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Abstract 

The development of modern technical systems requires the close collaboration 
of various specialist teams and engineering disciplines. Even though working 
with the same system towards the same goal, developers from the different 
domains use their own specific tools, providing their own specific views of the 
system to be developed. For the successful integration of the efforts from each 
of these disciplines, the different views need to be appropriately integrated, 
preventing any inconsistencies and divergences from creeping into the system 
design. 

In this report, we present an approach to multi-view modelling which 
systematically integrates the two generally accepted complexity reduction 
techniques of hierarchical decomposition and multi-viewing. While these 
techniques are common practice in many modern design tools, the approach 
presented defines how the inter-view relationships can be used to tightly 
interweave the views’ hierarchies.  

Through the use of a case study, model integration is investigated for the 
allocation of system functions onto the implementing hardware architecture. 
The resulting approach maintains the principle of hierarchical design within, as 
well as between the views, where allocation can be performed at arbitrary levels 
across the hardware and function hierarchies. The proposed approach 
promotes the independent development of the views, allowing developers from 
each discipline to work concurrently, yet providing support for a holistic view. 
This provides a good basis for an information sharing environment enabling 
model-based, multi-disciplinary development. 

While specific to the allocation of system functions to hardware, these 
mechanisms can be reused for the mapping of system functionality to the 
software architecture, or software to hardware allocation. The generalisation of 
this work to cover other kinds of relations remains a challenge for future work. 
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B.1. Introduction 
The development of modern technical systems requires the close collaboration of 
various specialist teams and engineering disciplines. In automotive system design 
for example, developers from the traditional engineering disciplines such as 
control, software, mechanical and electrical engineering, need to interact to meet 
the demands for dependable and cost-efficient integrated systems. Even though 
working with the same system towards the same goal, developers from the 
different domains use their own specific tools, providing their own specific views 
of the system to be developed. Each system view targets a specific audience, using 
that audience’s familiar language (viewpoint), and concentrating on that 
audience’s concerns [1]. Figure 18 illustrates some of the viewpoints and views 
that may be necessary during the development of a typical vehicular system. This 
separation of concerns has been well recognised in literature and is the common 
practice of modern engineering modelling languages and tools ([2], [3], [4] and 
[5]). 

 

Figure 18. Some of the disciplines and views in system development. 

Breaking up the design information of the system into multiple views, based on 
domain concerns, has the major advantages that it increases understandability and 
reduces the perceived complexity of the system at hand. However, the concerns 
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and interests of each domain are not necessarily exclusive, which leads to overlap 
and dependencies in their development information space. In addition, even 
though they attempt to develop the same system, developers from the different 
disciplines may form a different perception of the system’s aims, problems and 
solutions. Combined with the fact that these disciplines are distributed across 
several teams that focus on specific subsystems of a large system, it becomes 
essential that the efforts of all developers are well communicated and the different 
views are well integrated into a whole. This reduces any risks of inconsistencies 
and conflicts between the views.  

There are two main reasons for the need of view integration. (1) Integration is 
necessary in the case where it is not desired to specify certain system information 
exclusively within a single view, since the information is the concern of more than 
a single aspect or discipline. Good integration mechanisms should allow this 
information to be duplicated in the relevant views while maintaining its 
consistency across the views. An example approach focusing on the consistency 
checking between views in software engineering, where the same or closely 
related entities can appear in different views and must be maintained consistent, 
can be found in [6]. (2) Depending on the adopted set of views, some information 
may not belong to one view or the other, but specifies a relationship between 
different views. For example, the allocation of software components onto the 
hardware components of a system is the sole concern of neither the software nor 
the hardware developer, and this design decision lies between the two views. Good 
integration mechanisms permit the specifications of such inter-view information 
and reflect the interaction points at which the respective stakeholders need to 
communicate. Inter-view information can naturally be considered as a view of its 
own. It is however interesting to highlight the fact that such an “inter-view view” 
cannot exist on its own, since most of its information lies in the other views it 
relates. This report focuses on the latter kind of view integration. 

B.1.1. Inter-view Modelling - A Complexity Management 
Technique 

Breaking up the system description into multiple views is simply an application of 
the decomposition or “divide-and-conquer” technique commonly used to manage 
system complexity. This technique is well adopted in many aspects of science and 
technology and is generalised in the General Systems Theory ([7] and [8]). A more 
common application of this principle is hierarchical decomposition, in which a 
complex system is recursively divided into smaller subsystems until a satisfactory 
level of detail or complexity is reached. Combining both techniques, system 
modelling can be envisaged as presented in figure 19, in which the complete 
system model information is first divided into its various views and then 



B.1. Introduction 

77 

decomposition is used to form a hierarchy of the information specific to each 
view. 

