

Paper-B

Towards a Multi-View Modelling Environment
for Mechatronics Systems

El-khoury Jad and Redell Ola

Published as
Technical report, ISRN/KTH/MMK/R-05/24-SE, TRITA-MMK
2005:24, ISSN 1400-1179, Department of Machine Design,

KTH, 2005.

A summary of this report is also published as:

El-khoury J., Redell O. and Törngren M., Integrating views in a multi-view
modelling environment, Proceedings of the 15th International Symposium of the

Systems Engineering Conference, 2005.

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

74

Abstract

The development of modern technical systems requires the close collaboration
of various specialist teams and engineering disciplines. Even though working
with the same system towards the same goal, developers from the different
domains use their own specific tools, providing their own specific views of the
system to be developed. For the successful integration of the efforts from each
of these disciplines, the different views need to be appropriately integrated,
preventing any inconsistencies and divergences from creeping into the system
design.

In this report, we present an approach to multi-view modelling which
systematically integrates the two generally accepted complexity reduction
techniques of hierarchical decomposition and multi-viewing. While these
techniques are common practice in many modern design tools, the approach
presented defines how the inter-view relationships can be used to tightly
interweave the views’ hierarchies.

Through the use of a case study, model integration is investigated for the
allocation of system functions onto the implementing hardware architecture.
The resulting approach maintains the principle of hierarchical design within, as
well as between the views, where allocation can be performed at arbitrary levels
across the hardware and function hierarchies. The proposed approach
promotes the independent development of the views, allowing developers from
each discipline to work concurrently, yet providing support for a holistic view.
This provides a good basis for an information sharing environment enabling
model-based, multi-disciplinary development.

While specific to the allocation of system functions to hardware, these
mechanisms can be reused for the mapping of system functionality to the
software architecture, or software to hardware allocation. The generalisation of
this work to cover other kinds of relations remains a challenge for future work.

B.1. Introduction

75

B.1. Introduction
The development of modern technical systems requires the close collaboration of
various specialist teams and engineering disciplines. In automotive system design
for example, developers from the traditional engineering disciplines such as
control, software, mechanical and electrical engineering, need to interact to meet
the demands for dependable and cost-efficient integrated systems. Even though
working with the same system towards the same goal, developers from the
different domains use their own specific tools, providing their own specific views
of the system to be developed. Each system view targets a specific audience, using
that audience’s familiar language (viewpoint), and concentrating on that
audience’s concerns [1]. Figure 18 illustrates some of the viewpoints and views
that may be necessary during the development of a typical vehicular system. This
separation of concerns has been well recognised in literature and is the common
practice of modern engineering modelling languages and tools ([2], [3], [4] and
[5]).

Figure 18. Some of the disciplines and views in system development.

Breaking up the design information of the system into multiple views, based on
domain concerns, has the major advantages that it increases understandability and
reduces the perceived complexity of the system at hand. However, the concerns

V

V

V

V

V

The system

Hardware topology

Mechanics

Control

Functionality

Software

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

76

and interests of each domain are not necessarily exclusive, which leads to overlap
and dependencies in their development information space. In addition, even
though they attempt to develop the same system, developers from the different
disciplines may form a different perception of the system’s aims, problems and
solutions. Combined with the fact that these disciplines are distributed across
several teams that focus on specific subsystems of a large system, it becomes
essential that the efforts of all developers are well communicated and the different
views are well integrated into a whole. This reduces any risks of inconsistencies
and conflicts between the views.

There are two main reasons for the need of view integration. (1) Integration is
necessary in the case where it is not desired to specify certain system information
exclusively within a single view, since the information is the concern of more than
a single aspect or discipline. Good integration mechanisms should allow this
information to be duplicated in the relevant views while maintaining its
consistency across the views. An example approach focusing on the consistency
checking between views in software engineering, where the same or closely
related entities can appear in different views and must be maintained consistent,
can be found in [6]. (2) Depending on the adopted set of views, some information
may not belong to one view or the other, but specifies a relationship between
different views. For example, the allocation of software components onto the
hardware components of a system is the sole concern of neither the software nor
the hardware developer, and this design decision lies between the two views. Good
integration mechanisms permit the specifications of such inter-view information
and reflect the interaction points at which the respective stakeholders need to
communicate. Inter-view information can naturally be considered as a view of its
own. It is however interesting to highlight the fact that such an “inter-view view”
cannot exist on its own, since most of its information lies in the other views it
relates. This report focuses on the latter kind of view integration.

B.1.1. Inter-view Modelling - A Complexity Management
Technique

Breaking up the system description into multiple views is simply an application of
the decomposition or “divide-and-conquer” technique commonly used to manage
system complexity. This technique is well adopted in many aspects of science and
technology and is generalised in the General Systems Theory ([7] and [8]). A more
common application of this principle is hierarchical decomposition, in which a
complex system is recursively divided into smaller subsystems until a satisfactory
level of detail or complexity is reached. Combining both techniques, system
modelling can be envisaged as presented in figure 19, in which the complete
system model information is first divided into its various views and then

B.1. Introduction

77

decomposition is used to form a hierarchy of the information specific to each
view.

It is argued that a good view integration approach should maintain the use of
hierarchies when specifying inter-view information in order to facilitate the
developer’s work. Relationships setup between views should be appropriately
reflected in models and not simply as a list of references. Establishing
relationships across the hierarchies of the views provides a tight interweaving of
the views. Using this interweaving, mechanisms can be developed to allow a
developer within a given domain to view the other aspects of the system from
his/her own point of view. The other views should be reflected to the developer at
a sufficient level of abstraction and detail that makes him/her appreciate the
information provided. Such mechanisms also act as a good basis for information
sharing between developers.

System

Subsystem
A1

Subsystem
A2

Subsystem
A3 Subsystem

A4

Subsystem
A4.1

Subsystem
A4.3

View
A

View
B

System

Subsystem
B1

Subsystem
B3

Subsystem
B2

Subsystem
B2.1

Subsystem
B2.2

Subsystem
A4.2

Decomposition

Decomposition

Decomposition

Decomposition

Cross-view
Reference

Figure 19. The integration of multi-view and hierarchical decomposition
techniques. The broken arrow illustrates a relation between the separated views.

View integration can be performed either through social communication among
developers - social development, or through formalised and automated design
processes - model based development (MBD) [9].

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

78

MBD refers to a development approach whose activities emphasise the use of
models, tools and analysis techniques for the documentation, communication and
analysis of decisions taken at each stage of the development lifecycle. Models can
take many forms such as physical prototypes, graphical and textual models. It is
essential that the models contain sufficient and consistent information about the
system, allowing reproducible and reliable analysis of specific system properties to
be performed. In MBD, analysis plays the critical role of ensuring that the models
being built - hence the design decisions being taken – are consistent and satisfy the
system requirements.

Within a given domain or view, MBD is commonly used, such as the use of CAD
tools in mechanical engineering. This report suggests an approach in which the
integration of models from the various design domains is also model-based. By
emphasising the use of tools, models and analysis techniques, this ensures the
explicit documentation of all inter-view design decisions, making it possible to
validate and verify them.

An integrated, model-based, multi-view design environment is also a good basis
for the communication of information between developers, where any conflicts
and misunderstandings between developers are reflected, dealt with and detected
through the models. An integrated environment allows design decisions taken by
one developer to be communicated to the rest of the team in an understandable
way.

We here propose such a multi-view integration approach. In particular, through the
use of a case study, model integration is investigated for the allocation of system
functions onto the implementing hardware architecture. The resulting approach
maintains the principle of hierarchical design within, as well as between the views,
where allocation can be performed across the hardware and function hierarchies.
Rules and mechanisms are developed to ensure the completeness and correctness
of such inter-view design decisions. Additional mechanisms allow a developer
within a given domain to view the other aspects of the system from his/her own
perspective, making view integration a good basis for information sharing. The
developed allocation rules permit the refinement of allocation specifications
performed higher up in the hierarchies, as well as their extensions at the lower
levels.

The next section briefly introduces a small case study that will be used throughout
the paper to exemplify the approach. The meta-meta-model that should be used in
defining a single view of the system model is then defined in section B.3, and
exemplified using models relevant for the case study in section B.4. The section
ends with a discussion on conventional integration mechanisms, highlighting their
shortcomings and defining a set of desired requirements. In section B.5, the multi-

B.2. Case Study

79

view integration approach, satisfying these requirements, is suggested and
explained through the case study. Section B.6 presents typical cross-view analyses
that can be performed with this approach, followed by a short description of the
implementations performed in section B.7. A discussion of related work is
presented in section B.8, before concluding the paper in section B.9. Two
typographic conventions are used in this report: (1) Italics are used for the
definition of a term or keyword. (2) Once defined, Letterspacing is used for
most keywords in the remaining parts of the report. This is necessary given the
multi-word composition of some keywords, simplifying their identification in the
text.

B.2. Case Study
The following case study is an extract from a larger effort performed in
cooperation between Scania AB and the Royal Institute of Technology, aimed at
quantitative analysis of architectural design decisions [10].

The original case study deals with the increased design complexity of modern
truck systems accompanying the introduction of software-based functionality in an
otherwise mechanical product. Among other reasons, complexity arises due to the
increased number of functions introduced. More importantly, complexity arises
from the interdependencies between these functions, where functions need to share
common resources such as memory space on Electronic Control Units (ECU), as
well as cooperate with other functions in order to fulfil their expected behaviour.

During the early architectural design of a truck, architects face the challenge of
choosing the Electrical/Electronics (EE) architecture, onto which the system
functionality is to be implemented, taking into consideration and optimising
design parameters or keyfigures such as the resulting cable weights, costs and the
number of weak connection points. Additional aspects of the system design to be
taken into consideration include reliability, available technology, safety, sub-
contractors, etc. The EE architecture of a truck consists of a network of
communicating ECUs of varying complexity. A critical factor that affects
keyfigures is the allocation of system functions onto these ECUs. Different
function allocations provide different performance requirements of the ECUs,
communication bandwidths, and different sets of cable connections between ECUs
for communication.

Evaluating keyfigures and making trade-offs between them is often performed
through qualitative investigation efforts. The aim of the original case study was to
perform quantitative keyfigure analysis, based on accurate models, to guide these
tradeoffs. In addition, the EE architecture and the system functionality are

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

80

currently modelled within one view, reducing the possibilities to easily explore
different allocation strategies without changing the model itself.

In the original case study, a tool was developed which allows the specification of a
hardware and functional architecture, followed by the possibility to specify
various allocation specifications from which keyfigures can be calculated. These
keyfigures become a trade-off basis for choosing the most appropriate allocation
strategy.

In this report, we consider a subset of the complete truck functionality handled in
the larger case study, to illustrate how the two views of the system ought to be
separated and integrated, simplifying the process of function allocation. We
illustrate how our technique of multi-view modelling identifies two types of
concerns to be separated: Intra-view relations specified in the given view’s model,
and inter-view relations that deal with integrating views.

In particular, we focus on the Adaptive cruise control (ACC) function. ACC is a
typical distributed functionality that requires the cooperation of many components
of the system. ACC may be seen as an extension to the conventional cruise
control, where ACC not only keeps the speed but also ensures a given distance to
the vehicles ahead. The ACC is mainly seen as a comfort oriented function,
although it could be seen as the first step towards more autonomous driving. In the
future, this step could be followed by various functions aimed at comfort, safety
and fuel economy. Sections B.4.2 and B.4.3 illustrate models of the ACC
functionality and of the implementing hardware components respectively.

The ACC functionality described in this report is hypothetical and does not
necessarily match that adopted at Scania. In particular, the function specification
has been reorganised in order to introduce a hierarchical specification.

B.3. Single-view Modelling
In representing a given system, the types of properties selected are based on those
properties that the observer or user is interested in and is capable of observing.
Given that a system may have many different users, the set of properties to be
represented needs to be the union of the properties of interest for each of the users.

A single representation covering all the needed properties can be provided. This
solution implies that observers are exposed to properties to which they have no
interest. Another solution is to provide a different view for each of the concerned
observers, onto which the system properties are distributed. Each view of the
system is represented using a single model. This solution allows observers to focus
on the properties of their concerns. A system is hence said to be represented using
a set of models together with their relationships. This definition of the “model”

B.3. Single-view Modelling

81

and “view” concepts almost agrees with that presented in the IEEE-1471 standard
[1]. While in our definition, views and models form a one-to-one relationship, the
standard defines one-to-many relation, where a view is represented using one or
more models. This set of “models” is grouped into one in our terminology. A
many-to-one relation, where a model is used to represent more than a single view
of the system is not desired, since this would require the need to define which
parts of the model belongs to which view.

B.3.1. The Meta-meta-model
Multi-view modelling generally requires that a certain meta-meta-model is defined
from which the specific models are eventually instantiated [11]. This allows for
many concepts to be reused across all model definitions, and hence facilitating the
integration of these models.

We adopt a simple meta-meta-model which generalises among established meta-
meta-modelling languages such as MoF [11], Dome [12] and GME [4], and based
on a broad survey of modelling languages for embedded computer systems [19].
Since the suggested concepts are very basic and general, it is expected that most
modelling languages can be instantiated using this meta-meta-model. It is
important to note that the main aim is not to suggest yet another meta-meta-model
that claims to cover any modelling language. A simple, generalised meta-meta-
model was adopted, allowing focus to be placed on the view integration
mechanisms.

As further detailed in this section, a model can be generally viewed as consisting
of a hierarchical structuring of elements that may possess properties; ports
defining interfaces to these elements; and relations (such as associations,
inheritance and refinement) between ports. Modelling languages differ in the kinds
of elements that can be specified, their relationships and the kind of properties
they possess. The meta-meta-model is first instantiated to reflect a given meta-
model by defining the kind of elements, ports and relations that will exist in that
particular model. The meta-model is then further instantiated by the user when
defining a specific model for a specific system. Figure 20 shows a graphical
presentation of the concepts discussed in this section.

The main concept that is recurring in most modelling languages and will be
adopted here is composability. In dealing with large complex systems, a system
can be seen as consisting of a set of parts which together, through their
interrelations, describe certain aspects of the system such as its functionality,
structure, etc. These parts are considered systems of their own, which similarly
consist of interrelated parts. This recursive decomposition of the system into its
constituting parts helps in managing and absorbing the complexity of the system,

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

82

where the observer can focus on a part of the system that is of interest at a given
point in time while ignoring the others. Note that decomposition is not necessarily
an intrinsic property of the system, but a technique of perceiving and structuring a
system adopted by the observer to better grasp its details.

Interface
relation

p1

Subsystem/Element
e3

System/Element

Subsystem/Element
e1

Subsystem/Element
e2

Decomposition/Internal definition

p5

p2

p3

p6

p4

Internal
element

Connection
relation

Port

Interfaced
port of pc

Connected
port of p2

pc

Interfacing
port of p4

pa

pb

Figure 20. A graphical representation of the general modelling concepts.

B.3.1.1. Elementary and Composite System Definition
A system’s properties are described by an element. An element is a placeholder of
attributes describing the represented system’s (relevant) properties.

For a simple description of an element, the properties can be specified as a set of
attributes. Such a description is known as an elementary element. In defining a
specific meta-model, the model designer specifies different types of elementaries
to describe different types of systems, with each elementary type having a
different set of properties.

When the complexity of the system increases, the use of elementaries becomes
insufficient to satisfactorily specify all properties of interest. It may become
impossible to define properties whose values can be simply specified; there may
exist complex interdependencies between the properties; or the number of
properties set may be too large to handle. For elaborate descriptions, the properties
of the system can be decomposed into smaller, less complex, interacting elements,

B.3. Single-view Modelling

83

where each element contains a subset of the original system properties. Such a
description is known as a composite element. In relative terms, a composite
element is known as the parent element to each of its composing elements – the
internal elements.

The internal elements of a composite can themselves be either elementary or
composite elements. In this hierarchical decomposition, an element of a system
becomes a system of its own, with its own set of elements and so on. The recursive
decomposition terminates arbitrarily at a certain level once the level of complexity
reached for a part is satisfactory, and the parts can be simply described. The
decision of when an element can be described by a simple set of properties is made
by the designer and reflects his/her mental capabilities and purposes.

Depending on the context used in viewing a certain element, two different
descriptions of the element properties can be identified. If viewing the element as
the parent element containing other elements, then the internal definition (white-
box definition) deals with its complete set of properties, which consists of the set
of internal elements. This definition defines the element as a stand-alone system
and hence needs to be complete irrespective of its surrounding environment. If
viewing the element as a composing element of a larger parent element, then the
external/interface definition (black-box definition) reveals only those properties
that need to be shared with the system environment. From the environment
perspective, this definition is sufficient to know how the element can be used and
related to other elements, while ignoring its internal workings.

B.3.1.2. Element Interface
The interface definition of an element is an extract of the internal definition, and is
defined by a set of ports. A port forms part of the interface of its element and acts
as a placeholder for a subset of its element’s externally accessible properties. It is
through ports that an element interacts with its external environment.

An interaction between elements is described through a relation between their
ports, indicating a certain relationship between the properties specified in the
ports. Two general types of relations are identified: Interface relation and
connection relation.

In order to externally reveal the internal properties of an element, an element’s
port establishes an interface relation to the port of the internal element with the
properties of interest. In figure 20, the interface relation between the ports pa and
p1 indicates that the interface properties of the internal element e1 are externally
accessible. In relative terms, the port of the internal element is called an interfaced
port of the port of the parent element. The latter is called an interfacing port of the

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

84

port of the internal element. In this way, a port acts as a gate to the internal
properties of its element to which the environment connected to that port gains
access. Each direct interfacing port can have one, and only one, direct interfaced
port and vice versa.

Section B.3.1.1 presented a simplified technique of distributing a composite
element’ properties into elements. However, it is generally not possible to obtain
such independent elements. Certain properties that end up in specific parts need to
be related to other properties in other parts, and relationships need to be specified
between the elements to describe these dependencies. A complete system
description hence consists of its composing elements, as well as the relations
between them. A connection relation is established between two ports of peer
elements, implying a certain dependency between the properties specified in the
ports. (See figure 20 for an example connection relation between the ports p2 and
p3.) The ports with such a relation are called direct connected ports.

We define the equivalent ports of a port to be the combined sets of its interfacing
ports and interfaced ports (as well as itself). Given the definition of an interface
relation, equivalent ports are hence the representations of the same set of
properties of the system. Without any loss of information, an element/system can
be replaced by its set of internal elements, where the interfaced ports of its internal
elements connect directly to the ports which the interfacing ports connect to. This
procedure can be executed down the hierarchy until the view consists of a flat
structure of elementary elements. In other words, the model hierarchy is arbitrary,
based on the needs of the developers.

We define the connected ports of a port to be the set of its direct connected ports
and each of their equivalent ports, together with the direct connected ports of the
equivalent ports of this port. Again satisfying the definition of equivalent ports,
the set of connected ports of a port is the same as that for each of its equivalent
ports.

