
SPECIFICATION AND VERIFICATION OF 
PROPERTIES FOR GRAPH-BASED MODEL 
TRANSFORMATIONS

GEHAN M. K. SELIM, LEVI LUCIO, JAMES R. CORDY, 
JUERGEN DINGEL, BENTLEY J. OAKES



AGENDA

Problem Statement
DSLTrans Model Transformation Language
Symbolic Model Transformation Property Prover

• Overview
• Phase 1: Path Condition Generation
• Phase 2: Property Verification

Industrial Case Study
Discussion
Conclusion & Future work 



PROBLEM STATEMENT

Prove pre- post- condition structural properties
●  On translation model transformations

○ Example: Industrial migration transformations
●  For all executions

○ No extra elements added/removed

● Infinite amount of transformation executions means the 
proof needs to be done on abstractions
○ Named path conditions in algorithm



DIFFERENCES FROM CURRENT 
TRANSFORMATION VERIFICATION TOOLS

● Input-independent
● Little mathematical background required (v.s. Maude)
● Some scalability tests on industrial-size transformations
● Verifies multiple property types 
● Proof for validity and completeness of verification 

technique



DSLTRANS TRANSFORMATION
PERSONS TO COMMUNITY 

Restricted form of graph transformations
Turing-incomplete Out-place



DSLTRANS TRANSFORMATION
PERSONS TO COMMUNITY RULE



SYMBOLIC MODEL TRANSFORMATION 
PROPERTY PROVER: OVERVIEW



Phase 1- Path Condition 
Generation

1
1

2
1

3
1

1
2

2
2

2
3

23

 

Process
Layer 1
Process
Layer 2
Process
Layer 3

Unfeasible 
Control Path

… …
Path 
Conditions

Based on: L. Lucio, B. Barroca, V. Amaral “A Technique for the Verification of 
Model Transformations” Proceedings of MoDELS, 2010.



Abstraction Relation

Prove properties on path condition
Holds on abstracted transformation executions



Combining Path Condition with Rule
Case 1: No Dependencies 

 



Combining Path Condition with Rule
Case 1: No Dependencies 

 



Combining a Path Condition with a Rule 
Case 2: Rule has Dependencies and
             Cannot Execute

 



 

Combining a Path Condition with a Rule 
Case 2: Rule has Dependencies and
             Cannot Execute



 

Combining a Path Condition with a Rule 
Case 3: Rule has Dependencies and
             Will Execute



 

Combining a Path Condition with a Rule 
Case 3: Rule has Dependencies and
             Will Execute



 

Combining a Path Condition with a Rule 
Case 4: Rule has Dependencies and
             May Execute



 

Combining a Path Condition with a Rule 
Case 4: Rule has Dependencies and
             May Execute



Reminder: Path Condition 
Generation

11 21 31

12 22

13 23

 

Based on: L. Lucio, B. Barroca, V. Amaral “A Technique for the Verification of 
Model Transformations” Proceedings of MoDELS, 2010.

Process
Layer 1
Process
Layer 2
Process
Layer 3

Unfeasible 
Control Path

… …
Path 
Conditions



PHASE 2- PROPERTY VERIFICATION

PC1 PC2 PCn
1. Generated 

Path 
Conditions

...

   

prop holds

prop doesn’t hold 
+ counterexample

Takes 2 inputs:
1. Path conditions generated from phase 1
2. Property to verify

a) AtomicContracts: Precondition & Postcondition

b) Propositional formulae of AtomicContracts (And, 
Or, Not, If/Then)

2. Input 
Property 
prop



PHASE 2- PROPERTY VERIFICATION

Example of AtomicContract:

If a pattern of 
elements exists in 
the input

Then another 
pattern of 
elements must 
exist in the output



AtomicContracts Propositional Formula of AtomicContracts

A Household in the input will always be 
mapped to a Community in the output

If The output has a Community 
Then  {That Community will be associated 
to one Man And Not More than one Man}

Free 
Variables !

Verification for a pathcondition pc using 
Subgraph Isomorphism: 
If ( Precondition in pc & postcondition not in pc) 

return false
Else return true

e.g.,PatternContracts e.g., “1..1” Multiplicity Invariants



INDUSTRIAL CASE STUDY

- GM-2-AUTOSAR migration transformation [1]

- GM-2-AUTOSAR Transformation Size

- GM-2-AUTOSAR transformation Properties [2]:
- Multiplicity Invariants: The transformation's output preserves 

the multiplicities in the output metamodel
- Security Invariant: A physical node does not refer to a 

software component that is not deployed on that node.
- Pattern Contracts: If a pattern of elements exists in the input, 

then a corresponding pattern must exist in the output
- Uniqueness Contracts:  An output element of a rule is 

uniquely named if the corresponding input element is uniquely 
named, too. (Not handled in our prover)

1. G. Selim, S. Wang, J. R. Cordy, J. Dingel. “Model Transformations for Migrating Legacy Models: An Industrial Case Study”. ECMFA, 2012.
2. G. Selim, F. Büttner, J. R. Cordy, J. Dingel, Shige Wang.”Automated Verification of Model Transformations in the Automotve Industry”. MODELS, 2013.

DSLTrans ATL

3 Layers, 2 or 3 rules per layer 2 matched rules, 9 functional helpers, 6 attribute helpers



INDUSTRIAL CASE STUDY

- Time to generate path conditions (performed once) = 0.6 secs 

- Time to verify properties:

Multiplicity Invariants Security 
Invariant

Pattern 
Contracts

Property M1 M2 M3 M4 M5 M6 S1 P1 P2

Time (sec) 0.013 0.017 0.013 0.017 0.017 0.019 0.017 0.02 0.02

- Maximum time to verify a property = 0.02 sec



DISCUSSION

Pros
• Result holds for any input; not limited to a scope
• No translation needed
• Verification is much faster using our prover

Cons • Cannot prove properties that reason about attributes
• Cannot verify transformations with NACS

Property M1 M2 M3 M4 M5 M6 S1 P1 P2

Time in our prover (sec) .013 .017 .013 .017 .017 .019 .017 .02 .02

Time in [1] within a 
scope of 6 (sec)

76 73.4 75 75 75.5 74.5 114 256 251

1. G. Selim, F. Büttner, J. R. Cordy, J. Dingel, Shige Wang.”Automated Verification of Model TransfoSrmations in the Automotve Industry”. MODELS, 2013.

Compared 
To



CONCLUSION & FUTURE WORK

Conclusion

• Extended an input-independent property prover
• Property prover can verify a variety of property types
• Proved soundness & completeness of property prover
• Conducted a case study
• Compared our prover with another verification tool

Future Work

• Extended scalability tests
• Handle properties that reason about attributes
• Verify transformations with NACs.