It is argued that a good view integration approach should maintain the use of 
hierarchies when specifying inter-view information in order to facilitate the 
developer’s work. Relationships setup between views should be appropriately 
reflected in models and not simply as a list of references. Establishing 
relationships across the hierarchies of the views provides a tight interweaving of 
the views. Using this interweaving, mechanisms can be developed to allow a 
developer within a given domain to view the other aspects of the system from 
his/her own point of view. The other views should be reflected to the developer at 
a sufficient level of abstraction and detail that makes him/her appreciate the 
information provided. Such mechanisms also act as a good basis for information 
sharing between developers. 
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Figure 19.  The integration of multi-view and hierarchical decomposition 
techniques. The broken arrow illustrates a relation between the separated views. 

View integration can be performed either through social communication among 
developers - social development, or through formalised and automated design 
processes - model based development (MBD) [9].  
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MBD refers to a development approach whose activities emphasise the use of 
models, tools and analysis techniques for the documentation, communication and 
analysis of decisions taken at each stage of the development lifecycle. Models can 
take many forms such as physical prototypes, graphical and textual models. It is 
essential that the models contain sufficient and consistent information about the 
system, allowing reproducible and reliable analysis of specific system properties to 
be performed. In MBD, analysis plays the critical role of ensuring that the models 
being built - hence the design decisions being taken – are consistent and satisfy the 
system requirements.  

Within a given domain or view, MBD is commonly used, such as the use of CAD 
tools in mechanical engineering. This report suggests an approach in which the 
integration of models from the various design domains is also model-based. By 
emphasising the use of tools, models and analysis techniques, this ensures the 
explicit documentation of all inter-view design decisions, making it possible to 
validate and verify them.  

An integrated, model-based, multi-view design environment is also a good basis 
for the communication of information between developers, where any conflicts 
and misunderstandings between developers are reflected, dealt with and detected 
through the models. An integrated environment allows design decisions taken by 
one developer to be communicated to the rest of the team in an understandable 
way. 

We here propose such a multi-view integration approach. In particular, through the 
use of a case study, model integration is investigated for the allocation of system 
functions onto the implementing hardware architecture. The resulting approach 
maintains the principle of hierarchical design within, as well as between the views, 
where allocation can be performed across the hardware and function hierarchies. 
Rules and mechanisms are developed to ensure the completeness and correctness 
of such inter-view design decisions. Additional mechanisms allow a developer 
within a given domain to view the other aspects of the system from his/her own 
perspective, making view integration a good basis for information sharing. The 
developed allocation rules permit the refinement of allocation specifications 
performed higher up in the hierarchies, as well as their extensions at the lower 
levels. 

The next section briefly introduces a small case study that will be used throughout 
the paper to exemplify the approach. The meta-meta-model that should be used in 
defining a single view of the system model is then defined in section B.3, and 
exemplified using models relevant for the case study in section B.4. The section 
ends with a discussion on conventional integration mechanisms, highlighting their 
shortcomings and defining a set of desired requirements. In section B.5, the multi-
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view integration approach, satisfying these requirements, is suggested and 
explained through the case study. Section B.6 presents typical cross-view analyses 
that can be performed with this approach, followed by a short description of the 
implementations performed in section B.7. A discussion of related work is 
presented in section B.8, before concluding the paper in section B.9. Two 
typographic conventions are used in this report: (1) Italics are used for the 
definition of a term or keyword. (2) Once defined, Letterspacing is used for 
most keywords in the remaining parts of the report. This is necessary given the 
multi-word composition of some keywords, simplifying their identification in the 
text.  

B.2. Case Study 
The following case study is an extract from a larger effort performed in 
cooperation between Scania AB and the Royal Institute of Technology, aimed at 
quantitative analysis of architectural design decisions [10]. 

The original case study deals with the increased design complexity of modern 
truck systems accompanying the introduction of software-based functionality in an 
otherwise mechanical product. Among other reasons, complexity arises due to the 
increased number of functions introduced. More importantly, complexity arises 
from the interdependencies between these functions, where functions need to share 
common resources such as memory space on Electronic Control Units (ECU), as 
well as cooperate with other functions in order to fulfil their expected behaviour. 