B.3.1.3. Specifying Port Properties
A port’s properties can be defined either directly (direct properties), or through
one of its equivalent ports (inherited properties). If the port properties are allowed
to be simultaneously defined in multiple equivalent ports, a source of potential
inconsistency between the specifications is created. It becomes necessary to ensure
that all specifications are consistent whenever a change occurs (such as when
creating a new interface relation, or changing the properties in one of the
equivalent ports). Another simple solution is to allow properties to be defined on
only one port among the set of equivalent ports, avoiding duplications of property
definitions and hence inconsistency problems. In this case, once the initial choice

B.3. Single-view Modelling

85

of the equivalent port is defined, no other equivalent port can be used to define
properties. This condition needs to be checked whenever a new interface relation
between two ports is created, since the ports become equivalent and it is necessary
to ensure that the new set of equivalent ports has only one port definition.

B.3.1.4. General Principles
In the definition of this meta-meta-model, we try to adhere to a few basic
principles:

• An element/system is fully defined by its internal definition, whether it is a set
of properties or a set of consisting elements and their relations. That is, a
system or element is independent of its surroundings. Its properties cannot be
defined based on properties of its peer elements nor its parents up in the
hierarchy. In other words, it should be possible to remove a system from its
current surroundings and place it in another, without changing its internal
properties.

• An element’s internal and interface definitions should be fully specified
through the interface definitions of its direct children elements. In other
words, the element does not need any information about the internal
properties of its children.

These principles are beneficial in many ways:

• The concept that each element is a system of its own is reinforced, since
external changes and reorganisation do not influence that system/element.

• From the user perspective, the concept that the internal elements can be treated
as black boxes with a certain interface is reinforced. There is no need to study
the direct children’s internal definitions in order to define the element’s
properties or to check its correctness, as long as the internal elements are
assumed to be correct. Only the internal elements and their relations are
needed.

• Systems can be built and checked independently and then used as elements
inside a larger system providing a mechanism for building libraries of
reusable elements.

• Constraint rules and mechanisms relating the different modelling entities
(views, elements, properties, etc.) can be applied more locally. For example,
checking the validity of an element’s interface requires only access to the
element’s direct children without reference to other elements in the system or
further elements down or up the hierarchy.

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

86

• Once a change is made to an entity, the reapplication of the rules and
mechanisms to maintain the model validity is also restricted to a smaller local
subset of the system’s direct elements. This permits the implementation of
more efficient dynamic constraint checking mechanisms.

B.3.1.4.1. Inheritance
Inheritance is the mechanism of specifying a property of a system based on other
properties specified elsewhere. It can be viewed as an automation of the manual
specification of properties, in the case where only one choice would have been
available for a valid model.

The inheritance mechanisms should satisfy the principles specified above. For
example, a property of an element can only be inherited from properties specified
by its direct children. A port’s properties can only be inherited from its direct
interfaced port down the hierarchy.

Certain exceptions to the principles specified above may sometimes appear to be
made when setting up inheritance mechanisms. The specification of properties
among equivalent ports is a typical example (see section B.3.1.3). In that case, it
was allowed to specify the port properties at any level among the equivalent ports,
and all other equivalent ports (up and down the hierarchy) simply inherited these
specifications. This can be interpreted as a violation of the above principle. While
it is acceptable to allow the inheritance of the port specifications up the hierarchy
(by step-wise inheritance), the inheritance down the hierarchy from a port to its
interfaced port is a violation since the element specification is no longer
independent of its surrounding environment. In order to satisfy the need that all
equivalent ports have equivalent properties, a strict application of the principles
means that properties can only be specified at the ports of elementary elements.
This solution is however restrictive for the user, and would not be desired.

We hence differentiate between the inheritance of the properties in the models
which strictly follows the above principles, and the convenience inheritance for
the user which is more flexible. In the case the property is specified at a high level
by the user, this property is actually specified at the equivalent port lowest down
in the hierarchy (There is only one such port since each port can only have one
direct interfaced port). The properties hence become inherited up the hierarchy by
all the equivalent ports. In the case the elementary or any element with an
equivalent port, for example, is taken out of its context, its properties remain
specified as well. In this way, while the simplification is performed for the user,
the model specification still adheres strictly to the above principles.

B.3. Single-view Modelling

87

B.3.1.5. Instantiating a Meta-meta-model
In defining a particular viewpoint (meta-model), the model designer specifies the
kind of elements, ports and relations that exist in any model, as well as the rules
and constraints governing their use. The following need to be specified:

• The set of composite element types, together with their properties.

• The set of elementary element types, together with their properties.

• The set of relation types between element types, together with their properties.

• The set of port types of each element type

• The rules constraining the kind of models that can be built, by constraining the
usage of the above entities.

The choice of these types and constraints is left to the model designer. A common
question arising during such a design is whether some aspects of the system are to
be modelled as elements or relations. It is often the case that, while in certain
models of the system certain aspects are best described as being a part of the
system, in other models they are best described as relations between parts. A
sound indicator of whether something is to be an element or a relation is that
elements are considered systems in their own right and can be further broken down
into subparts, while relations are described through simple properties with no
decomposition.

B.3.2. Formal Notation
A model can be described mathematically using set notation. This will help define
and formalise the rules and conditions for inter-view associations in section B.5. A
summary of the following terminologies and notations can be found in Appendix
A and Appendix B respectively.

A model M, of a certain view, V, is defined as an ordered
set ()βα ,,,,,,, ci RRGHPEM = , where

• E is the set of elements of view V.

• P is the set of ports of view V.

• H is a binary relation from E to E, denoting the direct parenthood relationship
between element nodes. Considering the parenthood relations between the
element nodes, M is a directed tree, or an acyclic directed graph, where
exactly one node called the root has indegree 0 while all other nodes have
indegree 1 [13].

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

88

(){ }EpEcpcH ∈∧∈⊆ :,

• G is a binary relation from P to E, denoting the containment relationship
between elements and their interface ports.

(){ }EePpepG ∈∧∈⊆ :,

• Ri is the set of interface relations, and α is a mapping from Ri to ordered pairs
of PP × , denoting the interfacing relationship between the ports of the parent
element and the ports of its internal elements.

(){ }PpPpppRng ieie ∈∧∈⊆ :,α

• Rc is the set of connection relations, and β is a mapping from Rc to unordered
pairs of PP × denoting the connection relationship between ports.

{ }{ }PpPpppRng ∈∧∈⊆ 2121 :,β

B.3.2.1. Further Notations
• The direct children of element e, Edc(e), are defined as the set

(){ }HecEceEdc ∈∈= ,:)(

• Element c is said to be a direct child of e if ()eEc dc∈

• Element p is said to be a direct parent of element c, edp(c), if () Hpc ∈,

Notation: () () Hpccep dp ∈⇔= ,

• The parents of element e, Ep(e), are defined as the set

({
() () ())}HpeHeeHee

EeeeEpeE

n

np

∈∧∧∈∧∈

∈∃∈=

,...,,

:,...,,:)(

211

21

• Element n is said to be a parent of e if ()eEn p∈

• The children of element e, Ec(e), are defined as the set

({
() () ())}HecHeeHee

EeeeEceE

n

nc

∈∧∧∈∧∈
∈∃∈=

,...,,
:,...,,:)(

121

21

• Element n is said to be a child of e if ()eEn c∈

• Element e is said to a elementary, el(e), if () ∅=eEdc

B.3. Single-view Modelling

89

Notation: () () ∅=⇔ eEee dcl

• Element e is said to be a root, er(e), if () ∅=eE p

Notation: () () ∅=⇔ eEee pr

• Element e is said to be the containing element of port p, eg(p), if () Gep ∈,

Notation: () () Geppee g ∈⇔= ,

• The ports of element e, Pe(e), are defined as the set

(){ }GepPpePe ∈∈= ,:)(

• Port p is said to be an port of e if ()ePp e∈

• Port n is said to be the direct interfacing port of port p, pdi(p), if () αRngpn ∈,

Notation: () () αRngpnppn di ∈⇔= ,

• Port n is said to be the direct interfaced port of port p, pde(p), if () αRngnp ∈,

Notation: () () αRngnpppn de ∈⇔= ,

• The direct connected ports of port p, Pdc(p), are defined as the set

{ }{ }βRngpnPnpPdc ∈∈= ,:)(

• Port n is said to be a direct connected port of p if ()pPn dc∈

• The interfacing ports of port p, Pi(p), are recursively defined as the set

() ()()ppPpppP diidii U=)(

• Port n is said to be an interfacing port of p if ()pPn i∈

• The interfaced ports of port p, Pe(p), are recursively defined as the set

() ()()ppPpppP deedee U=)(

• Port n is said to be an interfaced port of p if ()pPn e∈

• The equivalent ports of port p, Peq(p), are defined as the set

() () ()pPpPppP eieq UU=

• Port n is said to be an equivalent port of p if ()pPn eq∈

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

90

• The connected ports of port p, Pc (p), are defined as the set

()
() ()

()mPpP eqnPmpPnc
dceq ∈∈
∪∪=

• Port n is said to be an connected port of p if ()pPn c∈

B.3.2.2. Model Properties
For a valid model M, the following properties can be asserted:

• H is a function relation since each child has only one direct parent.

• G is a function relation since each port is only contained within one parent
element.

• Rngα is a one-to-one function relation, since each direct interfacing port can
have one, and only one, direct interfaced port and vice versa.

• () () ()()igdpegie peepeRngpp =∈∀ ,, α

• Rng β is a many-to-many relation.

• () ()() ()()2121 ,, peepeeRngpp gdpgdp =∈∀ β

B.4. Case Study Models

B.4.1. Design and Analysis Views
The different system views can be categorised into design views and analysis
views. A design view is used to model and document the design decisions that the
developers have made, allowing also for the communication of information
between the different developers. Example design views are:

• Function Structure view, describing the functionalities of the system and the
information flow that exists between them.

• Function Behaviour view, describing the behaviour of the system
functionalties.

• Hardware Structure view, describing the physical components of the system,
and their connections.

• Cabling view, describing the cables of the system and the components they
connect.

B.4. Case Study Models

91

• Power Supply view, focusing on the power network of the system.

Unlike design models, an analysis model does not document any design decisions
made, but simply present specific aspects from the set of design models in a
certain way that facilitates the performance of an analysis. So in principle, the
same analysis can be performed given the collection of design models of the
system, but an analysis view condenses the information by only revealing what is
relevant for that analysis. Example analysis views are:

• Timing Analysis view, focusing on the timing aspects of the system behaviour.

• Safety Analysis view, focusing on the safety aspects of the system behaviour.

Analysis models are extracted from the design views. The process can in many
cases be performed automatically; however, there may be cases in which the
analyst needs to take certain “analysis decisions” to perform valid analysis. This
may be the case when the analysis technique used needs a simplified model of the
system and the decision on how to simplify the design models cannot be
automated and require the analyst’s choice. For example, in timing analysis, the
analyst may need to decide which of the two modes of operations of a certain task
to be considered for analysis, if the analysis technique at hand cannot handle
different modes of operations.

In most modelling tools, no distinction is made between these view types. Any
analysis performed assumes an implicit analysis view, not accessible to the user. In
few cases, such as [28], such a distinction is made, where the design data-flow
model is first transformed into a fault tree model onto which safety analysis can be
performed.

In the following subsections, we exemplify our meta-meta-model using two design
views relevant for the case study of section B.2, namely the Function Structure
and Hardware Structure design views. The specification of associated views in
section B.5.1.2 is a step towards the definition of analysis views. It remains
however to ensure that the analyses discussed in section B.6 make use of these
views.

B.4.2. Function Structure
This section defines an instance of the meta-meta-model - the Function Structure
meta-model, used to specify the structure of the functions to be implemented in a
system. Through the ACC case study, we discuss how this model is used to
describe the structure of vehicle functionality.

This meta-model is very similar to the traditional data flow diagram [14] adopted
in many modern tools such as Matlab/Simulink [15], representing functions as

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

92

well as the required information flow between them. In this case study, we are not
interested in a complete behavioural description of each function, and a structural
specification suffices, since the analysis of interest is not concerned with the
system’s dynamic behaviour. In addition, the links between functions are modelled
as first-class elements of their own, and not simply as connection relations
between functions, since the data flow between functions is of major concern
during function allocation, and it hence becomes necessary to focus the modelling
effort on these links.

B.4.2.1. Elements
Two types of elements are defined: functions and communication links. A function
element designates certain functionality that given a certain input, produces a
certain output. A communication link element designates a link that transports data
between functions.

These element types are arguably similar, taking certain input and producing
output. The difference lies in the intention of each type, which is ultimately
decided upon by the user. A communication link element differs from a function
element in that its main purpose is the data transfer it performs, while its
functionality becomes a side effect. The function element’s main purpose is to
transform its input data to produce some output data, where the transformation is
not seen as a transfer of data (See [16] for a detailed discussion of this issue).

Both elements can be either elementary or composite. In describing simple
systems, the elements can be elementaries, while composite elements can be used
for more complicated descriptions. A composite function element designates an
aggregation of other composite and elementary function and communication link
elements, providing a certain interface to them. A composite communication link
element designates an aggregation of other composite and elementary
communication link elements (but not function elements), providing a certain
interface to them. It is desired to restrict the content of communication links to not
include function elements, since it is argued that communication links should only
model communication between functions, and not contain any functionalities.

B.4.2.2. Element Interface
For function and communication link elements, port properties consist of a set of
data items, where a data item consists of a name, direction (in, out, inout) and type
(int, float, etc.). These data items designate a subset of the element’s internal data
that are externally accessible to other elements.

B.4. Case Study Models

93

Connection relations between ports indicate that the input data of one port is the
output data of the other. Since ports of function elements can only connect to ports
of communication link elements, a connection relation indicates that the connected
port of a function exchanges its data via the connected communication link’s port.
A port connected to more than one port indicates that the data on that port is
transmitted through all of the connected ports.

Interface relations indicate that the related port of the internal element is available
for external interface.

B.4.2.3. Constraints Summary
For a valid model, the following constraints need to be satisfied:

• A connection relation cannot be setup between two function elements.

• The internal definition of a communication link element can only contain other
communication link elements.

• The data properties of related ports should have equal types.

• For a connection relation, the direction of related ports should be opposite.

B.4.2.4. ACC Function Structure Model
Figure 21 illustrates the Function Structure model of the ACC functionality
considered in this report. The model is hypothetical and does not necessarily
match that adopted at Scania. The highest level in the hierarchical decomposition
highlights the control nature of the function, where a control mechanism (Control)
uses certain sensing of the environment (Sensing) to regulate certain actuators that
control this environment (Actuation). In addition, user interaction is described in
the Human Interface sub-function.

• For the purposes of this study, the control algorithm can be simply broken
down into a decision on the specific target to follow (Target Selection), a state
machine (ACC State Machine) to decide on the mode of the function which is
based on user inputs and environment conditions, and a control algorithm
(Distance Control).

• The control algorithm requires the following properties to be measured from
the environment: the vehicle speed (Speed Sensing), vehicle yaw rate (Yaw
Rate Sensing), and the set of nearby vehicles’ speeds and distances (Targets
Sensing). Each such measurement requires some kind of filtering or signal
processing.

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

94

Figure 21. A Function Structure model of the truck ACC functionality.

Decomposition/
Internal Definition

B.4. Case Study Models

95

• The user interaction functionality can be divided into receiving input from the
user (Operator Inputs), ensuring the validity of any inputs (HMI Logic) and
feeding back information from the system to the user via displays (Instrument
Cluster).

• The ACC functionality may actuate the Engine, Brake and Retarder of the
truck. Only one of these may be enabled at a time, by requesting a certain
vehicle speed to be achieved. Each such request is further broken down into
lower level control processes (such as Speed Control Retarder, Retarder
Control and Retarder Actuator).

B.4.3. Hardware Structure
This section defines an instance of the meta-meta-model - the Hardware Structure
meta-model. Through the ACC case study, we describe how this model is used to
describe the system’s hardware.

The model of the hardware architecture needs to describe the major computational
units as well as their connections through which data communication is possible.
At the early architectural analysis of this case study, information about the
physical location of these units and their connections is sufficient. The accurate
physical dimensions are of no interest and we resort to a very simplified
geometrical model, specifying approximate unit dimensions. A more accurate
model such as that provided by a CAD model could also have been utilised. This
is not adopted at this stage, since such models would not contribute to our aim in
experimenting with multi-view modelling.

B.4.3.1. Elements
Two types of elements are defined: hardware units and cables. In describing
simple systems, these elements can be elementaries, while composite elements can
be used for more complicated descriptions.

An elementary hardware unit element designates a physical block occupying a
certain amount of space. It is simply modelled as a 3-D square box and its
attributes describe its geometrical dimensions and position. An elementary cable
element designates a single cable with a certain geometrical path. Its attributes
describe its diameter, density, and its spatial path.

A composite hardware unit element designates an aggregation of other units and
cable elements, providing a certain interface to them. Note the abstract nature of
these composites. A composite hardware unit is simply an abstract aggregation of

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

96

a number of physical hardware units and cables, and cannot be viewed as a
physical unit itself.

A composite cable element designates an aggregation of cables. A certain length
of the cables share a common path, while the extremities can be separated, hence
the end-points can have different physical locations. A composite cable is simply a
hierarchical management of a number of independent cables which can, but not
necessarily have to, be physically bundled together.

B.4.3.2. Element Interface
For hardware unit and cabling elements, port properties consist of a set of
coordinate items, where a coordinate item specifies a spatial location at which the
element can be connected to other elements. A port can be used to specify more
than one connection point that can be physically situated in different locations.

Connection relations between ports indicate that the ports’ coordinates are
physically connected to each other. That is, the connection points of the two ports
have the same spatial position. A port connected to more than one port indicates
that all connected ports share the same spatial location.

Interface relations indicate that the port of the internal element is available for
external connections.

B.4.3.3. Constraints Summary
For a valid model, the following constraints need to be satisfied:

• A connection relation cannot be setup between two ports of hardware unit
elements.

• The internal definition of a cable element can only contain other cable
elements.

• The connection point properties of two connected ports should have equal
values.

B.4.3.4. ACC Hardware Structure Model
Figure 22 shows the complete Scania EE architecture needed to implement the
complete functionality set of a truck. The hardware architecture is based on the
Controller Area Network (CAN) protocol, with three buses separated by an ECU
unit that also acts as a gateway between them. The gateway unit (COO) features
some software functionality apart from the role of a gateway. ECUs with different

B.4. Case Study Models

97

levels of system criticality are separated by being placed on different buses. The
Red bus has ECUs with the highest criticality; ECUs on the Yellow bus are
estimated to have intermediate criticality; and the ones on the Green bus have the
lowest level of criticality.

