloorButtonType u1 { pressed=false; up_direction=true; }
12 FloorButtonType u2 { pressed=false; up_direction=true; }
13 FloorButtonType d2 { pressed=false; up_direction=false; }
14 FloorButtonType d3 { pressed=false; up_direction=false; }
15 next n1(f1,f2) {}
16 next n2(f2,f3) {}
17 currentfloor c(e,f2) {}
18 elevator_button eb1(e,b1) {}
19 elevator_button eb2(e,b2) {}
20 elevator_button eb3(e,b3) {}
21 requests r1(b1,f1) {}
22 requests r2(b2,f2) {}
23 requests r3(b3,f3) {}
24 requests r4(u1,f1) {}
25 requests r5(u2,f2) {}
26 requests r6(d2,f2) {}
27 requests r7(d3,f3) {}
28 }

Listing C.22: MTThreeFloors.mdepth: the transformed and migrated instance model.
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