During the early architectural design of a truck, architects face the challenge of 
choosing the Electrical/Electronics (EE) architecture, onto which the system 
functionality is to be implemented, taking into consideration and optimising 
design parameters or keyfigures such as the resulting cable weights, costs and the 
number of weak connection points. Additional aspects of the system design to be 
taken into consideration include reliability, available technology, safety, sub-
contractors, etc. The EE architecture of a truck consists of a network of 
communicating ECUs of varying complexity. A critical factor that affects 
keyfigures is the allocation of system functions onto these ECUs. Different 
function allocations provide different performance requirements of the ECUs, 
communication bandwidths, and different sets of cable connections between ECUs 
for communication.  

Evaluating keyfigures and making trade-offs between them is often performed 
through qualitative investigation efforts. The aim of the original case study was to 
perform quantitative keyfigure analysis, based on accurate models, to guide these 
tradeoffs. In addition, the EE architecture and the system functionality are 
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currently modelled within one view, reducing the possibilities to easily explore 
different allocation strategies without changing the model itself. 

In the original case study, a tool was developed which allows the specification of a 
hardware and functional architecture, followed by the possibility to specify 
various allocation specifications from which keyfigures can be calculated. These 
keyfigures become a trade-off basis for choosing the most appropriate allocation 
strategy. 

In this report, we consider a subset of the complete truck functionality handled in 
the larger case study, to illustrate how the two views of the system ought to be 
separated and integrated, simplifying the process of function allocation. We 
illustrate how our technique of multi-view modelling identifies two types of 
concerns to be separated: Intra-view relations specified in the given view’s model, 
and inter-view relations that deal with integrating views.  

In particular, we focus on the Adaptive cruise control (ACC) function. ACC is a 
typical distributed functionality that requires the cooperation of many components 
of the system. ACC may be seen as an extension to the conventional cruise 
control, where ACC not only keeps the speed but also ensures a given distance to 
the vehicles ahead. The ACC is mainly seen as a comfort oriented function, 
although it could be seen as the first step towards more autonomous driving. In the 
future, this step could be followed by various functions aimed at comfort, safety 
and fuel economy. Sections B.4.2 and B.4.3 illustrate models of the ACC 
functionality and of the implementing hardware components respectively. 

The ACC functionality described in this report is hypothetical and does not 
necessarily match that adopted at Scania. In particular, the function specification 
has been reorganised in order to introduce a hierarchical specification. 

B.3. Single-view Modelling 
In representing a given system, the types of properties selected are based on those 
properties that the observer or user is interested in and is capable of observing. 
Given that a system may have many different users, the set of properties to be 
represented needs to be the union of the properties of interest for each of the users. 

A single representation covering all the needed properties can be provided. This 
solution implies that observers are exposed to properties to which they have no 
interest. Another solution is to provide a different view for each of the concerned 
observers, onto which the system properties are distributed. Each view of the 
system is represented using a single model. This solution allows observers to focus 
on the properties of their concerns. A system is hence said to be represented using 
a set of models together with their relationships. This definition of the “model” 
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and “view” concepts almost agrees with that presented in the IEEE-1471 standard 
[1]. While in our definition, views and models form a one-to-one relationship, the 
standard defines one-to-many relation, where a view is represented using one or 
more models. This set of “models” is grouped into one in our terminology. A 
many-to-one relation, where a model is used to represent more than a single view 
of the system is not desired, since this would require the need to define which 
parts of the model belongs to which view. 

B.3.1. The Meta-meta-model 
Multi-view modelling generally requires that a certain meta-meta-model is defined 
from which the specific models are eventually instantiated [11]. This allows for 
many concepts to be reused across all model definitions, and hence facilitating the 
integration of these models. 

We adopt a simple meta-meta-model which generalises among established meta-
meta-modelling languages such as MoF [11], Dome [12] and GME [4], and based 
on a broad survey of modelling languages for embedded computer systems [19]. 
Since the suggested concepts are very basic and general, it is expected that most 
modelling languages can be instantiated using this meta-meta-model. It is 
important to note that the main aim is not to suggest yet another meta-meta-model 
that claims to cover any modelling language. A simple, generalised meta-meta-
model was adopted, allowing focus to be placed on the view integration 
mechanisms. 