SMS 2

 Trailer

7-pole15-pole

AUS
Audio system

ACC
Automatic climate
control

AHS
Auxiliary heater
system

CTS
Clock and timer
system

CSS
Crash safety system

ACS
2

Articulation control
system

BMS
Brake management
system

GMS
Gearbox management
system

EMS1
Engine management
system

COO1
Coordinator system

BWS
Body work system

APS
Air prosessing system

VIS
1

Visibility system

TCO
Tachograph system

ICL1

Instrument cluster
system

AWD
All wheel drive
system

BCS2

Body chassi system

LAS
Locking and alarm
system

SMS
Suspension
management system

RTI
Road transport
informatics system

DCS
Door Control System

Yellow bus

Red bus

Green bus

ISO11992/3 ISO11992/2

Diagnostic bus

Body Builder
Truck

Chassi Builder
Bus

Figure 22. Scania EE architecture

Figure 23 illustrates a subset of the hardware architecture relevant for the case
study considered in this report. This Hardware Structure model is hypothetical and
does not necessarily match that adopted at Scania. Additional components such as
the AICC hardware unit were added to suit the case study. Moreover, components
such as sensors and actuators are also defined, providing a more complete
hardware specification. The original model is restructured to provide a hierarchical
representation. For example, the powertrain management system (PTMS) is
introduced to group the engine and gearbox management systems (EMS and
GMS). The naming of the ECUs is adopted from the original Scania architecture of
figure 22. It would be desired to avoid such naming in the future, since the names
are misleading and imply certain functionality, causing bias in the allocation
process.

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

98

Figure 23. A Hardware Structure model of the truck ACC functionality.

B.4.4. Requirements on View Integration
By specifying the function and hardware architectures as the system’s two separate
views, the allocation of functions to hardware units and communication links to
cables becomes a design decision that lies in between these two views. This
allocation step can obviously be treated in a view of its own, with its own model,
but as it only deals with relationships between entities of other views this is not
needed. Instead the two views can be integrated making use of inter-view
relationships.

The simplest and most common solution for integrating views is to flatten the
hierarchical structure in either one or both views before inter-view relations are
specified. Assuming that both of the views described in section B.3 are flattened,

Decomposition/
Internal Definition

B.4. Case Study Models

99

leaf (elementary) functions would be allocated to leaf hardware units. This method
obviously fails to make use of the complexity management advantage provided by
the hierarchical models during the allocation step. A number of related
shortcomings of the method can be identified: Since only leaf entities are related,
the context of these, given by their respective hierarchies, is lost during the
allocation process. Furthermore, it is difficult to make early coarse design
decisions and it becomes necessary to have detailed knowledge about both the
particular function and hardware elements by any person performing allocation.
Also, if an allocation has been specified and a function is later further decomposed
into sub-functions, during a refining design stage, the already existing allocations
are lost. In summary, the inter-view allocation is unnecessarily affected by intra-
view design changes. All these arguments hold also for the case when only one of
the two views is flattened.

Forcing allocation to be done on a leaf level will make the allocation sensitive to
changes in either of the two views. What would be desirable is to integrate the
different views in a way such that they can both be developed as independently as
possible, without affecting the validity of an already chosen allocation.
Furthermore, since designers work on different levels of detail in potentially very
large systems, one would like to allow allocation decisions to be made on an
arbitrary level in the hierarchies. Any decision made would need to be reflected up
and down the system hierarchies. This also means that the designer can start with
performing rough allocations of a group of functions to a group of hardware units,
and then refine the choice down the hierarchy.

Another common approach to view integration is to setup the relationships
between the different views based on an import mechanism, where the user in
essence maps a complete model into another. Such a mechanism creates a
precedence relationship between the views, where one view needs to be first fully
developed before the other. In addition, any changes made to the source model are
not reflected in the destination until the next transformation is performed, causing
inconsistencies between the models. This approach inhibits the possibility of
concurrent development between disciplines.

One can also assume a primary view under which the other view is defined. For
example, the hardware view can be first defined, and then the functions are
distributed over the hardware structure, where each function definition is specified
under the hardware units to which it is allocated. This in essence creates a single
model structure for the system views. Again, precedence relationship between the
views is created, inhibiting concurrent and independent development of the views.

In summary, a model-based view integration environment should satisfy the
following:

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

100

• One view – one model. Preserve the need for a single model for each view of
the system since, in most cases, a model user needs only to concentrate on a
single aspect at a time.

• Allocation is inter-view and not intra-view information. It should therefore
not lie in either view, but across views.

• Preserve the hierarchy. The inter-view relationships between hierarchically
decomposed views should be performed across the hierarchies of the views,
independently of the two hierarchies.

• Independence between the hierarchies. The choice of hierarchical
decomposition within one view should be independent of that specified in
another view. Since hierarchy is a tool used to reduce the complexity
perceived by a given stakeholder, the use of this tool should not be
compromised by the complexity needs of other stakeholders.

• Concurrent development. A view development should be performed
independently and concurrently of the other views. Each discipline should be
able to work independently, yet support for a holistic view should be
provided. No precedence should exist in the development of the views.

B.5. Two-View Integration
Similar to the argument in section B.3.1.2, the properties in the different views
may be interdependent and hence the multi-view solution is accompanied by the
need to setup relations between the views.

To differentiate relations between properties within a view from relations across
different views, we refer to the latter as associations between properties, while
relations hereafter only refer to the former.

This section discusses the mechanisms needed to establish these associations
between views for the particular case of integrating a Function Structure with a
Hardware Structure view. While these mechanisms are not general enough to be
adopted for any kind of inter-view associations, it is believed that they can be
easily reused for the mapping of system functionality to the software architecture,
or software to hardware allocation. Essentially, the mechanisms can be generalised
with little effort to any inter-view information that implies a “implemented by” or
“allocated to” relationship. It remains however to test this claim through other case
studies in the future.

Setting associations between properties is practically performed through property
placeholders, namely elements and ports. Section B.5.1 presents such relationships
between elements, and section B.5.2 deals with relationships between ports.

B.5. Two-View Integration

101

B.5.1. Element Associations
Associating an element in one view to another element in a second view has
different implications, depending on the particular views and elements involved.
Concerning the case study, the following rules apply when associating elements
between the Function Structure and Hardware Structure views:

• Function and communication link elements from the Function Structure view
can be associated with hardware unit elements from the Hardware Structure
view, indicating that the functional element is physically implemented in that
unit.

• Communication link elements can be associated with cable elements,
indicating that the communication mechanism designated by the link is
performed through the cable.

Associations can be specified between any function and hardware elements,
irrespective of whether they are composite or elementary.

Note that an association of a function, f, to a hardware unit, h, does not necessarily
mean that the complete function f is implemented on the complete unit h, nor that f
cannot be implemented by other units as well. Instead, the association simply
implies that some of the f functionality is implemented on some of h’s hardware.
The remaining f functionality may (or may not) be implemented by other hardware
units; similarly, the remaining h hardware may (or may not) implement other
(parts of) functions. This interpretation is important when understanding the
element association rules in the following subsections.

When performing design decisions across views, designers would at a given time
want to focus on specific parts of the system, at a certain level of abstraction,
without being concerned with more detailed design decisions. For example, a
designer may wish to specify that the brake system is to be implemented on a
certain group of processors, without needing to specify in detail which specific
brake sub-functions is to be allocated to which processor. Such a decision can be
further refined by others or at a later stage. Conversely, the more detailed
allocation design decision of a particular function to a processor must be reflected
to the high level functions containing it.

In addition, to satisfy the requirement that views should be developed
independently, it is necessary to allow associations between elements of different
views to be made across the hierarchy. In other words, an element in a certain
view, at a certain depth in its hierarchy is not restricted to be associated to
elements in the same depth in another view, instead it can be associated to any
valid element throughout the hierarchy.

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

102

However, consistency between the high level and the lower level design decisions
needs to be maintained. This can be realised by specifying that: A function
implemented on a certain hardware unit means that it is also implemented by
hardware units containing this hardware unit. Conversely, a unit implementing a
certain function, means that this unit also implements (part of) functions that
contain this function.

The following subsections discuss how such cross-hierarchy associations ought to
be interpreted and managed in order to satisfy these needs.

B.5.1.1. Associated Elements
We define the following, for associations between elements from view Vx to view
Vy:

• The direct associated elements of element ex in view Vy, Ad(ex, Vy), is defined
as the set of elements in Vy, directly associated by the user on element ex.
Direct associations are bidirectional meaning that if ex is associated to ey, then
ey is also associated to ex. See section B.5.1.3 for conditions for such a valid
set.

• The inherited associated elements of element ex in view Vy, Ai(ex,Vy), is
defined as the set of topmost direct associated elements of ex’s children,
excluding those which have already been defined, or generalised, through the
direct associated elements of ex, Ad(ex, Vy).

()
()

()
() ()

() ()()}amaEmVeAm

aEmVnAmVnAaVeA

pyxd

pydeEnydeEnyxi
xcxc

=∨∈∈¬∃

⎩
⎨
⎧ ∧⎟

⎠
⎞

⎜
⎝
⎛ ∈∪∈¬∃∪∈=

∈∈

:,

:,:,),(

• The associated elements of element ex in view Vy, Aa(ex,Vy), consists of the
union of its direct associated elements and its inherited associated elements.

() ()yxdyxiyxa VeAVeAVeA ,,),(U=

Note that the above definitions are specified so that () () ∅=yxiyxd VeAVeA ,, I .

The associated elements, Aa(ex,Vy), can be interpreted as the result of a filter
applied onto the associated view Vy, in which only the elements associated to ex
and additional associations specified at the more detailed levels are considered.

In figure 24, the COO hardware unit is directly associated to the Main Controller
and Operator Inputs functions,

B.5. Two-View Integration

103

{ }Inputs Operator,Controller Main)(COO,VA FSd = ; where VFS denotes the
Function Structure view.

Figure 24. The direct associations of the hardware unit COO, as well as some of
its child units ECU, Clutch Sensor and Throttle Sensor. The associations from

ECU to ACC State Machine and Distance Control specialise that specified to Main
Controller.

Furthermore, the sub-function HMI Logic is associated to the ECU unit of COO.
The association between the ECU and HMI Logic indirectly implies that the COO
unit also implements HMI Logic. HMI Logic is said to be an inherited associated

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

104

element of COO, { }LogicHMIVCOOA FSi),(= . In integrating these design
decisions from the various levels, the COO is to (partly) implement the Main
Controller and Operator Input functions, as well as HMI Logic,

{ },HMI LogicInputs Operator,Controller Main)(COO,VA FSa = .

In refining the above design decisions, the direct association between COO and
Main Controller can be further refined by directly associating the ECU hardware
unit to the ACC State Machine and Distance Control functions. This association
implies a more detailed specification of the allocation of the Main Controller’s
functionality to specific hardware units. The associated functions are not
considered as inherited associations to COO, since they specialise an already
existing association, namely the parent Main Controller. In a similar refinement
step, Clutch Pedal Sensing and Throttle Pedal Sensing are associated to the Clutch
Sensor and Throttle Sensor sub-units respectively.

Finally, the allocation of functions to COO is not considered complete in this case
since the allocations to its remaining sub-units (the sensor cables) still need to be
specified (see section B.5.1.7 for a discussion on completeness conditions).

As a consequence of the above association definitions, if ex is associated (directly
or indirectly) with the elements e1, e2, …. en, then ex’s children will in effect only
be associated with e1, e2, …. en, or any of their children. As soon as a child of ex is
associated with an element that is not in this set, this element also becomes an
associated element of ex (unless its parent already is), and hence the above rule still
applies. In other words, the children of ex can either specialise (refine) the parent’s
associations, or extend them; the propagation of the extended associations up the
hierarchy have the same effect as specialisation.

Allocation is strongly related to the design process and can of course be carried
out in different ways. The above mechanisms support a process-independent
allocation practice. By placing certain restrictions, the allocation practices can be
constrained. For example, disallowing the possibilities for association extensions
through the sub-systems enforces a top-down approach, where sub-system design
can only refine design decisions specified at the higher level.

Given the above definitions, in order to deduce the Ai(ex, Vy) set, one needs to
consider the Ad set of all the children of ex down the hierarchy. The Ai set of the
children can be ignored since these will be reflected anyway by other children
down the hierarchy. However, as specified in section B.3.1.4, it would be desired
to establish Ai(ex, Vy) by only considering ex’s direct children.

As proved in Appendix C.1, Ai(ex, Vy) can be redefined in terms of ex’s direct
children only as follows:

B.5. Two-View Integration

105

()
()

()
() ()

() ()()}amaE:m,VeAm

aE:mn,VAm:n,VAa),V(eA

pyxd

pyaeEnyaeEnyxi
xdcxdc

=∨∈∈¬∃

⎩
⎨
⎧ ∧⎟

⎠
⎞

⎜
⎝
⎛ ∈∪∈¬∃∪∈=

∈∈

B.5.1.2. Associated Views
As argued in this paper, a system model consists of a set of views. An element in
the system hierarchy is also considered a system of its own, and hence its
description would need to consist of a set of views. One such view is its internal
view which consists of its composing elements. The other views are constructed
from the associations made to that element.

We define the associated view Vy of an element ex in view Vx, to consist of the
elements from view Vy that are associated to element ex (taken across the whole
hierarchy of Vy). The elements from view Vy are also said to be in the Vy view of
ex. An associated view of the element is a subset of that view for the complete
system since the element is only part of the system.

The views of an element are hence its internal view, as well as the set of associated
views. This reinforces our concept of system decomposition into small systems,
which themselves have multiple views. The designer of that element need only to
look at these views for the analysis of the current status of the design since they
summarise all the decisions made so far. However, in extending or specialising
these decisions, the designer needs access to the complete views.

Considering the earlier example shown in figure 24 and assuming that COO (or
one of its children) is further associated with the Clutch Pedal, Throttle Pedal and
the User Inputs (of both Truck and Human Interface functions) communication
links, figure 25 illustrates the Function Structure associated view, as well as the
internal view (Hardware Structure) of COO.

Given the independence of the views, a user can choose to focus on a single view
of the whole system and ignore all references made to other views, giving a single
perspective of the whole system. On the other hand, a user can take an element
with all its internal views and treat it as a complete system with many views.

The relations between the associated elements are also included in the associated
view. If two ports of two elements that are in the associated view of ex, have a
connection relation between them, then this connection relation is also in the
associated view Vy of ex. In the example of figure 25, the direct connection
relations between the ports of Operator Inputs with Clutch Pedal and Throttle
Pedal communication links are included in the associated view. Note that

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

106

connections between ports can be indirect, which is the case when the ports belong
to elements in different parts of the Vy hierarchy. For example, in figure 21, the
indirect connection between the port of Main Controller and the User Inputs
communication link is included in the associated view.

Figure 25. The views of the COO hardware unit, consisting of its internal
(Hardware Structure) view, as well as the associated Function Structure view.

In the case where there exists a connection relation between two ports and only
one of the ports is in the associated view of an element ex, then it is necessary to
indicate that such a connection is missing. This is shown by connecting the
existing port to an associated view interface port, to indicate that the port needs to
connect to other external ports that do not exist in the current (associated) view. In
figure 21, an Operator Inputs’s port is connected to the Brake Pedal
communication link, yet Brake Pedal is not in the associated view, hence the port
is shown as an associated view interface port in figure 25.

The associated view ought to be automatically constructed. Such a mechanism
allows a developer to view information in alternative views from its own
perspective, defined by its source view (Vx), at a given point in the hierarchy. Note
that the elements, ports and relations shown in the associated view Vy of an
element ex are a duplication from the complete view Vy. Changes to these elements
are reflected in the complete view Vy. Alternatively, an associated view is only
used for visual purposes, and no information ought to be specified in that view.
The elements, ports and relations are then considered as ‘clones’ of the real ones.

Decomposition/
Internal Definition

Associated View
(Function Structure)

B.5. Two-View Integration

107

B.5.1.3. Validating Element Associations
Naturally, not all associations between elements in different views are permitted.
Certain restrictions, which depend on the currently established associations, are
imposed.

For element ex from view Vx to be directly associated to element ey in view Vy, the
following conditions need to be satisfied:

• ey is not a child of one of the direct associated elements of one of ex’s children.

• Neither ey, nor any of ey’s parents or children is already directly associated
with ex.

The first condition ensures that associations are specialised down the hierarchy,
and that associations do not ‘cross-back’ up the hierarchy. Referring to figure 24,
given that COO is directly associated to Operator Inputs, it is not possible to
specify a direct association between ECU (a child of COO) and Human Interface
(Operator Input’s parent).

The second condition ensures that direct associations cannot be made to an
element as well as its children or parent. Referring to figure 24, given that COO is
directly associated to Operator Inputs, it is not possible to specify a direct
association between COO and Pedals nor Clutch Pedal Sensor (Children of
Operator Inputs down in the hierarchy), nor Human Interface (Operator Input’s
parent).

Formally, the conditions are represented as follows:

()
()

()
()()

() ()()
() ()()∅=∧

∅=∧

∉∧

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪

∈

yxdyc

yxdyp

yxdy

ydeEnyp

VeAeE

VeAeE

VeAe

VnAeE
xc

,

,

,

,

I

I

I

As shown in Appendix C.2, this can be simplified to

() ()()
()()

() ()()∅=∧

∉∧

∅=

yxdyc

yxdy

yxayp

VeAeE

VeAe

VeAeE

,

,

,

I

I

Direct associations are bidirectional meaning that if ex can be associated to ey, then
ey should also be associated to ex. To ensure that this condition is satisfied, the
validity check becomes:

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

108

() ()()
()()

() ()()
() ()()

()()
() ()()∅=∧

∉∧

∅=∧

∅=∧

∉∧

∅=

xydxc

xydx

xyaxp

yxdyc

yxdy

yxayp

VeAeE

VeAe

VeAeE

VeAeE

VeAe

VeAeE

,

,

,

,

,

,

I

I

I

I

B.5.1.4. Associating Elements
It may sometimes be desired to find out what elements in view Vy have element ex
as an associated element (direct or inherited). An example of such a need is found
in the analysis of section B.6.1.3. We define the associating elements of ex in view
Vy, Aai(ex, Vy), to be such a set. Mathematically, Aai(ex, Vy) is represented as
follows:

() (){ }xyaxyyyxai VeAeEeVeA ,:, ∈∈=

Where Ey is the set of elements in view Vy.

Recall that if ey is an associated element of ex, it is not necessarily the case that ex
is an associated element of ey, unless ex and ey are directly associated.

Now, rather than searching the entire set of element in Vy, we know that the
associating elements of ex, Aai(ex, Vy), are constrained to the following subset:

• The elements that have ex as a direct associated element, Ad(ex, Vy) (which are
the direct associated elements of ex due to the bidirectionality of element
associations).

• For each of the above direct associated elements, their parents up the hierarchy
that are also associated to ex. That is the parents up until, but not including,
the parent that is associated to a parent of ex.

The associating elements of ex in Vy, Aai(ex, Vy), can hence be rewritten as:

() () () ()
⎭
⎬
⎫

⎩
⎨
⎧ ∈∪∈=

∈ xaxpVeAmyxdyxai VnAemEnVeAVeA
yxd

,:,),(
,

U

For example, in figure 24, the associat ing elements of Clutch
Sensor,), (FSai VSensorClutchA , consists of the Clutch Pedal Sensing element (its
direct associated element), as well as the Pedals element (the direct parent of
Clutch Pedal Sensing). However, the parent Operator Inputs is not an

B.5. Two-View Integration

109

associating element to Clutch Sensor, since it is associated to the parent of
Clutch Sensor, namely COO.