As further detailed in this section, a model can be generally viewed as consisting 
of a hierarchical structuring of elements that may possess properties; ports 
defining interfaces to these elements; and relations (such as associations, 
inheritance and refinement) between ports. Modelling languages differ in the kinds 
of elements that can be specified, their relationships and the kind of properties 
they possess. The meta-meta-model is first instantiated to reflect a given meta-
model by defining the kind of elements, ports and relations that will exist in that 
particular model. The meta-model is then further instantiated by the user when 
defining a specific model for a specific system. Figure 20 shows a graphical 
presentation of the concepts discussed in this section. 

The main concept that is recurring in most modelling languages and will be 
adopted here is composability. In dealing with large complex systems, a system 
can be seen as consisting of a set of parts which together, through their 
interrelations, describe certain aspects of the system such as its functionality, 
structure, etc. These parts are considered systems of their own, which similarly 
consist of interrelated parts. This recursive decomposition of the system into its 
constituting parts helps in managing and absorbing the complexity of the system, 
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where the observer can focus on a part of the system that is of interest at a given 
point in time while ignoring the others. Note that decomposition is not necessarily 
an intrinsic property of the system, but a technique of perceiving and structuring a 
system adopted by the observer to better grasp its details. 
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Figure 20. A graphical representation of the general modelling concepts. 

B.3.1.1. Elementary and Composite System Definition 
A system’s properties are described by an element. An element is a placeholder of 
attributes describing the represented system’s (relevant) properties.  

For a simple description of an element, the properties can be specified as a set of 
attributes. Such a description is known as an elementary element. In defining a 
specific meta-model, the model designer specifies different types of elementaries 
to describe different types of systems, with each elementary type having a 
different set of properties. 

When the complexity of the system increases, the use of elementaries becomes 
insufficient to satisfactorily specify all properties of interest. It may become 
impossible to define properties whose values can be simply specified; there may 
exist complex interdependencies between the properties; or the number of 
properties set may be too large to handle. For elaborate descriptions, the properties 
of the system can be decomposed into smaller, less complex, interacting elements, 
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where each element contains a subset of the original system properties. Such a 
description is known as a composite element. In relative terms, a composite 
element is known as the parent element to each of its composing elements – the 
internal elements. 

The internal elements of a composite can themselves be either elementary or 
composite elements. In this hierarchical decomposition, an element of a system 
becomes a system of its own, with its own set of elements and so on. The recursive 
decomposition terminates arbitrarily at a certain level once the level of complexity 
reached for a part is satisfactory, and the parts can be simply described. The 
decision of when an element can be described by a simple set of properties is made 
by the designer and reflects his/her mental capabilities and purposes. 

Depending on the context used in viewing a certain element, two different 
descriptions of the element properties can be identified. If viewing the element as 
the parent element containing other elements, then the internal definition (white-
box definition) deals with its complete set of properties, which consists of the set 
of internal elements. This definition defines the element as a stand-alone system 
and hence needs to be complete irrespective of its surrounding environment. If 
viewing the element as a composing element of a larger parent element, then the 
external/interface definition (black-box definition) reveals only those properties 
that need to be shared with the system environment. From the environment 
perspective, this definition is sufficient to know how the element can be used and 
related to other elements, while ignoring its internal workings.  

B.3.1.2. Element Interface 
The interface definition of an element is an extract of the internal definition, and is 
defined by a set of ports. A port forms part of the interface of its element and acts 
as a placeholder for a subset of its element’s externally accessible properties. It is 
through ports that an element interacts with its external environment.  

An interaction between elements is described through a relation between their 
ports, indicating a certain relationship between the properties specified in the 
ports. Two general types of relations are identified: Interface relation and 
connection relation. 

In order to externally reveal the internal properties of an element, an element’s 
port establishes an interface relation to the port of the internal element with the 
properties of interest. In figure 20, the interface relation between the ports pa and 
p1 indicates that the interface properties of the internal element e1 are externally 
accessible. In relative terms, the port of the internal element is called an interfaced 
port of the port of the parent element. The latter is called an interfacing port of the 
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port of the internal element. In this way, a port acts as a gate to the internal 
properties of its element to which the environment connected to that port gains 
access. Each direct interfacing port can have one, and only one, direct interfaced 
port and vice versa. 

Section B.3.1.1 presented a simplified technique of distributing a composite 
element’ properties into elements. However, it is generally not possible to obtain 
such independent elements. Certain properties that end up in specific parts need to 
be related to other properties in other parts, and relationships need to be specified 
between the elements to describe these dependencies. A complete system 
description hence consists of its composing elements, as well as the relations 
between them. A connection relation is established between two ports of peer 
elements, implying a certain dependency between the properties specified in the 
ports. (See figure 20 for an example connection relation between the ports p2 and 
p3.) The ports with such a relation are called direct connected ports. 