B.5.1.5. Existence in the Associated View
If neither the element ex, nor any of its children, have been associated to any
element in view Vy, element ex is defined to be not exist in associated view Vy,
since from the perspective of view Vy, element ex simply does not exist.

Element ex is said to be exist in associated view Vy, axv(ex, Vy), if

()() () ()()∅≠∈∃∨∅≠ ydxcyxd VnAeEnVeA ,:,

As shown in Appendix C.3, this is equivalent to

() ∅≠yxa VeA ,

Notation: ∅≠⇔),(),(yxayxxv VeAVea

For example, consider the association between Target Sensing and the AICC
hardware unit shown in figure 26, noting that none of the children of Target
Sensing are further associated. In this case, Signal Processing is considered to not
exist in Hardware Structure associated
view,), (HSxv VProcessingSignala¬ , since it is not associated to any elements in
VHS, () ∅=HSa ,VProcessingSignal A (VHS denotes the Hardware Structure view).

Note that if an element ex does not exist in associated view Vy, then none of
its children can either, since otherwise the associated elements of ex would not
have been empty in the first place.

()yxvxcyxxv VnaeEnVea ,:)(),(¬∈∀⇒¬

B.5.1.6. Elementary in Associated View
If the associations of a given element ex are not further specified by its children,
then the element is treated as elementary with respect to the associated view Vy,
since it is not possible to further specify the details of the internal elements’
associations. In other words, from the perspective of the associated view Vy, the
internal elements of ex, whether ex is elementary or composite, are not relevant.

We define an element ex to be elementary in associated view Vy, alv(ex, Vy), if none
of the children of ex is associated with any elements in view Vy (in other words,
none of the children exist in the associated view Vy), yet ex has associations
with at least one element in Vy.

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

110

() ()() () ∅≠∧¬∈∀ yxdyxvxc VeAVnaeEn ,,:

As specified in section B.3.1.4, it would be desired to define alv(ex, Vy) in terms of
the direct children of ex. The above condition can be rewritten as:

() ()() () ∅≠∧¬∈∀ yxdyxvxdc VeAVnaeEn ,,:

Since () ()() () ()()yxvxdcyxvxc VnaeEnVnaeEn ,:,: ¬∈∀≡¬∈∀ as shown in
Appendix C.4.

Figure 26. Element association between the Target Sensing element and the
AICC hardware unit.

Note that the definition of ex as elementary in associated view is only
appropriate in the case where ex exists in associated view Vy.

Notation: () ()() ()()∅≠∧¬∈∀⇔ yxdyxvxdcyxlv VeAVnaeEnVea ,,:),(

In figure 26, the element Target Sensing is considered to be elementary in
Hardware Structure associated view,),(HSlv V SensingTargeta , since none

B.5. Two-View Integration

111

of its children are further associated. On the other hand, in figure 24, the element
Operator Inputs is considered to be not elementary in Hardware Structure
associated view,)Inputs,V(Operator a HSlv¬ , since some of its children, such
as Clutch Pedal Sensing, are further associated.

B.5.1.7. Completeness Condition
The element association validation checks (section B.5.1.3) ensure that no invalid
associations between elements are introduced into the model. However, a given set
of valid associations is not necessarily complete, and completeness needs also to
be ensured before any analysis of models can be performed. See [17] and section
B.6 in this report for a discussion on correctness and completeness.

A feature of the approach described in this report is that associations between
elements from different views need not be performed all the way down to the
elementary level. For example, in the case where a composite function is to be
completely implemented within one hardware unit (composite or elementary), it is
sufficient to specify the association between the function and the implementing
hardware unit. All sub-functions are implicitly implemented by the same unit. In
the case where the hardware unit is a composite, one does not know exactly which
sub-unit is to implement which sub-function. This can be considered as a
conscious design decision, where, for example, more detailed design is performed
externally by a sub-contractor. Nevertheless, the specifications can be considered
complete for this function. However, if the association is further refined by one of
the sub-functions, it becomes necessary to further specify the allocation of the
other sibling sub-functions for a complete specification.

In the example of figure 24, the allocation to the COO hardware unit is specified,
yet only some of its sub-units (ECU, Clutch Sensor and Throttle Sensor) further
specialise this mapping while the mapping of the sub-cables (Sensor Cable 1 and
Sensor Cable 2) is not specified. This is hence considered an incomplete allocation
specification of COO, and needs to be dealt with before any analysis can be
performed. A completion of the specification can for example be performed by
allocating the Clutch Pedal and Throttle Pedal Communication links (direct
children of Human Interface) to these sensor cables.

So, while associations established at the children of an element are appropriately
inherited upwards in the hierarchy, associations established at the element can be
regarded as requirements on further refinement or specifications of these
associations by the children. If the latter associations are not established, the set of
associations may be considered incomplete since it cannot be worked out how to
further specify the associations on the children elements.

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

112

A prerequisite to be able to check for the completeness of associations of an
element ex in view Vy, is that the element ex exists in associated view Vy,
axv(ex, Vy). Furthermore, the condition for completeness differs, depending on
whether ex is elementary in associated view Vy or not.

If ex is elementary in associated view Vy, then ex is defined to be completely
associated in Vy, aca(ex, Vy).

If ex is not elementary in associated view Vy, ex is defined to be
completely associated in Vy, aca(ex, Vy), if the following conditions are true:

• Each of ex’s direct children exists in associated view Vy.

• For each of ex’s associated elements, ()yxaa VeAe ,∈ , at least one of ex’s direct
children has ea, or any of its children, as an associated element.

The first condition ensures that if one of the children of ex exists in associated
view Vy (which is the case since ex is not elementary in associated view
Vy), the other children need also to exist in associated view, since it has been
established that further refinement of ex’s associations need to be performed, and
hence we need to specify each of the children’s role in this refinement. The
example given above illustrates the need for this condition.

The second condition ensures that any association specified for element ex is
further refined by its children. Considering the example of figure 24, and assuming
that the sub-units Clutch Sensor and Throttle Sensor are not associated to Clutch
Pedal Sensing and Throttle Pedal Sensing, then COO is not considered
completely associated, since its associated element Operator Inputs would
not have been specialised by any of COO’s direct children.

Note that the conditions above are based on the direct children of element ex. A
precondition for these conditions is that these children have complete associations
themselves, which can be specified as a third condition for complete associations.

Formally, if ex is not elementary in associated view Vy, ex is said to be
completely associated in Vy, aca(ex, Vy), if:

() ()
() ()
() () () ()()()∅≠∪∈∃∈∀∧

∈∀∧

∈∀

nEnVmAeEmVeAn

VnaeEn

VnaeEn

cyaxdcyxa

yxvxdc

ycaxdc

I,::,

,:

,:

Note that the association completeness of ex, does not imply the association
completeness of ex’s associated elements, Aa(ex,Vy). It may be desired to reinterpret
the definition of complete association to include the completeness of its associated
elements as well. In this case, the following condition is added:

B.5. Two-View Integration

113

() ()xcayxa VnaVeAn ,:,∈∀

The condition becomes:

() ()
() ()
() () () ()()()
() ()xcayxa

cyaxdcyxa

yxvxdc

ycaxdc

VnaVeAn

nEnVmAeEmVeAn

VnaeEn

VnaeEn

,:,

,::,

,:

,:

∈∀∧

∅≠∪∈∃∈∀∧

∈∀∧

∈∀

I

Notation:

() ()
() ()
() ()

() ()()()
() ()⎪

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

∈∀∧

∅≠∪

∈∃∈∀∧

∈∀∧

¬∈∀

⇔

xcayxa

cya

xdcyxa

yxvxdc

yxlvycaxdc

yxlv

yxca

VnaVeAn

nEnVmA

eEmVeAn

VnaeEn

VeaVnaeEn

VeaTrue

Vea

,:,

,

::,

,:

),(if ,:

),(if

),(

I

B.5.1.8. Refined Associated Elements
The associated elements set of an element ex is based on the direct associations
established on that element by the user, as well as any associations inherited from
ex’s children.

The associated view, Vy, of element ex based on these associated elements, Aa(ex,
Vy), provides a fairly high level description of the associations since any refined
associations from the children of ex are not apparent in this view, in the case where
a more general association exists.

Given that the children’s associations actually refine the associations of ex, it may
be of interest to determine the most refined set of associated elements of ex. In
many cases, only certain children of a specified associated element are effectively
associated to ex (as specified by its children), while other children are associated to
another element. This set is referred to as the refined associated elements of ex. It
differs from associated elements in that it provides a finer grain set of associated
elements. An associated view based on this refined associated set defines a more
detailed specification than the associated view as specified in section B.5.1.2.

A prerequisite for establishing the refined associated elements of ex in view
Vy, is that ex is completely associated in Vy, aca(ex, Vy). Furthermore, the

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

114

refined associated elements set of ex differs depending on whether ex is
elementary in associated view Vy or not.

If element ex is elementary in associated view Vy, the refined associated
elements of ex in Vy, Ara(ex, Vy), is defined as ex’s associated elements.

() ()yxayxra VeAVeA ,, =

If element ex is not elementary in associated view Vy, the refined
associated elements of ex in Vy, Ara(ex, Vy), is defined as the union of the
refined associated elements of ex’s direct children, excluding those which
have at least one child in the set as well.

()
()

()
()

() ()
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ∈∪∈¬∃∪∈=

∈∈
aEmVnAmVnAaVeA cyraeEnyraeEnyxra

xdcxdc

:,:,,

Notation: ()

() ()

()
() ()

()
() ()⎪

⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎭
⎬
⎫
⎟
⎠
⎞

⎜
⎝
⎛ ∈∪∈¬∃

¬
⎩
⎨
⎧ ∪∈=

∈

∈

aEmVnAm

VeaVnAa

VeaVeA

VeA

cyraeEn

yxlvyraeEn

yxlvyxa

yxra

xdc

xdc

:,

 , if :,

, if ,

,

For example, in figure 24, assuming that COO is completely associated as
suggested in section B.5.1.7, the refined associated elements of the COO
hardware unit,),(FSra VCOOA , consists of Clutch Pedal Sensing, Throttle Pedal
Sensing, ACC State Machine, Distance Control and HMI Logic elements. More
elements belong to this set since COO and its children are associated to elements
not shown in figure 24.

B.5.2. Port Associations
Similar to associations between elements, associations can be specified between
the ports across the views. Concerning the case study, in the allocation of
functions to hardware units, the association of a function port to a hardware port
indicates that the functional communication occurs physically through that
hardware port.

For a given element, the association between ports of different views occurs
between the element’s ports (its interface definition) and the interface ports of the
associated view (described in section B.5.1.2). For example, in figure 27, the COO
hardware unit has three ports in its interface definition connecting to each of the

B.5. Two-View Integration

115

CAN buses, while its interface in the associated Function Structure view consists
of 13 associated view interface ports. So, the function ports of its
associated functions (such as port p3 of element Operator Inputs and port p2 of
element HMI Logic) need to communicate with their connected ports via one of
the three hardware ports.

Figure 27. A reproduction of figure 25, highlighting certain port names in the
associated view of COO, such as p2 of the HMI Logic element.

The associated ports of port px in view Vy, Ap(px, Vy), is defined as the set of
associations to ports in Vy, directly specified by the user on port px. Port
associations are also governed by certain validation and completeness rules. These
will be discussed in detail in sections B.5.2.2 and B.5.2.3. In addition to these
rules, the following constraint applies for a port pf (from the Function Structure
view) to be associated to port ph (from the Hardware Structure view):

• pf can be associated to a maximum of one port from the Hardware Structure
view. However, ph could be associated to any number of ports from the
Function Structure view, indicating that more than one communication occur
through that same port ph.

B.5.2.1. The Associated View Interface
As discussed in section B.5.1.2, when viewing the associated view Vy of an
element ex, the relations between the associated elements are also included in Vy. If
two ports of two elements that are in the associated view of ex, have a connection
relation between them, then this connection relation is also in the associated view
Vy of ex.

In the case where there exists a connection relation between two ports and only
one of the ports, py, is in the associated view Vy of ex, then py is said to be not all

Decomposition/
Internal Definition

Associated View
(Function Structure)

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

116

connected ports associated in ex. To indicate that py needs to connect to other
external ports that do not exist in the associated view Vy of ex, py is connected to an
associated view interface port . If all the connected ports of py are in the
associated view, then py needs not interface to any element not associated to ex,
and hence needs not be related to such a port.

We define a port py to be al l connected ports associated in element ex,
acpa(py, ex), if all its connected ports, Pc(py), (or one of their equivalent ports) have
their containing element associated to ex.

It suffices for one equivalent port of each of the connected ports of py to exist in
associated view, since a connection to this port implies a connection to all its
equivalent ports. A single port from a set of equivalent ports can exist in
associated view, given that an associated view cannot contain an element as well
as its parent or child element.

Notation: () () () ()()yxaegceqeyccxycpa VeApepPppPpepa ,::),(∈∈∃∈∀⇔

For example, considering the associations in figure 27, port p2 of element
Operator Inputs, p2,OperatorInputs, (we denote port px of element y as px,y) is an al l
connected ports associated in element COO, ()COOpa putsOperatorIncpa ,,2 , since
all its connected ports, (the port of the communication link Throttle Pedal) have
their elements also associated to COO. On the other hand, port p3,OperatorInputs is not
an al l connected ports associated in element
COO, ()COOpa putsOperatorIncpa ,,3¬ , since a connected port of p3,OperatorInputs, the port
of the communication link Brake Pedal (see figure 21), does not have its element
associated to COO.

A precondition to be able to define, acpa(py, ex), is that the containing element of py
is an associated element of ex.

() ()yxayg VeApe ,∈

B.5.2.2. Port Association Validity Check
In this section, we will incrementally deduce the validity condition for port
associations.

First, for a port py (of containing element ey) to be associated to port px (of
containing element ex), the following conditions need to be satisfied:

• ey is an associated element of ex.

• py is not an al l connected ports associated in the element ex.

B.5. Two-View Integration

117

The first condition simply ensures that the second condition can be validly
performed, as required in section B.5.2.1. The second condition ensures that the
interface ports of element ex are associated to ports that need to connect to other
external ports that do not exist in associated view Vy of ex. An all connected
ports associated port needs not interface to any element not associated to ex.

Formally, the condition is represented as follows:

() () ()()xgycpayxayg pepaVeApe ,, ¬∧∈

For example, considering the associations in figure 28, port p2,ecu can be associated
to port p2,DistanceControl, since:

• The containing element of p2,ecu is associated to the containing element of
p2,DistanceControl, ()HSa ,VControl DistanceAECU ∈ ;

• And, p2,ecu is not an al l connected ports associated in element Distance
Control, ()Control Distancepa ecucpa ,,2¬ . This is true since the connected port
of p2,ecu, p1,SensorCable2, is not in the associated view of Distance Control.

Similar to element associations, port associations are bidirectional meaning that if
py can be associated to px, then px should also be associated to py. To ensure that
this condition is satisfied, the validity check becomes:

() () ()()()
() () ()()()ygxcpaxyaxg

xgycpayxayg

pepaVeApe

pepaVeApe

,,

,,

¬∧∈∧

¬∧∈

In the example above, with a similar argument, we can deduce that port
p2,DistanceControl can also be associated to port p2,ecu. Hence, the association between
p2,ecu and p2,DistanceControl remains valid.

Note however that, since elements are associated and inherited across the various
hierarchies, it often occurs that element ey is associated to ex, yet ex is not
associated to ey. Hence, guaranteeing the condition for py is no guarantee for px.
The condition may not even be possible to test for px if port px’s element (ex) is not
associated to ey.

For example, COO is in the associated view of Control by inheritance. Hence
p3,coo can be associated to p1,Control since

() (),ControlpaControl,VACOO ,coocpaHSa 3¬∧∈ . However, p1,Control cannot be

associated to p3,coo since ()FSa COO,VAControl∉ . Hence, according the condition
above, p3,coo cannot be associated to p1,Control and vice versa.

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

118

Figure 28. A reproduction of relevant parts from figure 24, focusing on specific
direct associations of the hardware unit COO, and its child unit ECU.

The above example illustrates the case where port py is not an al l connected
ports associated in ex (satisfying the first part of the condition), but px is not
even associated to ey (failing the second part of the condition). Hence, px and py
cannot be associated.

But, in many cases, there may exist an equivalent port of px, px/e, which is not al l
connected ports associated in the associating element ey. In this case, py
should be associated to px, while px/e is associated to py.

To allow such associations, the validity check changes to become:

() () ()()
()

() () ()()ygexcpaxyaexg

xeqex

xgycpayxayg

pepaVeApe

pPp

pepaVeApe

,,

:

,,

//

/

¬∧∈

∈∃∧

¬∧∈

With this new condition, and considering the earlier example, p3,coo can be
associated to p1,Control (as argued earlier). In addition, the equivalent port of
p1,Control, p2,MainController, can now be associated to p3,coo

B.5. Two-View Integration

119

since () (),COOpaCOO,VAollerMain Contr oller,MainContrcpaFSa 2¬∧∈ . Hence, p3,coo
is associated to p1,Control, and p2,MainController is associated to p3,coo.

It is important to remember that upon satisfying this condition, py gets associated
to px, while px/e (and not px) is associated to py. In summary, the bidirectionality of
associations is extended to allow that if a port py is associable to px, then px, or one
of its equivalent ports, can be associated to py. This extension should be acceptable
since equivalent ports, by definition, are representations of the same properties.

In addition to these rules, equivalent ports that will potentially inherit the
associated ports impose further validity conditions that need to be met. This is
further discussed in the following subsection.

B.5.2.3. Port Association Inheritance
Equivalent ports must have the same set of associated ports and the rules of
inheritance similar to those specified for port properties apply. That is, port
associations should be defined on only one port among the set of equivalent ports
in order to avoid definition duplications and hence inconsistency problems.

In order to guarantee that for each equivalent port py/e of py that px or one of its
equivalent ports forms a valid association, the validity check becomes:

() () ()()
()

() () () ()()()
()
() () ()()
()

() () () ()()()eygexcpaxeyaexgyeqey

xeqex

ygexcpaxyaexg

xeqex

exgeycpayexaeygxeqex

yeqey

xgycpayxayg

pepaVeApepPp

pPp

pepaVeApe

pPp

pepaVeApepPp

pPp

pepaVeApe

/////

/

//

/

/////

/

,,:

:

,,

:

,,:

:

,,

¬∧∈∈∃

∈∀∧

¬∧∈

∈∃∧

¬∧∈∈∃

∈∀∧

¬∧∈

Continuing the previous example, port p3,ecu (an equivalent port of p3,coo) can
inherit the port association of p2,MainController to p3,coo, where an equivalent port of
p2,MainController, namely p2,DistanceControl, is associated to p3,ecu by inheritance, since

() (),ECUpaECU,VA ControlDistance ceControl,DiscpaFSa tan2¬∧∈ .

Note that the inheritance (and hence the application of the inheritance condition) is
only applicable to equivalent ports whose element exist in associated view,
since from the associated view perspective, elements that do not exist cannot
inherit. The final validity condition becomes:

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

120

() () ()()
() ()()

() () () ()()()
()
() () ()()
() ()()

() () () ()()()eygexcpaxeyaexgyeqey

yexgxvxeqex

ygexcpaxyaexg

xeqex

exgeycpayexaeygxeqex

xeygxvyeqey

xgycpayxayg

pepaVeApepPp

VpeapPp

pepaVeApe

pPp

pepaVeApepPp

VpeapPp

pepaVeApe

/////

//

//

/

/////

//

,,:

:,:

,,

:

,,:

:,:

,,

¬∧∈∈∃

∈∀∧

¬∧∈

∈∃∧

¬∧∈∈∃

∈∀∧

¬∧∈

In the above example, the containing element of p3,ecu, (ECU) exists in the
Function Structure associated view, and hence p3,ecu can inherit the
association to p2,DistanceControl.

As an example of an invalid port association, we return to the association between
port p2,ecu and p2,DistanceControl discussed earlier in the previous subsection. Given the
new port association validation condition, port p2,DistanceControl can no longer be
associated to p2,ecu since for an equivalent port of p2,DistanceControl, p2,MainController, there
exists no equivalent port of p2,ecu, to which p2,MainController can be associated by
inheritance. As a consequence, port p2,ecu cannot be associated to p2,DistanceControl
either.

B.5.2.4. Associable Ports
In summary, we define the associable ports of px in view Vy, Aap(px, Vy), to be the
set of ports in Vy that satisfy the port association validity check. These ports can
naturally only belong to containing elements that are associated to px’s containing
element. Formally, Aap(px, Vy) is represented as follows:

()()
()

() () ()()
() ()()

() () () ()()()
()

() () ()()
() ()()

() () () ()()()}eygexcpaxeyaexgyeqey

yexgxvxeqex

ygexcpaxyaexg

xeqex

exgeycpayexaeygxeqex

xeygxvyeqey

xgycpayxayg

yepeAeyyxap

pepaVeApepPp

VpeapPp

pepaVeApe

pPp

pepaVeApepPp

VpeapPp

pepaVeApe

ePpVpA
xgay

/////

//

//

/

/////

//

,,:

:,:

,,

:

,,:

:,:

,,

:),(

¬∧∈∈∃

∈∀∧

¬∧∈

∈∃∧

¬∧∈∈∃

∈∀∧

¬∧∈
⎩
⎨
⎧ ∪∈=

∈

B.5. Two-View Integration

121

B.5.3. Maintaining Model Integrity
The following actions can be performed on a model by the user:

• Create and delete elements

• Create and delete ports

• Create, delete and modify properties

• Create and delete relations (interface or connection)

• Create and delete associations (element or port)

Validity checks (such as those described in sections B.5.1.3 and B.5.2.2) prevent
any action from invalidating the model. In case the user wishes to perform such a
violating action, certain modifications need to be performed prior to the originally
intended modification.

The port and element association validity checks guarantee the model validity
when attempting to create a new association. This however does not guarantee the
validity of established associations at all times.

For example, while the port association validity check prevents invalid port
associations, we have not considered other actions that the user can perform that
makes existing port associations invalid. In a way, it is so far assumed that port
associations are performed once all elements, ports, port relations and element
associations are already established, and none will be modified in the future. Such
a restriction on the order of performing actions within a model is not desired.

According to the port validity check in section B.5.2.2, a port py (of containing
element ey) can no longer be associated to port px (of containing element ex) if one
of the following becomes true:

• ey becomes no longer associated (direct or inherited) to ex, ()yxay VeAe ,∉ .
This may be caused by the following actions:

a. The direct association between ey and ex is deleted.

b. A parent of ey is directly associated to ex, causing ey to no longer be an
inherited associated element of ex.

• py becomes an all connected ports associated in ex,),(xycpa epa . That
is, all the connected ports of py become associated to ex,

() () ()yxaigyci VeApepPp ,: ∈∈∀ . This may be caused by the following
actions:

a. The containing elements of all connected ports are associated to ex.

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

122

b. The ports whose elements are not associated to ex are deleted.

c. Connection relations to ports whose elements are not associated to ex
are deleted.

d. Interface relations are deleted, indirectly deleting connections to ports
whose elements are not associated to ex.

• One of py’s equivalent ports, which exist in associated view Vx, can no longer
be associated to px or one of its equivalent ports, for similar reasons/actions as
above, or if caused by the following action:

a. An interface relation is created between py and another port, creating a
new set of equivalent ports to py.

• One of py’s equivalent ports becomes exist in associated view Vx, and the port
cannot be associated to px or one of its equivalent ports. This may be caused
by the following actions:

a. The port’s containing element is associated to an element in Vx.

b. An interface relation is created between py and another port, creating a
new set of equivalent ports to py.

• Given the bidirectionality of port associations, port px can no longer be
associated to port py for similar reasons/actions as above.

So in principle, any user action that causes the above conditions to be satisfied,
should be prevented in order to maintain the model validity.

However, in many cases, such modifications are predictable and hence the
mechanism of induced actions is introduced, automating the process and
modifying the model in order to maintain its validity. These modifications are
specified as actions themselves, possibly triggering further actions.

Considering the example of port associations above, actions can be automatically
performed in order to re-establish the model integrity, by deleting the existing
invalid port associations once any of the above actions are performed. However, in
certain cases, it is not possible to perform such induced actions since more than a
single option is available to ensure validity. For example, in case where two ports
are made equivalent and each of the ports is associated to other ports, it is not
possible to decide automatically which of the redundant port specifications ought
to be deleted. Such a decision ought to be left to the user instead.

In summary, to keep a model valid when being modified, one of two alternative
mechanisms can be adopted:

B.5. Two-View Integration

123

• Validity checks - performed before an action can be taken, that prevent the user
from performing certain actions that may jeopardise the model correctness or
consistency.

• Induced automatic actions - performed as a consequence of a certain user
action in order to re-establish the model integrity.

It is not always clear whether to introduce validity checks, preventing invalid
actions from occurring, or whether further actions can be induced returning the
model to a valid state. Validity checks are simplest to implement since they simply
decline the user from performing a certain action unless other actions are
performed first, keeping the model correct. Automatic actions, on the other hand,
facilitate the work needed to be performed by the user, with the slight risk that the
user may be left unaware of any such actions.

The general principle adopted is that induced actions are performed in case there
exists a single obvious choice (with obvious consequences) available to the user in
order to keep the model valid. In certain situations, restoring validity can be
performed in many different ways, and hence a validity check is setup to prevent
the action from occurring in the first place and leaving it to the user to make a
choice.

As illustrated earlier with port associations, by analysing the dependencies
between user actions and the various model aspects (such as element association
validity, port association validity, etc.), the consequences of each user action on
each of these aspects can be established. For example, a consequence of deleting
element ex from the model is the need to induce the following actions:

• Delete any direct element associations to ex. This action affects the directly
associated element of ex, Ad(ex, Vy).

• Re-evaluate the inherited associated elements (and redraw the associated view)
of the associating elements of ex, Aai(ex, Vy).

• Delete each of the ports of ex. (This action leads to further induced actions to
maintain the validity of port associations, etc.)

In the implemented tool (section B.7), we have systematically defined the
consequences of each such user action on the validity of each aspect of the model,
and defined the necessary induced actions that need to be performed in order to
maintain model validity. These actions can themselves trigger further induced
actions. It remains however an effort for future work to formalise these actions.

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

124

B.6. Cross-view Analysis
As well as domain-specific analyses that can be performed within a view, certain
analyses require information from multiple views, and are hence of interest for the
proposed view integration environment. The approach advocated in this paper
allows a designer to treat an element of the system as a system of its own, with its
own set of views. By allowing the multi-view approach to propagate at each level
in the system hierarchies, the same analysis that can be performed at the system
level can also be easily performed at the sub-system (element) level.

Three categories of analysis can be identified:

• Correctness analysis

• Completeness analysis

• Keyfigure calculations

Correctness analyses are used to check if any incorrectness or inconsistencies exist
in a model. It is generally preferable to perform dynamic correctness checks,
detecting and preventing any incorrectness from being introduced into the model
as soon as they occur. The validity checks in sections B.5.1.3 and B.5.2.2 are
examples of correctness analysis.

Compared to the dynamic correctness checks, certain checks cannot be performed
at random instances since not enough information is yet specified by the user to
perform the analysis, while the lack of information cannot be flagged as an error.
These completeness checks can be triggered by the user once it is believed the
model to be complete. The analysis in section B.5.1.7 is an example of a
completeness check.

A keyfigure analysis produces a summary of the system properties being
modelled. These properties were not specified by the user directly, but emerged
from the combination of other properties. Prior to any keyfigure analysis, a
completeness check needs to be performed that establishes whether enough
information is available for the analysis to be performed. Different keyfigure
analyses may require different completeness analyses since a different set of
information may be needed.

In [10], the various keyfigure analyses of interest for the design of the EE
architecture are discussed. Examples of cross-view keyfigure analyses that can be
performed for any element are:

• The number of hardware units and cables needed to realise a given function
element.

• The cable length or weight needed for a given function.

B.6. Cross-view Analysis

125

• Given a certain function, statistics on the other functions that share some of its
resources.

For a given Function or Hardware Structure element, these keyfigure values can be
easily calculated based on the associated view of the element. For example, given
the associated view in figure 25 of the COO hardware unit, one can easily
calculate the required utilisation on COO, given the execution times and rates of
execution of each of the allocated function elements.

The following subsection provides an extended example of cross-view keyfigure
analysis relevant for the case study of section B.2.

B.6.1. Complete Cabling Paths for Communication
This analysis checks that any Function Structure element that needs to
communicate through their connected Communication Links, can do so, given its
specified allocations to hardware units and cables. The analysis can be performed
on the complete system, as well as any sub-system (element).

Prior to introducing this analysis, certain terms need to be first defined. For this
discussion, the function and hardware unit elements are termed as container
elements, while the communication link and cable elements are termed as linker
elements.

B.6.1.1. Internally Linked Ports
The internally linked ports of port p, Pil(p), is defined as the set of ports of the
containing element, e=eg(p), where ()pPp ilx ∈ implies that px is internally
connected to p through a set of internal linker elements only, connected together to
form a path from px to p.

The Pil(p) set differs, depending on the property of e:

• If e is an elementary linker element, Pil(p) is the remaining ports of e, since all
the element’s ports share the internal buffer of the elementary. Considering
the Function Structure model in the example of figure 29,

() { }11,311,211,1 , CLCLCLil pppP = .

() ()() ppePpP geil −=

• If e is an elementary container element, then there exists no internally
l inked ports , since e performs a functional transformation between its ports,
and not simply a data transfer. In the example of figure 29, () ∅=111,1 Fil pP .

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

126

() ∅=pPil

• If e is a composite element, and p has no direct interfaced port, pde(p), then
there exists no internally l inked ports since p is not even related to any
internal ports of e to further link through. In the example of figure 29,

() ∅=12,3 CLil pP .

() ∅=pPil

• If e is a composite element, and p has a direct interfaced port, pde(p), then

() ()()ppPpP deelil =

where the externally linked ports of port pi, Pel(pi), is defined as the set of ports of
the parent element, ei=edp(eg(pi)), where ()iely pPp ∈ implies that py is related to
pi through a set of linker elements, connected together to form a path from py to pi.
Pel(pi) consists of the union of:

• The direct interfacing port of each of the internally l inked ports of pi.

• The externally l inked ports of the direct connected ports of each of the
internally l inked ports of pi.

()
()

() ()
()⎟

⎠
⎞

⎜
⎝
⎛ ∪∪∪=

∈∈∈
mPnppP elnPmpPndipPniel

dciiliil

U)(

In the example of figure 29, () { }1,61,31,1 , FFFil pppP = . However, () ∅=1,2 Fil pP ,
since the set of linker elements is broken by the direct child of F11, namely F111.

Notation:

()

()() ()() ()()

()() ()()

()() ()

()() ()() ()

()
()

() ()
()⎟

⎠
⎞

⎜
⎝
⎛ ∪∪∪=

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

≠∧¬

=∧¬∅

∧∅

∧−

=

∈∈∈
mPnppP

nilpppeeppP

nilpppee

pepee

pepeeppeP

pP

elnPmpPndipPniel

degldeel

degl

ggl

gglge

il

dciiliil

U)(where

 if

 if

 container if

linker if

B.6. Cross-view Analysis

127

Figure 29. A hypothetical Function Structure model to illustrate internal ly
l inked ports.

B.6.1.2. Communicating Ports
Two ports, p1 and p2, are defined to be communicating ports, pcp(p1, p2), if a
continuous path of only linker elements exists between them, in which the ports
along the path are either directly connected or internally l inked.

pcp(p1, p2) differs depending on whether p1 and p2 are connected or not.

If p1 and p2 are connected, then they are said to not be communicating ports,
since we expect at least one linker element between p1 and p2. In the example of
figure 29, the ports p1,F1 and p2,CL1 are not communicating ports ,

()1,21,1 , CLFcp ppp¬ , since p1,F1 and p2,CL1 are directly connected.

If p1 and p2 are not connected, then pcp (p1, p2) is true if one of the following is
true:

• p2 is internally l inked to p1. In the example of figure 29, the ports p1,F1 and
p6,F1 are communicating ports , ()1,61,1 , FFcp ppp , since ()1,11,6 FilF pPp ∈ .

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

128

• ()1pPp il∈∃ such that p is a communicating port with p2, ()2, pppcp , or p2

is connected to p, ()pPp c∈2 . In the example of figure 29, the ports p1,F1 and
p1,CL2 are communicating ports , ()2,11,1 , CLFcp ppp , since ()1,1 Fil pPp∈∃ ,
namely p6,F1, such that ()1,62,1 FcCL pPp ∈ . Extending this example further, it
can be deduced that the ports p1,F1 and p2,CL2 are communicating ports ,

()2,21,1 , CLFcp ppp , since ()1,1 Fil pPp∈∃ , namely p6,F1, such that
()2,21,6 , CLFcp ppp .

• ()1pPp c∈∃ such that p is a communicating port with p2, ()2, pppcp . In
the example of figure 29, the ports p2,CL1 and p6,F1 are communicating
ports , ()1,61,2 , FCLcp ppp , since ()1,2 CLc pPp∈∃ , namely p1,F1, such that

()1,61,1 , FFcp ppp (as discussed earlier, ()1,11,6 FilF pPp ∈).

In summary, pcp (p1, p2) is true if

()
() () ()()
() ()21

221

12

,:

,:

ppppPp

pPpppppPp
pPp

cpc

ccpil

il

∈∃∨

∈∨∈∃∨
∈

As a final example, by combining all these conditions together, and performing the
test on ports across the hierarchy, it can be deduced that the ports p1,F2 and p1,CL13
are communicating ports , ()13,12,1 , CLFcp ppp .

Notation: ()

()

() ()
() () ()()
() ()⎪

⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∈∃∨

∈∨∈∃∨
∉∈

∈

=

21

221

1212

12

21

,:

,:
 if

 if false

,

ppppPp

pPpppppPp
pPppPp

pPp

ppP

cpc

ccpil

cil

c

cp

Two ports, p1 and p2, are defined to be communicating ports in associated view of
element ex, pcp,av(p1, p2, ex), if they are communicating ports , considering only
ports whose containing elements are in the associated view of ex. Naturally, a
precondition for this test is that the containing elements of p1 and p2 are associated
to ex.

B.6. Cross-view Analysis

129

B.6.1.3. The Complete Cabling Path Analysis
In the current implementation of the analysis, it is assumed that a Function
Structure port is associated to a single Hardware Structure port, () 1, =hsp VpA .

The completeness test for this analysis is that the Function Structure element f has
complete associations, aca(f, Vhs). Failing this condition implies that there exists
missing associations and hence such a cross-view analysis cannot be performed.

The condition for completeness differs, depending on whether f is elementary
in associated view Vy or not.

If f is elementary in associated view Vhs, alv(f, Vhs), then f is defined to have
complete cabling paths for communication, fccp(f), since all its children are
implicitly associated to the same hardware elements, within which the
communication occurs internally.

If f is not elementary in associated view Vhs, ¬alv(f, Vhs), f is defined to have
complete cabling paths for communication, fccp(f), if the following
conditions are satisfied:

• Each port, pf, of each of f’s direct children, is associated to a hardware port, if
the pf‘s associable ports set, Aap(pf, Vhs), is not empty. A non-empty
associable ports set of pf implies that pf itself is not an al l connected
ports associated in one of the associating elements of eg(pf), Aai(eg(pf),
Vhs). pf hence needs to be associated to one of the associable ports in order
to communicate to its unassociated connected ports.

()
()

() ∅≠

∅≠∪∈∀
∈

hsfp

hsfapefEnf

VpA

VpAnPp
dc

,

:),(:

• For each pair, p1 and p2, of directly connected ports of f’s direct children that
have associations to hardware ports, the pair of associated hardware ports are
connected. We need not handle a port that has no associable ports, since
its containing element, and that of its directly connected ports (which have
also no associable ports), would be associated to the same hardware
element, within which the communication occurs internally.

()
() ()

() ()()()hspchsp

dchsphspefEn

VpAPVpA

pPpVpAVpAnPpp
dc

,,

:),(),(:,

21

122121

∈

∈∧∅≠∧∅≠∪∈∀
∈

• For each pair, p1 and p2, of internally l inked ports of f’s direct children
that have associations to hardware ports, the pair of associated hardware ports

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

130

are communicating ports in associated view of f. It is necessary to
make sure that the ports are communicating by only considering the elements
and ports of the associated view, to ensure that the element f is completely
defined using its own set of views, independently of other views and elements
in the system.

()
() ()

() ()()()fVpAVpAp

pPpVpAVpAnPpp

hsphspavcp

ilhsphspefEn dc

,,,,

:),(),(:,

21,

122121 ∈∧∅≠∧∅≠∪∈∀
∈

Note that the condition is defined such that it only deals with the direct children of
element f, with no consideration of the children further down the hierarchy. This
definition is in line with the inheritance argument presented in section B.3.1.4. For
this reason, the communication completeness check for f, does not guarantee the
communication completeness of its children. A complete check can be performed
by recursively running the same test through the hierarchy.

Notation: ()

()
()

()
()

()

()
() ()()()

()
()

()
() ()()()⎪

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

∈∧∅≠∧∅≠

∪∈∀∧

∈

∈∧∅≠∧∅≠

∪∈∀∧

∅≠

∅≠

¬∪∈∀

=

∈

∈

∈

fVpAVpAp

pPpVpAVpA

nPpp

VpAPVpA

pPpVpAVpA

nPpp

VpA

VpA

VfanPp

Vfa

ff

hsphspavcp

ilhsphsp

efEn

hspchsp

dchsphsp

efEn

hsfp

hsfap

hslvefEnf

hslv

ccp

dc

dc

dc

,,,,

:),(),(

:,

,,

:),(),(

:,

,

:),(

),(if :

),(if true

21,

1221

21

21

1221

21

For example, consider the simple example in figure 30, showing the associations
between the child elements of the Speed Sensing function element and the BMS
hardware unit (See figure 21 and figure 23). In this example, the Speed Sense and
Filter function elements are associated to the Speed Sensor and ECU child
elements of BMS respectively.