We define the equivalent ports of a port to be the combined sets of its interfacing 
ports and interfaced ports (as well as itself). Given the definition of an interface 
relation, equivalent ports are hence the representations of the same set of 
properties of the system. Without any loss of information, an element/system can 
be replaced by its set of internal elements, where the interfaced ports of its internal 
elements connect directly to the ports which the interfacing ports connect to. This 
procedure can be executed down the hierarchy until the view consists of a flat 
structure of elementary elements. In other words, the model hierarchy is arbitrary, 
based on the needs of the developers. 

We define the connected ports of a port to be the set of its direct connected ports 
and each of their equivalent ports, together with the direct connected ports of the 
equivalent ports of this port. Again satisfying the definition of equivalent ports, 
the set of connected ports of a port is the same as that for each of its equivalent 
ports. 

B.3.1.3. Specifying Port Properties 
A port’s properties can be defined either directly (direct properties), or through 
one of its equivalent ports (inherited properties). If the port properties are allowed 
to be simultaneously defined in multiple equivalent ports, a source of potential 
inconsistency between the specifications is created. It becomes necessary to ensure 
that all specifications are consistent whenever a change occurs (such as when 
creating a new interface relation, or changing the properties in one of the 
equivalent ports). Another simple solution is to allow properties to be defined on 
only one port among the set of equivalent ports, avoiding duplications of property 
definitions and hence inconsistency problems. In this case, once the initial choice 
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of the equivalent port is defined, no other equivalent port can be used to define 
properties. This condition needs to be checked whenever a new interface relation 
between two ports is created, since the ports become equivalent and it is necessary 
to ensure that the new set of equivalent ports has only one port definition. 

B.3.1.4. General Principles 
In the definition of this meta-meta-model, we try to adhere to a few basic 
principles: 

• An element/system is fully defined by its internal definition, whether it is a set 
of properties or a set of consisting elements and their relations. That is, a 
system or element is independent of its surroundings. Its properties cannot be 
defined based on properties of its peer elements nor its parents up in the 
hierarchy. In other words, it should be possible to remove a system from its 
current surroundings and place it in another, without changing its internal 
properties. 

• An element’s internal and interface definitions should be fully specified 
through the interface definitions of its direct children elements. In other 
words, the element does not need any information about the internal 
properties of its children. 

These principles are beneficial in many ways: 

• The concept that each element is a system of its own is reinforced, since 
external changes and reorganisation do not influence that system/element.  

• From the user perspective, the concept that the internal elements can be treated 
as black boxes with a certain interface is reinforced. There is no need to study 
the direct children’s internal definitions in order to define the element’s 
properties or to check its correctness, as long as the internal elements are 
assumed to be correct. Only the internal elements and their relations are 
needed. 

• Systems can be built and checked independently and then used as elements 
inside a larger system providing a mechanism for building libraries of 
reusable elements.  

• Constraint rules and mechanisms relating the different modelling entities 
(views, elements, properties, etc.) can be applied more locally. For example, 
checking the validity of an element’s interface requires only access to the 
element’s direct children without reference to other elements in the system or 
further elements down or up the hierarchy.  
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• Once a change is made to an entity, the reapplication of the rules and 
mechanisms to maintain the model validity is also restricted to a smaller local 
subset of the system’s direct elements. This permits the implementation of 
more efficient dynamic constraint checking mechanisms. 

B.3.1.4.1. Inheritance 
Inheritance is the mechanism of specifying a property of a system based on other 
properties specified elsewhere. It can be viewed as an automation of the manual 
specification of properties, in the case where only one choice would have been 
available for a valid model. 

The inheritance mechanisms should satisfy the principles specified above. For 
example, a property of an element can only be inherited from properties specified 
by its direct children. A port’s properties can only be inherited from its direct 
interfaced port down the hierarchy. 

Certain exceptions to the principles specified above may sometimes appear to be 
made when setting up inheritance mechanisms. The specification of properties 
among equivalent ports is a typical example (see section B.3.1.3). In that case, it 
was allowed to specify the port properties at any level among the equivalent ports, 
and all other equivalent ports (up and down the hierarchy) simply inherited these 
specifications. This can be interpreted as a violation of the above principle. While 
it is acceptable to allow the inheritance of the port specifications up the hierarchy 
(by step-wise inheritance), the inheritance down the hierarchy from a port to its 
interfaced port is a violation since the element specification is no longer 
independent of its surrounding environment. In order to satisfy the need that all 
equivalent ports have equivalent properties, a strict application of the principles 
means that properties can only be specified at the ports of elementary elements. 
This solution is however restrictive for the user, and would not be desired. 