Now, for the Speed Sense element to be able to communicate with Filter via the
Speed communication link, it is necessary to associate Speed to the Sensor Cable

B.6. Cross-view Analysis

131

in the hardware view. In addition, the port associations ought to be performed as
shown in the figure.

Any other choice of element or port associations would not be satisfactory. For
example, it can be easily realised that it would not be acceptable to associate the
Speed communication link to the Actuator Cable of BMS. While such an element
association is valid and can be performed, no valid port association can thereafter
be specified for which the Speed Sensing function can have complete cabling
paths for communication, fccp(Speed Sensing).

Figure 30. Element and port associations between the child elements of the
Speed Sensing function element and the BMS hardware unit.

Similarly, it would not be acceptable to associate the port pin,Filter to port p3,ecu,
while ensuring fccp(Speed Sensing). Such a port association would violate the
second condition for path completeness since the port pin,Filter would be associated
to a port, p3,ECU, which is not connected to the associated port of the connected port
to pin,Filter, p1,Speed. That is, () ()()()hsSpeedpchsFilterinp VpAPVpA ,, ,1, ∉

Now, consider the more elaborate example in figure 31, showing the associations
between the child elements of the Human Interface function element and the
hardware elements onto which it is desired to implement them. It is desired to
establish whether Human Interface has complete cabling paths for
communication, fccp(Human Interface). However, the discussion in this section
will be limited to the communication path formed by Operator Inputs, Brake
Pedal and HMI Logic elements only.

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

132

Figure 31. Element and port associations between the child elements of the
Human Interface function element and the hardware elements onto which it is

desired to implement them.

The Operator Inputs and HMI Logic functions are associated to the COO and the
ECU unit of COO (COO/ECU) respectively. In addition, the child of Operator
Inputs, Brake Pedal Sensing, is associated to the Brake Pedal Sensor hardware
unit of the BMS hardware unit (BMS/Brake Pedal Sensor). This later association
also implies that Operator Inputs is associated to the Brake Pedal Sensor hardware
unit by inheritance.

Now, given that port p1,BrakePedalSensing is equivalent to p3,OperatorInputs, the only
possible association to p3,OperatorInputs would be to p1,BrakePedalSensor. Given that
restriction, for Operator Inputs and HMI Logic to be able to communicate via the
Brake Pedal communication link, Brake Pedal needs to be associated to
BMS/Sensor Cable, BMS/ECU as well as Red CAN. In this way, a communication

B.7. Tool implementation

133

path between BMS/Brake Pedal Sensor and COO/ECU is provided. The Hardware
Structure associated view of Brake Pedal becomes as shown in figure 32.

In addition, the port associations ought to be performed as shown in the figure.
Any other choice of port associations would have not been satisfactory. For
example, associating p3,HMILogic to p3,COO/ECU would not satisfy the second condition
for path completeness since this port p3,COO/ECU is not connected to p4,RedCAN (the
associated port of the connected port to p3,HMILogic, p2,BrakePedal).

Figure 32. The Hardware Structure associated view of the Brake Pedal element.

Finally, consider the internally l inked ports p1,BrakePedal and p2,BrakePedal.
According to the third condition for complete communication paths, the
associations to these ports (p2,SensorCable2 and p4,RedCAN) should be communicating in
the associated view of Human Interface. But as can be seen in figure 32, this is not
the case due to the hardware unit BMS/ECU. One remedy to this problem, is to
further detail the internal definition of BMS/ECU, in which a cable is setup
between the ports p2,BMS/ECU and p4,BMS/ECU.

B.7. Tool implementation
In order to investigate the feasibility of the inter-view mechanisms introduced in
this report, a prototype tool was implemented in the Dome prototyping
environment [12], in which views, as well as, inter-view design information and
analysis, could be performed.

The integration of views is easier when all views are specified within a single tool.
However, different tools are typically used by an organisation to specify the
various views of the system. The approach is hence expected to deal with views
specified in separate domain-specific tools. A central tool integration and
management system can then be used to perform the inter-view information
specification and analysis. To prove and test this concept, a partial implementation
of the approach has been developed based on the MDM platform [18]. The

Associated View
(Hardware Structure)

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

134

Simulink [15] and Dome [12] tools were used for the specification of the Function
Structure and Hardware Structure views respectively. A generic inter-view
association mechanism is then used to perform element associations between the
two tools. The implementation is limited to the associations between elements,
while port associations remain the subject of future work.

Some ideas from the suggested solution have also been partly implemented in the
industrial analysis tool [10] of the case study of section B.2. The tool is able to
evaluate different architectural solutions, based on the keyfigure analysis
mentioned in section B.6. The case study presented in this report forms a small
subset of the functionality studied in the industrial case study, which covered the
complete EE architecture of a set of truck variants. An important contribution of
the study was the division of the available dataset into different views, thereby
facilitating the desired analysis as well as the possibility to perform multiple
allocation strategies without needing to re-model the system functionality. While
the implementation is based on our meta-meta-model, the cross-hierarchy
associations were not adopted.

B.8. Related Work
The use of the view notion and related concepts (such as viewpoint, model and
roles) in high level modelling and framework standards is discussed in [24],
concluding that ‘in addition to accommodating multiple perspectives, views are
used in standards to: examine and define content, expose content to enable
interoperability, reduce apparent complexity, provide focus, enable modularity of
process, and enforce “need to know” restrictions’. One such standard is the IEEE-
1471 [1]. This standard addresses the content and organisation of architectural
descriptions of software-intensive systems. In the standard, concepts such as
stakeholders, concerns, viewpoint, view and model and the relationships among
them, form a fundamental basis for the organisation of these descriptions. No
specific views are specified in the standard and although it is specified that
consistency among views shall be recorded, how such consistency can be achieved
is not specified.

The need to separate the captured design information into different views is
gaining increased recognition and is found in many modern engineering modelling
languages and tools (such as [2], [3], [4] and [5]). In addition, most modelling
approaches adopt some form of decomposition techniques in describing each of
the supported views [19]. In combining these two techniques, it becomes essential
to integrate the various hierarchical views, through the specification of inter-view
design information, in order to form a consistent and complete system definition.

B.8. Related Work

135

When integrating the system views, modelling approaches (such as [20], [21],
[22], [23] and [3]) normally provide the simple mechanism to reference a
component from one view to another component in another view. For example, it
may be possible to specify the software components in the software view that are
to be allocated to a specific processor in the hardware view. Many of these
approaches only allow the establishment of relationships at the leaf of their
hierarchies ([22], [23] and [3]). In this way, the complexity of interrelating the
system views across their hierarchies is simply avoided. However, the advantages
gained in using hierarchical descriptions within a view are then lost during view
integration, forcing developers to work at the lowest levels of abstractions.

In the few cases where references can be specified across the hierarchies (such as
[20] and [21]), the semantics of such references are restricted to the context of the
specific system part at which they are specified. Views are hence only loosely tied
at the points at which the references are specified. It would instead be desired to
obtain a tighter integration by propagating these references across the system
hierarchies. For example, having specified the allocation of certain software
components onto hardware components, mechanisms ought to be provided that use
this information to facilitate the more refined allocation of software to hardware at
a more detailed level of abstraction of the system.

From the software engineering domain, the work presented in [16] also deals with
the documentation of software architectures, in which the concept of views plays a
central role. The work categorises a specific set of views found in common use.
Similar to the meta-meta-model suggested in this report, in describing each view,
the set of elements, relations, their properties and a topology that can be defined in
the view are described. The views are grouped into different styles, which are
themselves grouped into viewtypes forming a hierarchy. For each view, the
relationships to other views across this hierarchy are described, by stating the
relations between the different elements in the views to each other. While stating
that certain relations may be quite complex (such as the allocation of modules to
components), no guidelines are given on how this complexity should be handled.

In [25], an environment in which domain-specific components can be composed to
develop large applications is presented. The approach recognises that since
domains are developed independently, they may contain similar concepts defined
in different ways; and domain composition needs to identify and define relations
between these concepts. Two types of relations can be established: general
associations and correspondence relating similar or overlapping concepts. The
approach is model-based in that components are modelled in different domains,
using domain-specific languages, and the composition is performed at the model
level before code generation is performed. The approach is focused on software
applications where each component/domain results in source code that need to be

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

136

integrated. While the approach deals with system decomposition into different
domains, the decomposition mechanisms within each domain are not considered.

Aspect Oriented Programming (AOP) [26] is another approach within the software
engineering community where a system specification is separated between its
functional components and its other properties that affect the system semantics and
performance. AOP deals with the cross-cutting of the hierarchical decomposition
of a system into components, with the various non-functional aspects of the system
such as its error handling and performance aspects. This cross-cutting is necessary
since the aspects must compose differently from the functional decomposition, yet
the different compositions must be coordinated. An aspect weaver is then used to
integrate and coordinate the co-composition of the aspects with the functional
components. In this approach, while the functional decomposition is hierarchical,
the remaining aspects are not.

A framework and a set of techniques for the view integration of the existing views
in UML with other architectural views is presented in [27]. The framework allows
the mapping of architectural components/connectors to the classes of the design
view. This mapping is closely related to the hardware to functionality allocation
approach discussed in this report. However, the suggested mapping deals with a
flat structure in each view, and assumes that a design class can only be mapped to
a single architectural element. In addition, once the mapping is performed,
conformance analysis can be automated in order to identify mismatches between
the architectural view of a system and its design view, based on a set of constraints
rules. For example, it becomes possible to check that class interactions belonging
to different components are appropriately constrained to the architectural topology
adopted. Such analysis is similar to the correctness and completeness check
analysis presented in section B.6.1.

B.9. Conclusion
In this paper, the need for a systematic approach to multi-view integration is
discussed. The establishment of inter-view design information is common practice
in many modern design tools. The approach presented here takes advantage of
such information in order to tightly interweave the views’ hierarchies. In this way,
the system views are reflected to a stakeholder within a given domain at a
sufficient level of abstraction and detail that makes him/her appreciate the
information provided.

Through the use of a case study, model integration is investigated for a particular
type of inter-view relationships (function to hardware allocation). The resulting
approach maintains the principle of hierarchical design within, as well as between
the views, by systematically integrating the two generally accepted complexity

B.9. Conclusion

137

reduction techniques of hierarchical decomposition and multi-viewing. Rules and
mechanisms were developed to ensure the completeness and correctness of any
inter-view design decisions. Additional mechanisms allow a developer within a
given domain to view the other aspects of the system from his/her own
perspective, making view integration a good basis for information sharing. The
proposed approach promotes the independent development of the views, allowing
developers from each discipline to work concurrently, yet providing support for a
holistic view.

Allocation is strongly related to the design process and can of course be carried
out in different ways. The defined allocation inheritance rules permit the
specialisation (refinement) of allocation specifications performed higher up in the
hierarchies, as well as their extensions at the lower levels, propagating the
extended associations up to the higher levels. Such mechanisms support a process-
independent allocation practice. By placing certain restrictions, the allocation
practices can be constrained. For example, disallowing the possibilities for
association extensions through the sub-systems provides a top-down approach,
where sub-system design can only refine design decisions specified at the higher
level.

The approach also reinforces the principle that a part of the complete system is a
system of its own, with its own set of views. This provides the possibilities to
perform cross-view analysis on the complete system as well as its individual parts,
since all relevant inter-view relationships established across the system are
propagated.

To investigate the approach’s feasibility, various tool implementations were
performed. Less focus has so far been placed on scalability and implementation
efficiency considering many views and large systems. Future developments would
need to address these issues appropriately.

Even though it is based on simple concepts, using the approach is suspected to
require a new mind-set. This places certain doubts on whether the approach
actually facilitates the developer’s work. From the limited gained experiences, the
ability to focus on specific parts of the system design, as well as inheriting and
extending other decisions made elsewhere in the system, is rewarding. This
however does depend on good feedback and support by the integration tool. In the
worst case, the approach advocated here can be seen as an experiment, or an initial
step, towards other possibilities of view integration.

While specific to the allocation of system functions to hardware, it is believed that
the mechanisms can be applied to other types of relationships such as that of
mapping software components to hardware. No claim can be made that these
mechanisms are general enough to handle all types of relationships. However, it is

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

138

intended to expand on this work in order to cover many of the relationships
identified in [19] such as dependencies and refinement. In addition, the ability to
perform inter-view associations over a larger number of views is a challenge to
handle in future developments.

A systematic approach when implementing these relationships should allow a
reuse of many of the concepts already explored. What is essential is to provide
mechanisms that reflect design decisions between design teams from the various
disciplines, and across the different levels of abstractions. This provides a good
basis for an information sharing environment enabling model-based,
multidisciplinary development.

B.10. Acknowledgements
This work has been supported by the Swedish Strategic Research Foundation,
through the SAVE project. Special thanks go to Martin Törngren for his reviews
of this report, as well as Ola Larses for his reviews and help in the Scania case
study.

B.11. References
[1] IEEE, ANSI/IEEE Standard 1471-2000, “Recommended practice for

architectural description of software-intensive systems”, September 2000.
[2] UML, OMG Unified Modelling Language Specification, V1.5, March 2003.
[3] Kruchten, P. B. "The 4+1 View Model of Architecture" IEEE Software,

Volume 12, Issue 6 November 1995, pp 42-50.
[4] GME, “A Generic Modelling Environment, GME 4 User’s Manual” Version

4.0, Institute for Software Integrated Systems, Vanderbilt University, 2004.
[5] Redell O., El-khoury J. and Törngren M., “The AIDA toolset for design and

implementation analysis of distributed real-time control systems”
Microprocessors and Microsystems. Volume 28, Issue 4, 20 May 2004,
Pages 163-182.

[6] Grundy J., Hosking J. and Mugridge W.B., “Inconsistency management for
multiple-view software development environments”, Software Engineering,
Volume 24, Issue 11, 1998.

[7] Skyttner L. General Systems Theory: Ideas and Applications. World
Scientific Publishing Co. Singapore. ISBN 981-02-4175-5. 2001.

[8] Weinberg G. M., An Introduction to General Systems Thinking. Dorset
House Publishing; Silver anniversary edition, 2001, ISBN 0932633498.

[9] Larses O. and Adamsson N. “Drivers for Model Based Development”
Proceedings of the 8th International Design Conference on Design,
Dubrovnik, May 2004.

B.11. References

139

[10] Larses, O., “Applying quantitative methods for architecture design of
embedded automotive systems”, Proceedings of INCOSE International
Symposium, 2005.

[11] MOF, Meta Object Facility (MOF) Specification, V1.4, April 2002.
[12] Dome, “Dome Guide” Version 5.2.2,

http://www.htc.honeywell.com/dome/index.htm, 1999, accessed November
2005.

[13] Råde L. and Westergren B., “Beta Mathematics Handbook”, second edition,
Chartwell-Bratt Ltd, ISBN 0-86238-140-1, 1990.

[14] Cooling J., Software Engineering for Real-time Systems. Pearson Education
Limited, ISBN 0201596202, 2003.

[15] Simulink, Mathworks, http://www.mathworks.com/products/simulink/,
accessed November 2005.

[16] Clements P., Bachman F., Bass L., Garlan D., Ivers J., Little R., Nord R. and
Stafford J., “Documenting software architectures: Views and beyond”,
Addison Wesley, ISBN 0-201-70372-6, 2002.

[17] Maier M. W., Emery D. and Hilliard R., “ANSI/IEEE 1471 and systems
engineering” Systems Engineering. Volume 7, Issue 3, pp 257-270, 2004.

[18] El-khoury J., Redell O. and Törngren M., “A tool integration platform for
multi-disciplinary development”, 31st Euromicro Conference on Software
Engineering and Advanced Applications, 2005.

[19] El-khoury J., Chen D. and Törngren M., “A survey of modelling approaches
for embedded computer control systems (Version 2.0)” Technical report,
ISRN/KTH/MMK/R-03/36-SE, TRITA-MMK 2003:36, ISSN 1400-1179,
Department of Machine Design, KTH, 2003.

[20] Core, Vitech Corporation, http://www.vtcorp.com/core/productline.html/,
accessed November 2005.

[21] Herzog, E. and Törne, A., “Information modelling for system specification
representation and data exchange” Proceedings of the Eighth Annual IEEE
International Conference and Workshop on the Engineering of Computer
Based Systems, pp 136 – 143, April 2001.

[22] Hatley D., Hruschka P. and Pirbhai I., Process for system architecting and
requirements engineering. Dorset House, New York, 2000.

[23] Loureiro G., Leaney P. G. and Hodgson M., “A systems engineering
framework for integrated automotive development” Systems Engineering.
Volume 7, Issue 2, pp: 153-166, 2004.

[24] Martin R. and Robertson E., “Views in the enterprise domain”, Views,
Aspects and Roles Workshop, 2005.

[25] Estublier J., Ionita A. D. and Vega G., “A domain composition approach”,
International Workshop on Applications of UML/MDA to Software System,
2005.

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

140

[26] Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C. V., Loingtier J.
M., Irwin J., “Aspect-Oriented Programming”, European Conference on
Object-Oriented Programming (ECOOP), 1997.

[27] Egyed A. and Medvidovic N., “Extending architectural representation in
UML with view integration”, 2nd International Conference on the Unified
Modelling Language (UML), 1999.

[28] Papadopoulos Y. and Grante C, Techniques and tools for automated safety
analysis & decision support for redundancy allocation automotive systems,
27th Annual International Computer Software and Applications Conference,
2003

Appendix

Appendix A Terminology

A.1 Single-view Modelling
analysis view – A view used to present specific aspects from the set of design
views in a certain way that facilitates the performance of an certain analysis.

attributes - A placeholder used to represent a single property of an element, port or
relation.

child element – of element ex is an element lower down in ex’s hierarchy, forming
a part of ex’s internal definition. There may exist more than one child element of
ex.

composite element – A more elaborate description of an element where the
properties of the system are decomposed into smaller, less complex, interacting
elements, in which each element contains a subset of the original system
properties.

connected ports - of port px, Pc (px), is the set of direct connected ports of px and
each of their equivalent ports, together with the direct connected ports of the
equivalent ports of px.

connection relation – a relation established between a port of an element and a
port of another peer element, implying a certain dependency between their
properties.

containing element – of a port px, eg(px), is the element for which the port presents
an interface.

design view – a view used to model and document the design decisions made by
developers.

direct child element – of element ex is a child element of ex which exists directly
one level down in ex’s hierarchy. There may exist more than one child element of
ex.

direct connected port - of port px is the port in a connection relation with px. There
may exists more than one direct connected port of a single port px.

direct interfaced port – of port px, pde(px), is the port of the internal element in
which px is a direct interfacing port. There may only be one direct interfaced port
of a port px.

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

142

direct interfacing port – of port px, pdi(px), is the port in an interface relation, in
which px is a port of an internal element. There may only be one direct interfacing
port of a port px.

direct parent element – of element ex, edp(c), is a parent element of ex which exists
directly one level up in ex’s hierarchy. There exists a maximum of one direct
parent of ex.

direct properties – of a port px are properties defined directly on it by the user.

element – a placeholder of properties describing the represented system

elementary element - element ex is defined to be elementary, el(ex), if ex contains
no child elements. ex has a simple description where the properties can be
specified as a set of attributes.

equivalent ports - of a port px, Peq(px), is the combined sets of its interfacing ports
and interfaced ports, as well as px itself.

inherited properties – of a port px are properties defined through one of px’s
equivalent ports (the inheriting equivalent port of px).

inheriting equivalent port – of a port px is the equivalent port of px in which the
properties are directly defined.

interface (external) definition – of element ex reveals only those properties of ex
that need to be shared with the system environment.

interface relation - a relation between an element’s port and a port of one of its
internal elements, externally indicating that the internal port is externally
accessible.

interfaced ports – of port px, Pe(px), is the direct interfaced port of px, together with
its interfaced ports.

interfacing ports – of port px, Pi(px), is the direct interfacing port of px, together
with its interfacing ports.

internal (white-box) definition – of element ex deals with ex’s complete set of
properties, which consists of its set of internal elements.

internal element – see child element

parent element – of element ex is the composite element higher up in ex’s
hierarchy, in which ex is a child element. There may exist more than one parent
element of ex.

port – forms part of the interface definition of its containing element and acts as a
placeholder for a subset of its element’s externally accessible properties. Two

Appendix

143

representations of a port can be defined: an internal port representation which is a
representation of the port as seen from the containing element’s internal definition;
an external port representation which is a representation of the port as seen from
the containing element’s interface definition.

property placeholder – an element or a port.

root element – of view Vx, er(Vx), is the single element within Vx which has no
parent elements.

A.2 Two-View Integration
all connected ports associated - port py is defined to be al l connected ports
associated in element ex, acpa(py, ex), if all its connected ports, Pc(py), (or one of
their equivalent ports) have their containing element associated to ex.

associable ports – of port px in view Vy, Aap(px, Vy), is the set of ports in Vy that
satisfy the port association validity check, and can hence be associated to px.

associated elements - of element ex in view Vy, Aa(ex,Vy), consists of the union of
its direct associated elements and its inherited associated elements.

associated ports – of port px in view Vy, Ap(px, Vy), is the set of associations to
ports in Vy, directly specified by the user on port px.

associated view - Vy of element ex in view Vx is a subset of the complete view Vy
for the complete system. It consists of the elements from view Vy that are
associated to element ex (taken across the whole hierarchy of Vy).

associated view interface port – of port py is an interface port to py, presented in
the associated view of element ex, in the case where py is not an all connected
ports associated port, indicating that certain connections to py are missing in
the associated view.

associating elements - of element ex in view Vy, Aai(ex, Vy), is the set of elements in
view Vy have element ex as an associated element (direct or inherited).

association - a relation between property placeholders across different views

completely associated – element ex is defined to be completely associated in
view Vy, aca(ex, Vy), if given the set of associated elements specified for ex, no
further refinement of these associations are needed by ex’s children in order to
complete the system specification.

direct associated elements - of element ex in view Vy, Ad(ex, Vy), is the set of
associations to elements in Vy, directly specified by the user on element ex.

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

144

elementary in associated view - element ex is defined to be elementary in
associated view Vy, alv(ex, Vy), if none of the children of ex is associated with
any elements in view Vy, yet ex has associations with at least one element in Vy.

exist in associated view - element ex is defined to be exist in associated view
Vy, , axv(e, Vy), if either ex, or one of its children, have been associated to at least
one element in view Vy.

inherited associated elements - of element ex in view Vy, Ai(ex,Vy), is the set of
(top most) direct associated elements of ex’s children, excluding those which have
already been defined, or generalised, through the direct associated elements of ex,
Ad(ex, Vy).

refined associated elements – of element ex in view Vy, Ara(ex, Vy), is the most
refined set of associated element of ex, based on the associated elements if ex’s
direct children.

A.3 Example Views - Function structure and Hardware
Structure

cable – an element designating a physical cable with a certain geometrical path.

communicating ports - Two ports, p1 and p2, are defined to be communicating
ports , pcp(p1, p2), if a continuous path of purely linker elements exists between
them, in which the ports along the path are either directly connected or
internally l inked.

communicating ports in associated view - Two ports, p1 and p2, are defined to be
communicating ports in associated view of element ex, pcp,av(p1, p2, ex), if
they are communicating ports, considering only ports whose containing
elements are in the associated view of ex.

communication link – an element designating a link that transports data between
functions.

complete cabling paths for communication – the Function Structure element f is
defined to have complete cabling paths for communication, fccp(f), if all
of f’s direct children can communicate to each other through their connected
communication links, given their associated hardware units and cables.

container element – a function or hardware unit element.

function – an element designating certain functionality that given a certain input,
produces a certain output.

Appendix

145

hardware unit – an element designating a physical block occupying a certain
amount of space.

internally linked ports - of port p, Pil(p), is the set of ports of the containing
element that are internally connected to p through a set of internal purely linker
elements, connected together to form a path from to p.

linker element – a communication link or cable element.

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

146

Appendix B Notations
aca(ex, Vy) element ex is completely associated in view Vy

acpa(py, ex) port py is al l connected ports associated in element ex

alv(ex, Vy) element ex is elementary in associated view Vy

axv(ex, Vy) element ex is exist in associated view Vy

Aa(ex,Vy) Associated elements of element ex in view Vy

Aai(ex, Vy) associating elements of element ex in view Vy

Aap(px, Vy) Associable ports of port px in view Vy

Ad(ex, Vy) direct associated elements of element ex in view Vy

Ai(ex,Vy) inherited associated elements of element ex in view Vy

Ap(px, Vy) Associated ports of port px in view Vy

Ara(ex, Vy) refined associated elements of element ex in view Vy

edp(ex) direct parent element of element ex

eg(px) Containing element of port px

el(ex) element ex is elementary

er(Vx) root element of view Vx

Edc(ex) direct children elements of element ex

Ep(ex) Parent elements of element ex

Ec(ex) Children elements of element ex

fccp(f) the Function Structure element f has complete cabling
paths for communication

pcp(p1, p2) ports, p1 and p2, are communicating ports

pcp,av(p1, p2, ex) ports, p1 and p2, are communicating ports in
associated view of element ex

pde(px) Direct interfaced port of port px

pdi(px) Direct interfacing port of port px

px,e port px of element e

Appendix

147

Pc (px) Connected ports of port px

Pdc(p) Direct connected ports of port px

Pe(px) interfaced ports of port px

Pe(ex) ports of element ex

Peq(px) Equivalent ports of a port px

Pel(px) externally l inked ports of port px

Pi(px) Interfacing ports of port px

Pil(px) internally l inked ports of port px

VFS Function Structure view

VHS Hardware Structure view

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

148

Appendix C Proofs

C.1 Proof 1
Let

()
()

()
() ()

() ()()}amaEmVeAm

aEmVnAmVnAaVeA

pyxd

pydeEnydeEnyxi
xcxc

=∨∈∈¬∃∧

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ∈∪∈¬∃∪∈=

∈∈

:,

:,:,),(

[1]

() ()yxdyxiyxa VeAVeAVeA ,,),(U= [2]

And

()
()

()
() ()

() ()()}amaEmVeAm

aEmVnBmVnBaVeB

pyxd

pyaeEnyaeEnyxi
xdcxdc

=∨∈∈¬∃∧

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ∈∪∈¬∃∪∈=

∈∈

:,

:,:,),(

[3]

() ()yxdyxiyxa VeAVeBVeB ,,),(U= [4]

We need to prove that

()() ()),(),(,),(yxayxayxiyxi VeBVeAVeBVeA =∧= [5]

1. Considering all the elementary elements ex of the model tree, M, [5] is true since
() () ∅≡≡ xcxdc eEeE

Hence,

(){ } ()() ()()),(),(,),(:: yxayxayxiyxidcx VeBVeAVeBVeAaEEae =∧=∅=∈∈∀ [6]

2. Considering the nodes of the M tree one level up in the hierarchy (that
is () (){ }∅=∈∀∈ nEeEnEe dcxdcx ::), [5] is true since () ()xcxdc eEeE ≡ .

Hence,

() (){ } ()() ()()),(),(,),(:: yxayxayxiyxicdcx VeBVeAVeBVeAaEaEEae =∧==∈∈∀ [7]

3. Now, assume that for a given ex2, ()21 xcx eEe ∈∀ , condition [5] is true.

That is:

Appendix

149

() ()() ()()),(),(,),(: 111121 yxayxayxiyxixcx VeBVeAVeBVeAeEe =∧=∈∀ [8]

Given this assumption, we now proof the condition true for ex2 itself.

()
()

()

()
() ()

⎭
⎬
⎫∧⎟

⎠
⎞

⎜
⎝
⎛ ∈∪∈¬∃

⎩
⎨
⎧ ∪∈=

∈

∈

CaEmVnBm

VnBaVeB

pyaeEn

yaeEnyxi

xdc

xdc

:,

:,,

2

2
2

Where () ()()amaEmVeAmC pyxd =∨∈∈¬∃= :,2

()
()

() ()()

()
() ()() ()

⎭
⎬
⎫∧⎟

⎠
⎞

⎜
⎝
⎛ ∈∪∈¬∃

⎩
⎨
⎧ ∪∈=

∈

∈

CaEmVnAVnAm

VnAVnAaVeB

pydyieEn

ydyieEnyxi

xdc

xdc

:,,

:,,,

2

2
2

U

U

[From [8], since () () () () ()ydyiyayaxdc VnAVnAVnAVnBeEn ,,,,:2 U==∈∀]

()
()

()
()

()

()
()

()
() ()

⎭
⎬
⎫∧⎟

⎠
⎞

⎜
⎝
⎛ ∈∪∪∈¬∃

⎩
⎨
⎧ ∪∪∈=

∈∈

∈∈

CaEmVnAVnAm

VnAVnAaVeB

pydeEnyieEn

ydeEnyieEnyxi

xdcxdc

xdcxdc

:,,

:,,,

22

22
2

U

U

()
() ()

()

()
() ()

()
()

() ()
()

()
() ()

()
() ()

⎭
⎬
⎫∧⎟

⎠
⎞∈∪

⎟⎟
⎠

⎞

⎭
⎬
⎫∧⎟

⎠
⎞

⎜
⎝
⎛ ∈∪∈¬∃

⎜⎜
⎝

⎛
⎜
⎝
⎛

⎩
⎨
⎧ ∪∈∪∈¬∃

∪⎟⎟
⎠

⎞

⎭
⎬
⎫∧⎟

⎠
⎞

⎜
⎝
⎛ ∈∪∈¬∃

⎩
⎨
⎧

⎜
⎝
⎛

⎩
⎨
⎧ ∪∈∪∈=

∈

∈

∈∈

∈∈

∈∈

CaEmVnA

CbEpVmAp

VmAbm

VnACbEpVmAp

VmAbaVeB

pydeEn

pydnEm

ydnEmeEn

ydeEnpydnEm

ydnEmeEnyxi

xdc

c

cxdc

xdcc

cxdc

:,

:,

:,

:,:,

:,,

2

2

2

2
2

U

U

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

150

()
()

()

()
() ()

()
()

()
()

()
() ()

()
() ()

⎭
⎬
⎫∧⎟

⎠
⎞∈∪

⎭
⎬
⎫∧⎟

⎠
⎞

⎜
⎝
⎛ ∈∪∈¬∃

⎜
⎝
⎛

⎩
⎨
⎧ ∪∈∈¬∃

∪
⎭
⎬
⎫∧⎟

⎠
⎞

⎜
⎝
⎛ ∈∪∈¬∃

⎩
⎨
⎧

⎩
⎨
⎧ ∪∈∈=

∈

∈

∈

∈∈

∈

CaEmVnA

CbEpVqAp

VmAbm

VnACbEpVqAp

VmAbaVeB

pydeEn

pydxEq

ydeEm

ydeEnpydxEq

ydeEmyxi

xdc

c

xoc

xdcc

xoc

:,

:,

:,

:,:,

:,,

2

2

2

2
2

U

U

Where x is the parent of m that is also the direct child of ex2;

and () () ()222 xdcxcxoc eEeEeE −=

Now, let

()
()

()
()

() ()
⎭
⎬
⎫

⎩
⎨
⎧ ∧⎟

⎠
⎞

⎜
⎝
⎛ ∈∪∈∃∪∈=

∈∈
CbEpVqApVmAbVeY pydxEqydeEmyx

cxoc

:,:,,
2

2
[9]

We have

()
()

() ()yxydeEnyx VeYVnAVeY
zoc

,,, 22
2

−∪=′
∈

,
[10]

 since
()

() ()yxydeEn
VeYVnA

xoc

,, 2
2

⊃∪
∈

()yxi VeB ,2 can be rewritten as:

() ()
()

()

()
()

() ()
⎭
⎬
⎫

∧⎟
⎠
⎞

⎜
⎝
⎛ ∈⎟

⎠
⎞

⎜
⎝
⎛ ∪′∈¬∃

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ∪′∈=

∈

∈

CaEmVnAVeYm

VnAVeYaVeB

pydeEnyx

ydeEnyxyxi

xdc

xdc

:,,

:,,,

2

2

2

22

U

U

[11]

We first prove:

() () ()⎟
⎠
⎞⎜

⎝
⎛ ∈′∈∃∈∀ aEmVeYmVeYa pyxyx :,:, 22

[12]

Consider such an ()yx VeYa ,2∈ :

Appendix

151

()
()

() () ()[]

()
() () () ()[]2

2

2

 :,

, of Definition :,

,

2
xoccpydeEq

yxpydxEq

yx

eExEaEpVqAp

VeYaEpVqAp

VeYa

xoc

c

⊂∈∪∈∃⇒

∈∪∈∃⇒

∈

∈

∈

[13]

() ()yxyx VeYpVeYp ,, 22 ∈∨′∈ ,

 since
()

()ydeEq
VqAp

xoc

,
2∈

∪∈ , and
()

() ()yxydeEq
VeYVqA

xoc

,, 2
2

⊃∪
∈

.

If ()′∈ yx VeYp ,2 , then we found a ()′∈ yx VeYp ,2 , such that ()aEp p∈ , and hence
proving expression [12].

If ()yx VeYp ,2∈ , then

()
()

() () ()[]

()
() () () ()[]2

2

2

 :,

, of Definition :,

,

2
xoccpydeEq

yxpydxEq

yx

eExEpEvVqAv

VeYpEvVqAv

VeYp

xoc

c

⊂∈∪∈∃⇒

∈∪∈∃⇒

∈

∈

∈

This is similar to expression [13], where p replaces a, v replaces p, with ()aEp p∈ ,
and ()pEv p∈ .

So, by repeating the above argument, we can either deduce the following
statements:

()
() ()pEvVqAv pydeEq xoc

∈∪∈∃
∈

:,
2

,
()

() ()vEuVqAu pydeEq xoc

∈∪∈∃
∈

:,
2

, …

if ()yx VeYv ,2∈ , ()yx VeYu ,2∈ , etc.

 (Where ()aEp p∈ , ()pEv p∈ , ()vEu p∈ , …)

Or prove expression [12] if ()′∈ yx VeYv ,2 , ()′∈ yx VeYu ,2 , since we would have

found a ()′∈ yx VeYuv ,/ 2 , such that ()aEuv p∈/ .

 (Note that ()aEv p∈ , since () ()() ()aEaEEpEv pppp ∈∈∈)

This sequence is repeated along the parents of a (p, v, u, s, …, r) until either
expression [12] is satisfied at some point in the hierarchy, or the root of the tree, r,
is reached. In the worst case where the sequence reaches the root r, we similarly
get

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

152

()
() ()rEtVqAt pydeEq xoc

∈∪∈∃
∈

:,
2

But, since no such t can exist since r is the root of the tree, we conclude
that ()yx VeYr ,2∉ , and it must be the case that ()′∈ yx VeYr ,2 , also satisfying
expression [12].

Therefore, in all cases, expression [12] is satisfied.

Now, reconsider the equation for ()yxi VeB ,2 in [11]:

() ()
()

()

()
()

() ()
⎭
⎬
⎫

∧⎟
⎠
⎞

⎜
⎝
⎛ ∈⎟

⎠
⎞

⎜
⎝
⎛ ∪′∈¬∃

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ∪′∈=

∈

∈

CaEmVnAVeYm

VnAVeYaVeB

pydeEnyx

ydeEnyxyxi

xdc

xdc

:,,

:,,,

2

2

2

22

U

U

One can add the ()yx VeY ,2 set to the set of elements to choose from in the
expression for ()yxi VeB ,2 , since these added elements will not satisfy the condition

of the ()yxi VeB ,2 set: ()
()

() () CaEmVnAVeYm pydeEnyx
xdc

∧⎟
⎠
⎞

⎜
⎝
⎛ ∈⎟

⎠
⎞

⎜
⎝
⎛ ∪′∈¬∃

∈
:,,

2
2 U ,

since from [12], we know that for ()yx VeYa ,2∈∀ , the expression

() ()⎟
⎠
⎞⎜

⎝
⎛ ∈′∈∃ aEmVeYm pyx :,2 is true.

Therefore, [11] can be rewritten as:

Appendix

153

() () ()
()

()

()
()

() ()

()
()

()
()

()
()

() ()

()
()

()
()

() ()
⎭
⎬
⎫

∧⎟
⎠
⎞

⎜
⎝
⎛ ∈⎟

⎠
⎞

⎜
⎝
⎛ ∪′∈¬∃

⎩
⎨
⎧ ∪∈=

⎭
⎬
⎫

∧⎟
⎠
⎞

⎜
⎝
⎛ ∈⎟

⎠
⎞

⎜
⎝
⎛ ∪′∈¬∃

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ∪∪∈=

⎭
⎬
⎫

∧⎟
⎠
⎞

⎜
⎝
⎛ ∈⎟

⎠
⎞

⎜
⎝
⎛ ∪′∈¬∃

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ∪′∈=

∈

∈

∈

∈∈

∈

∈

CaEmVnAVeYm

VnAa

CaEmVnAVeYm

VnAVnAa

CaEmVnAVeYm

VnAVeYVeYaVeB

pydeEnyx

ydeEn

pydeEnyx

ydeEnydeEn

pydeEnyx

ydeEnyxyxyxi

xdc

xc

xdc

xdcxoc

xdc

xdc

:,,

:,

:,,

:,,

:,,

:,,,,

2

2

2

22

2

2

2

2

2

222

U

U

U

U

UU

[14]

We now prove:

() () ()()aEmVeYmVeBa pyxyxi ∈∈¬∃∈∀ :,:, 22 [15]

Assume the inverse of [15]. That is:

() () ()()aEmVeYmVeBa pyxyxi ∈∈∃∈∃ :,:, 22 [16]

For this a, we know that () ()()aEmVeYm pyx ∈∈∃ :,2

()
()

() () ()[]

()
() () () ()[]2

2

2

 :,

, of Definition :,

,

2
xoccpydeEq

yxpydxEq

yx

eExEmEpVqAp

VeYmEpVqAp

VeYm

xoc

c

⊂∈∪∈∃⇒

∈∪∈∃⇒

∈

∈

∈

[17]

() ()yxyx VeYpVeYp ,, 22 ∈∨′∈ ,

 since
()

()ydeEq
VqAp

xoc

,
2∈

∪∈ , and
()

() ()yxydeEq
VeYVqA

xoc

,, 2
2

⊃∪
∈

.