We hence differentiate between the inheritance of the properties in the models 
which strictly follows the above principles, and the convenience inheritance for 
the user which is more flexible. In the case the property is specified at a high level 
by the user, this property is actually specified at the equivalent port lowest down 
in the hierarchy (There is only one such port since each port can only have one 
direct interfaced port). The properties hence become inherited up the hierarchy by 
all the equivalent ports. In the case the elementary or any element with an 
equivalent port, for example, is taken out of its context, its properties remain 
specified as well. In this way, while the simplification is performed for the user, 
the model specification still adheres strictly to the above principles. 
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B.3.1.5. Instantiating a Meta-meta-model 
In defining a particular viewpoint (meta-model), the model designer specifies the 
kind of elements, ports and relations that exist in any model, as well as the rules 
and constraints governing their use. The following need to be specified: 

• The set of composite element types, together with their properties. 

• The set of elementary element types, together with their properties. 

• The set of relation types between element types, together with their properties. 

• The set of port types of each element type  

• The rules constraining the kind of models that can be built, by constraining the 
usage of the above entities. 

The choice of these types and constraints is left to the model designer. A common 
question arising during such a design is whether some aspects of the system are to 
be modelled as elements or relations. It is often the case that, while in certain 
models of the system certain aspects are best described as being a part of the 
system, in other models they are best described as relations between parts. A 
sound indicator of whether something is to be an element or a relation is that 
elements are considered systems in their own right and can be further broken down 
into subparts, while relations are described through simple properties with no 
decomposition. 

B.3.2. Formal Notation 
A model can be described mathematically using set notation. This will help define 
and formalise the rules and conditions for inter-view associations in section B.5. A 
summary of the following terminologies and notations can be found in Appendix 
A and Appendix B respectively. 

A model M, of a certain view, V, is defined as an ordered 
set ( )βα ,,,,,,, ci RRGHPEM = , where 

• E is the set of elements of view V. 

• P is the set of ports of view V. 

• H is a binary relation from E to E, denoting the direct parenthood relationship 
between element nodes. Considering the parenthood relations between the 
element nodes, M is a directed tree, or an acyclic directed graph, where 
exactly one node called the root has indegree 0 while all other nodes have 
indegree 1 [13]. 
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( ){ }EpEcpcH ∈∧∈⊆ :,  

• G is a binary relation from P to E, denoting the containment relationship 
between elements and their interface ports.   

( ){ }EePpepG ∈∧∈⊆ :,  

• Ri is the set of interface relations, and α  is a mapping from Ri to ordered pairs 
of PP × , denoting the interfacing relationship between the ports of the parent 
element and the ports of its internal elements. 

( ){ }PpPpppRng ieie ∈∧∈⊆ :,α  

• Rc is the set of connection relations, and β  is a mapping from Rc to unordered 
pairs of PP × denoting the connection relationship between ports. 

{ }{ }PpPpppRng ∈∧∈⊆ 2121 :,β  

B.3.2.1. Further Notations 
• The direct children of element e, Edc(e), are defined as the set 

( ){ }HecEceEdc ∈∈= ,:)(  

• Element c is said to be a direct child of e if ( )eEc dc∈  

• Element p is said to be a direct parent of element c, edp(c), if ( ) Hpc ∈,  

Notation: ( ) ( ) Hpccep dp ∈⇔= ,  

• The parents of element e, Ep(e), are defined as the set  

({
( ) ( ) ( ) )}HpeHeeHee

EeeeEpeE

n

np

∈∧∧∈∧∈

∈∃∈=

,...,,

:,...,,:)(

211

21  

• Element n is said to be a parent of e if ( )eEn p∈  

• The children of element e, Ec(e), are defined as the set  

({
( ) ( ) ( ) )}HecHeeHee

EeeeEceE

n

nc

∈∧∧∈∧∈
∈∃∈=

,...,,
:,...,,:)(

121

21  

• Element n is said to be a child of e if ( )eEn c∈  

• Element e is said to a elementary, el(e), if ( ) ∅=eEdc  
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Notation: ( ) ( ) ∅=⇔ eEee dcl  

• Element e is said to be a root, er(e), if ( ) ∅=eE p  

Notation: ( ) ( ) ∅=⇔ eEee pr  

• Element e is said to be the containing element of port p, eg(p), if ( ) Gep ∈,  

Notation: ( ) ( ) Geppee g ∈⇔= ,  

• The ports of element e, Pe(e), are defined as the set 

( ){ }GepPpePe ∈∈= ,:)(  

• Port p is said to be an port of e if ( )ePp e∈  

• Port n is said to be the direct interfacing port of port p, pdi(p), if ( ) αRngpn ∈,  

Notation: ( ) ( ) αRngpnppn di ∈⇔= ,  

• Port n is said to be the direct interfaced port of port p, pde(p), if ( ) αRngnp ∈,  

Notation: ( ) ( ) αRngnpppn de ∈⇔= ,  

• The direct connected ports of port p, Pdc(p), are defined as the set 

{ }{ }βRngpnPnpPdc ∈∈= ,:)(  

• Port n is said to be a direct connected port of p if ( )pPn dc∈  

• The interfacing ports of port p, Pi(p), are recursively defined as the set 

( ) ( )( )ppPpppP diidii U=)(  

• Port n is said to be an interfacing port of p if ( )pPn i∈  

• The interfaced ports of port p, Pe(p), are recursively defined as the set  

( ) ( )( )ppPpppP deedee U=)(  

• Port n is said to be an interfaced port of p if ( )pPn e∈  

• The equivalent ports of port p, Peq(p), are defined as the set  

( ) ( ) ( )pPpPppP eieq UU=  

• Port n is said to be an equivalent port of p if ( )pPn eq∈  
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• The connected ports of port p, Pc (p), are defined as the set  

( )
( ) ( )

( )mPpP eqnPmpPnc
dceq ∈∈
∪∪=  

• Port n is said to be an connected port of p if ( )pPn c∈  

B.3.2.2. Model Properties 
For a valid model M, the following properties can be asserted: 

• H is a function relation since each child has only one direct parent. 

• G is a function relation since each port is only contained within one parent 
element. 

• Rngα  is a one-to-one function relation, since each direct interfacing port can 
have one, and only one, direct interfaced port and vice versa. 

• ( ) ( ) ( )( )igdpegie peepeRngpp =∈∀ ,, α  

• Rng β  is a many-to-many relation. 

• ( ) ( )( ) ( )( )2121 ,, peepeeRngpp gdpgdp =∈∀ β  

B.4. Case Study Models 

B.4.1. Design and Analysis Views 
The different system views can be categorised into design views and analysis 
views. A design view is used to model and document the design decisions that the 
developers have made, allowing also for the communication of information 
between the different developers. Example design views are: 

• Function Structure view, describing the functionalities of the system and the 
information flow that exists between them. 

• Function Behaviour view, describing the behaviour of the system 
functionalties. 

• Hardware Structure view, describing the physical components of the system, 
and their connections. 

• Cabling view, describing the cables of the system and the components they 
connect. 
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• Power Supply view, focusing on the power network of the system. 

Unlike design models, an analysis model does not document any design decisions 
made, but simply present specific aspects from the set of design models in a 
certain way that facilitates the performance of an analysis. So in principle, the 
same analysis can be performed given the collection of design models of the 
system, but an analysis view condenses the information by only revealing what is 
relevant for that analysis. Example analysis views are: 

• Timing Analysis view, focusing on the timing aspects of the system behaviour. 

• Safety Analysis view, focusing on the safety aspects of the system behaviour. 

Analysis models are extracted from the design views. The process can in many 
cases be performed automatically; however, there may be cases in which the 
analyst needs to take certain “analysis decisions” to perform valid analysis. This 
may be the case when the analysis technique used needs a simplified model of the 
system and the decision on how to simplify the design models cannot be 
automated and require the analyst’s choice. For example, in timing analysis, the 
analyst may need to decide which of the two modes of operations of a certain task 
to be considered for analysis, if the analysis technique at hand cannot handle 
different modes of operations. 

In most modelling tools, no distinction is made between these view types. Any 
analysis performed assumes an implicit analysis view, not accessible to the user. In 
few cases, such as [28], such a distinction is made, where the design data-flow 
model is first transformed into a fault tree model onto which safety analysis can be 
performed.   

In the following subsections, we exemplify our meta-meta-model using two design 
views relevant for the case study of section B.2, namely the Function Structure 
and Hardware Structure design views. The specification of associated views in 
section B.5.1.2 is a step towards the definition of analysis views. It remains 
however to ensure that the analyses discussed in section B.6 make use of these 
views.  