But, ()′∉ yx VeYp ,2 , Since

() [][]
()() () [][]

()

16 from ,Em

17 from

p

aEp

aaEEp

mEp

p

pp

p

∈⇒

∈∈⇒

∈

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

154

and

()
()

()
() () [][]

() ()⎟
⎠
⎞⎜

⎝
⎛ ∈′∈¬∃⇒

∧⎟
⎠
⎞

⎜
⎝
⎛ ∈⎟

⎠
⎞

⎜
⎝
⎛ ∪′∈¬∃⇒

∈

∈

aEmVeYm

CaEmVnAVeYm

VeBa

pyx

pydeEnyx

yxi

xdc

:,

14 From :,,

,

2

2

2

2

U

That is, if () ()⎟
⎠
⎞⎜

⎝
⎛ ∈′∈¬∃ aEmVeYm pyx :,2 and ()aEp p∈ , then ()′∉ yx VeYp ,2 .

Therefore,

()yx VeYp ,2∈

Now,

()
()

() () ()[]

()
() () () ()[]2

2

2

 :,

, of Definition :,

,

2
xoccpydeEq

yxpydxEq

yx

eExEpEvVqAv

VeYpEvVqAv

VeYp

xoc

c

⊂∈∪∈∃⇒

∈∪∈∃⇒

∈

∈

∈

This is similar to expression [17], where, where p replaces m, v replaces p with,
()mEp p∈ and ()pEv p∈ .

So, by repeating the above argument, the following statements can be deduced:

()
() ()pEvVqAv pydeEq xoc

∈∪∈∃
∈

:,
2

,
()

() ()vEuVqAu pydeEq xoc

∈∪∈∃
∈

:,
2

, …

where ()pEv p∈ , ()vEu p∈ , ...

This sequence is repeated along the parents of a (m, p, v, u, …, r) until the root of
the tree, r, is reached, and concluding that

()
() ()rEtVqAt pydeEq xoc

∈∪∈∃
∈

:,
2

But, since no such t can exist since r is the root of the tree, we conclude that
assumption [16] is false.

Hence [16]’s inverse, [15] is true.

Now, reconsider the equation for ()yxi VeB ,2 in [14]:

Appendix

155

()
()

()

()
()

() ()
⎭
⎬
⎫

∧⎟
⎠
⎞

⎜
⎝
⎛ ∈⎟

⎠
⎞

⎜
⎝
⎛ ∪′∈¬∃

⎩
⎨
⎧ ∪∈=

∈

∈

CaEmVnAVeYm

VnAaVeB

pydeEnyx

ydeEnyxi

xdc

xc

:,,

:,,

2

2

2

2

U

We know from [15] that for ()yxi VeBa ,2∈∀ , () ()()aEmVeYm pyx ∈∈¬∃ :,2 is
true.

Therefore, [14] can be rewritten:

()

()
()

()
()

() ()

() ()()}

()
()

() ()
()

() ()

()
()

()
()

()
() ()

()
()

()
() ()

()yxi

pydeEn

ydeEn

pydeEnydeEn

ydeEn

pydeEnyxyx

ydeEn

pyx

pydeEnyx

ydeEn

yxi

VeA

CaEmVnAm

VnAa

CaEmVnAVnAm

VnAa

CaEmVnAVeYVeYm

VnAa

aEmVeYm

CaEmVnAVeYm

VnAa

VeB

xc

xc

xdcxoc

xc

xdc

xc

xdc

xc

,

:,

:,

:,,

:,

:,,,

:,

:,

:,,

:,

,

2

22

2

2

2

2

2

22

2

2

2

2

2

=
⎭
⎬
⎫∧⎟

⎠
⎞

⎜
⎝
⎛ ∈∪∈¬∃

⎩
⎨
⎧ ∪∈=

⎭
⎬
⎫

∧⎟
⎠
⎞

⎜
⎝
⎛ ∈⎟

⎠
⎞

⎜
⎝
⎛ ∪∪∈¬∃

⎩
⎨
⎧ ∪∈=

⎭
⎬
⎫

∧⎟
⎠
⎞

⎜
⎝
⎛ ∈⎟

⎠
⎞

⎜
⎝
⎛ ∪∈¬∃

⎩
⎨
⎧

∪∈=

∈∈¬∃∧

∧⎟
⎠
⎞

⎜
⎝
⎛ ∈⎟

⎠
⎞

⎜
⎝
⎛ ∪′∈¬∃

⎩
⎨
⎧ ∪∈=

∈

∈

∈∈

∈

∈

′

∈

∈

∈

U

UU

U

[18]

Now,

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

156

() () [][]
() () [][]
()yxa

yxdyxi

yxdyxiyxa

VeA

VeAVeA

VeAVeBVeB

,

18 from ,,

4 from ,,),(

2

22

222

=

=

=

U

U

[19]

Combining [18] and [19], we get

()() ()),(),(,),(2222 yxayxayxiyxi VeBVeAVeBVeA =∧=

We have now proved that [5] is true for ex2, assuming [5] is true for
()21 xcx eEe ∈∀ ([8]).

And, given that [5] is true for the leafs of the model ([6] and [7]), then by
induction, this proves [5] for xx Ee ∈∀

C.2 Proof 2
Prove that

()
()

()
()()

() ()()
() ()()

() ()()
()()

() ()()⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

∅=∧

∉∧

∅=

⇔

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪

∈

yxdyc

yxdy

yxayp

yxdyc

yxdyp

yxdy

ydeEnyp

VeAeE

VeAe

VeAeE

VeAeE

VeAeE

VeAe

VnAeE
xc

,

,

,

,

,

,

,

I

I

I

I

I

We first prove that

Appendix

157

()
()

()
()()

() ()()
() ()()

() ()()
()()

() ()()
() ()()⎟

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

∅=

⇔

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪

∈

yxdyc

yxdyp

yxdy

yxiyp

yxdyc

yxdyp

yxdy

ydeEnyp

VeAeE

VeAeE

VeAe

VeAeE

VeAeE

VeAeE

VeAe

VnAeE
xc

,

,

,

,

,

,

,

,

I

I

I

I

I

I

[1]

Now,

()
()

()
()

()
()

() () ()
()

()
() ()()∅=⇒

⎥⎦
⎤

⎢⎣
⎡ ∪⊂∈∈¬∃⇒

∪∈∈¬∃⇒

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪

∈

∈

∈

yxiyp

ydeEnyxiyxiyp

ydeEnyp

ydeEnyp

VeAeE

VnAVeAVeAxeEx

VnAxeEx

VnAeE

xc

xc

xc

,

,, Since ,:

,:

,

I

I

Hence,

()
()

()
()()

() ()()
() ()()

() ()()
()()

() ()()
() ()()⎟

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

∅=

⇒

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪

∈

yxdyc

yxdyp

yxdy

yxiyp

yxdyc

yxdyp

yxdy

ydeEnyp

VeAeE

VeAeE

VeAe

VeAeE

VeAeE

VeAeE

VeAe

VnAeE
xc

,

,

,

,

,

,

,

,

I

I

I

I

I

I

[2]

Considering the RHS of (1),

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

158

() ()()
()()

() ()()
() ()()

() ()()
()()

() ()()
() ()() ⎟

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

∈∈¬∃

⇒

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

∅=

yxdyc

yxdyp

yxdy

ypyxi

yxdyc

yxdyp

yxdy

yxiyp

VeAeE

VeAeE

VeAe

eExVeAx

VeAeE

VeAeE

VeAe

VeAeE

,

,

,

:,

,

,

,

,

I

I

I

I

I

[3]

Now, assume that

()
() ()ypydeEn

eEaVnAa
xc

∈∪∈∃
∈

:,
[4]

() ()′∈∨∈ yxiyxi VeAaVeAa ,, ,since
()

()ydeEn
VnAa

xc

,
∈
∪∈ ,

and
()

() ()yxiydeEn
VeAVnA

xc

,, ⊃∪
∈

.

But ()yxi VeAa ,∉ , since from [3], we have () ()ypyxi eExVeAx ∈∈¬∃ :, , and from
[4] we have ()yp eEa∈ .

Therefore,

()′∈ yxi VeAa ,

From the definition of ()yxi VeA , (section B.5.1.1), we get that for ()′∈ yxi VeAa ,

()
() ()

() ()()⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=∨∈∈¬∃∧

⎟
⎠
⎞

⎜
⎝
⎛ ∈∪∈¬∃

¬ ∈

amaEmVeAm

aEmVnAm

pyxd

pydeEn xc

:,

:,

That is,

()
() ()

() ()()amaEmVeAm

aEmVnAm

pyxd

pydeEn xc

≠∧∈∈∃∨

⎟
⎠
⎞

⎜
⎝
⎛ ∈∪∈∃

∈

:,

:,

[5]

Appendix

159

Considering the second predicate of [5]:

() ()
() ()() [] ()[]
() () ameEmVeAm

eEaameEEmVeAm

amaEmVeAm

ypyxd

ypyppyxd

pyxd

≠∧∈∈∃⇒

∈≠∧∈∈∃⇒

≠∧∈∈∃

:,

 have we,4 from :,

:,

But, this is false since it is given in [3] that () () ∅=yxdyp VeAeE ,I

Hence [5] becomes:

()
() ()⎟

⎠
⎞

⎜
⎝
⎛ ∈∪∈∃

∈
aEmVnAm pydeEn xc

:,

This is similar to assumption [4], where m replaces a with, ()yp eEa∈
and ()aEm p∈ .

So, by repeating the argument above, the following statements can be deduced:

()
() ()⎟

⎠
⎞

⎜
⎝
⎛ ∈∪∈∃

∈
mEpVnAp pydeEn xc

:, ,
()

() ()⎟
⎠
⎞

⎜
⎝
⎛ ∈∪∈∃

∈
pEqVnAq pydeEn xc

:, , …,

where ()mEp p∈ , ()pEq p∈ , ...

This sequence is repeated along the parents of e (a, m, p, q, …, r) until the root of
the tree, r, is reached, and concluding that

()
() ()⎟

⎠
⎞

⎜
⎝
⎛ ∈∪∈∃

∈
rEvVnAv pydeEn xc

:,

But, since no such v can exist since r is the root of the tree, we conclude that
assumption [4] is false.

That is

()
() ()ypydeEn

eEaVnAa
xc

∈∪∈¬∃
∈

:,

or

()
()

() ∅=∪
∈ ydeEnyp VnAeE

xc

,I
[6]

Now, [6] is proven true based on [3], and we hence can write:

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

160

() ()()
()()

() ()()
() ()()

()
()

() ⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪

⇒

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

∈∈¬∃

∈ ydeEnyp

yxdyc

yxdyp

yxdy

ypyxi

VnAeE

VeAeE

VeAeE

VeAe

eExVeAx

xc

,

,

,

,

:,

I

I

I

∴

() ()()
()()

() ()()
() ()()

()
()

() ⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪

⇒

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

∅=

∈ ydeEnyp

yxdyc

yxdyp

yxdy

yxiyp

VnAeE

VeAeE

VeAeE

VeAe

VeAeE

xc

,

,

,

,

,

I

I

I

I

∴

() ()()
()()

() ()()
() ()()

()
()

()
()()

() ()()
() ()() ⎟⎟

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪

⇒

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

∅=

∈

yxdyc

yxdyp

yxdy

ydeEnyp

yxdyc

yxdyp

yxdy

yxiyp

VeAeE

VeAeE

VeAe

VnAeE

VeAeE

VeAeE

VeAe

VeAeE

xc

,

,

,

,

,

,

,

,

I

I

I

I

I

I

[7]

Combining [2] and [7], we get:

Appendix

161

() ()()
()()

() ()()
() ()()

()
()

()
()()

() ()()
() ()() ⎟⎟

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪

⇔

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

∅=

∈

yxdyc

yxdyp

yxdy

ydeEnyp

yxdyc

yxdyp

yxdy

yxiyp

VeAeE

VeAeE

VeAe

VnAeE

VeAeE

VeAeE

VeAe

VeAeE

xc

,

,

,

,

,

,

,

,

I

I

I

I

I

I

Hence, we prove [1].

Now,

() ()() () ()()()

() ()()∅=
⇔

∅=∧∅=

yxayp

yxdypyxiyp

VeAeE

VeAeEVeAeE

,

,,

I

II

Since () () ()yxdyxiyxa VeAVeAVeA ,,, U=

Hence,

()
()

()
()()

() ()()
() ()()

() ()()
()()

() ()()⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

∅=∧

∉∧

∅=

⇔

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪

∈

yxdyc

yxdy

yxayp

yxdyc

yxdyp

yxdy

ydeEnyp

VeAeE

VeAe

VeAeE

VeAeE

VeAeE

VeAe

VnAeE
xc

,

,

,

,

,

,

,

I

I

I

I

I

C.3 Proof 3
Prove that

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

162

()() () ()() ()()∅≠≡∅≠∈∃∨∅≠ yxaydxcyxd VeAVnAeEnVeA ,,:,

First,

()() () ()()
()() () ()()()
()() () ()()()
()()

()
() ⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪∧∅=¬≡

∅=∈∀∧∅=¬≡

∅≠∈∃¬∧∅=¬≡

∅≠∈∃∨∅≠

∈ ydeEnyxd

ydxcyxd

ydxcyxd

ydxcyxd

VnAVeA

VnAeEnVeA

VnAeEnVeA

VnAeEnVeA

xc

,,

,:,

,:,

,:,

[1]

We now prove that

()()
()

()

()() ()()()∅=∧∅=
⇔

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪∧∅=

∈

yxiyxd

ydeEnyxd

VeAVeA

VnAVeA
xc

,,

,,

[2]

First, given the definition of Ai in section B.5.1.1:

()
()

()
() ()

() ()()}
∅=⇒

=∨∈∈¬∃∧
⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ∈∪∈¬∃∅∈=⇒

∅=∪

∈

∈

),(

:,

:,:),(

,

yxi

pyxd

pydeEnyxi

ydeEn

VeA

amaEmVeAm

aEmVnAmaVeA

VnA

xc

xc

Hence,

()()
()

() ()() ()()()∅=∧∅=⇒⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪∧∅=

∈ yxiyxdydeEnyxd VeAVeAVnAVeA
xc

,,,,
[3]

Second,

Appendix

163

()() ()()()

()
()

()
() ()

()()}

()
()

()
() ()

()
()

()
() ()

()
() ⎟

⎠
⎞

⎜
⎝
⎛ ∅=∪∨

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ∈∪∈∃∪∈∀⇒

∅=
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ∈∪∈¬∃∪∈⇒

∅=

=∨∈∅∈¬∃∧
⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ∈∪∈¬∃∪∈⇒

∅=∧∅=

∈

∈∈

∈∈

∈∈

ydeEn

pydeEnydeEn

pydeEnydeEn

p

pydeEnydeEn

yxiyxd

VnA

aEmVnAmVnAa

aEmVnAmVnAa

amaEmm

aEmVnAmVnAa

VeAVeA

xc

xcxc

xcxc

xcxc

,

:,:,

:,:,

:

:,:,

,,

[4]

Now, assume that

()
()

()
() ()⎟

⎠
⎞

⎜
⎝
⎛ ∈∪∈∃∪∈∀

∈∈
aEmVnAmVnAa pydeEnydeEn xcxc

:,:,
[5]

And consider an a such that
()

()ydeEn
VnAa

xc

,
∈
∪∈ .

()
()

()
() () [][]

()
() () []

()
()

()
() () []

()
()

...

, since ,5 from :,

, since ,5 from :,

5 from :,

,

⎥⎦
⎤

⎢⎣
⎡ ∪∈∈∪∈∃⇒

⎥⎦
⎤

⎢⎣
⎡ ∪∈∈∪∈∃⇒

∈∪∈∃⇒

∪∈

∈∈

∈∈

∈

∈

ydeEnpydeEn

ydeEnpydeEn

pydeEn

ydeEn

VnAppEqVnAq

VnAmmEpVnAp

aEmVnAm

VnAa

xcxc

xcxc

xc

xc

Note that ()aEm p∈ , ()mEp p∈ , ()pEq p∈ , etc.

This sequence is repeated along the parents of a (m, p, q, …, r) until the root of the
tree, r, is reached, concluding that

()
()ydeEn

VnAr
xc

,
∈
∪∈

and

()
() ()rEvVnAv pydeEn xc

∈∪∈∃
∈

:,

Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems

164

But since no such v can exist, we can conclude that [5] is not valid.

Therefore, [4] becomes

()() ()()()

()
() ⎟

⎠
⎞

⎜
⎝
⎛ ∅=∪⇒

∅=∧∅=

∈ ydeEn

yxiyxd

VnA

VeAVeA

xc

,

,,

Hence,

()() ()()() ()()
()

() ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪∧∅=⇒∅=∧∅=

∈ ydeEnyxdyxiyxd VnAVeAVeAVeA
xc

,,,,
[6]

Combining [3] and [6], we get

()()
()

()

()() ()()()∅=∧∅=
⇔

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪∧∅=

∈

yxiyxd

ydeEnyxd

VeAVeA

VnAVeA
xc

,,

,,

and thus proving [2].

Combining [1] and [2], we get:

()() () ()()
()()

()
() [][]

()() ()()() [][]
() ()()
() ∅≠≡

∅≠≡

∅=∧∅=¬≡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪∧∅=¬≡

∅≠∈∃∨∅≠

∈

yxa

yxiyxd

yxiyxd

ydeEnyxd

ydxcyxd

VeA

VeAVeA

VeAVeA

VnAVeA

VnAeEnVeA

xc

,

,,

2 from ,,

1 from ,,

,:,

U

C.4 Proof 4
Prove that

() ()() () ()()yxvxdcyxvxc VnaeEnVnaeEn ,:,: ¬∈∀≡¬∈∀

First,

() ()() () ()()
() ()[]xcxdc

yxvxdcyxvxc

eEeE

VnaeEnVnaeEn

⊂

¬∈∀⇒¬∈∀

 Since

,:,:

[1]

Appendix

165

Second,

() ()()
() () ()()()

() ()[]
() ()()
() ()() () ()()
() ()()

() () ()
() ()()yxvxc

xdcxcxoc

yxvxdcyxvxoc

yxvxoc

yxvxcxxv

yxvcxdc

yxvxdc

VnaeEn
eEeEeE

ABABA

VnaeEnVnaeEn

VnaeEn

VnaeEnea

VmanEmeEn

VnaeEn

,:
 and

,:,:

,:

,:)(,section1.6 From

,::

,:

11

¬∈∀⇒

⎥
⎦

⎤
⎢
⎣

⎡
−=

∧⇒≡⇒

¬∈∀∧¬∈∀⇒

¬∈∀⇒

¬∈∀⇒¬

¬∈∀∈∀⇒

¬∈∀

Hence,

() ()() () ()()yxvxcyxvxdc VnaeEnVnaeEn ,:,: ¬∈∀⇒¬∈∀ [2]

Combining [1] and [2], we get

() ()() () ()()yxvxdcyxvxc VnaeEnVnaeEn ,:,: ¬∈∀⇔¬∈∀