B.4.2. Function Structure 
This section defines an instance of the meta-meta-model - the Function Structure 
meta-model, used to specify the structure of the functions to be implemented in a 
system. Through the ACC case study, we discuss how this model is used to 
describe the structure of vehicle functionality. 

This meta-model is very similar to the traditional data flow diagram [14] adopted 
in many modern tools such as Matlab/Simulink [15], representing functions as 
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well as the required information flow between them. In this case study, we are not 
interested in a complete behavioural description of each function, and a structural 
specification suffices, since the analysis of interest is not concerned with the 
system’s dynamic behaviour. In addition, the links between functions are modelled 
as first-class elements of their own, and not simply as connection relations 
between functions, since the data flow between functions is of major concern 
during function allocation, and it hence becomes necessary to focus the modelling 
effort on these links.  

B.4.2.1. Elements 
Two types of elements are defined: functions and communication links. A function 
element designates certain functionality that given a certain input, produces a 
certain output. A communication link element designates a link that transports data 
between functions.  

These element types are arguably similar, taking certain input and producing 
output. The difference lies in the intention of each type, which is ultimately 
decided upon by the user. A communication link element differs from a function 
element in that its main purpose is the data transfer it performs, while its 
functionality becomes a side effect. The function element’s main purpose is to 
transform its input data to produce some output data, where the transformation is 
not seen as a transfer of data (See [16] for a detailed discussion of this issue). 

Both elements can be either elementary or composite. In describing simple 
systems, the elements can be elementaries, while composite elements can be used 
for more complicated descriptions. A composite function element designates an 
aggregation of other composite and elementary function and communication link 
elements, providing a certain interface to them. A composite communication link 
element designates an aggregation of other composite and elementary 
communication link elements (but not function elements), providing a certain 
interface to them. It is desired to restrict the content of communication links to not 
include function elements, since it is argued that communication links should only 
model communication between functions, and not contain any functionalities. 

B.4.2.2. Element Interface 
For function and communication link elements, port properties consist of a set of 
data items, where a data item consists of a name, direction (in, out, inout) and type 
(int, float, etc.). These data items designate a subset of the element’s internal data 
that are externally accessible to other elements.  
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Connection relations between ports indicate that the input data of one port is the 
output data of the other. Since ports of function elements can only connect to ports 
of communication link elements, a connection relation indicates that the connected 
port of a function exchanges its data via the connected communication link’s port. 
A port connected to more than one port indicates that the data on that port is 
transmitted through all of the connected ports. 

Interface relations indicate that the related port of the internal element is available 
for external interface. 

B.4.2.3. Constraints Summary 
For a valid model, the following constraints need to be satisfied: 

• A connection relation cannot be setup between two function elements. 

• The internal definition of a communication link element can only contain other 
communication link elements. 

• The data properties of related ports should have equal types. 

• For a connection relation, the direction of related ports should be opposite. 

B.4.2.4. ACC Function Structure Model 
Figure 21 illustrates the Function Structure model of the ACC functionality 
considered in this report. The model is hypothetical and does not necessarily 
match that adopted at Scania. The highest level in the hierarchical decomposition 
highlights the control nature of the function, where a control mechanism (Control) 
uses certain sensing of the environment (Sensing) to regulate certain actuators that 
control this environment (Actuation). In addition, user interaction is described in 
the Human Interface sub-function. 

• For the purposes of this study, the control algorithm can be simply broken 
down into a decision on the specific target to follow (Target Selection), a state 
machine (ACC State Machine) to decide on the mode of the function which is 
based on user inputs and environment conditions, and a control algorithm 
(Distance Control).  

• The control algorithm requires the following properties to be measured from 
the environment: the vehicle speed (Speed Sensing), vehicle yaw rate (Yaw 
Rate Sensing), and the set of nearby vehicles’ speeds and distances (Targets 
Sensing). Each such measurement requires some kind of filtering or signal 
processing. 
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Figure 21. A Function Structure model of the truck ACC functionality. 

Decomposition/ 
Internal Definition 



B.4. Case Study Models 

95 

• The user interaction functionality can be divided into receiving input from the 
user (Operator Inputs), ensuring the validity of any inputs (HMI Logic) and 
feeding back information from the system to the user via displays (Instrument 
Cluster). 

• The ACC functionality may actuate the Engine, Brake and Retarder of the 
truck. Only one of these may be enabled at a time, by requesting a certain 
vehicle speed to be achieved. Each such request is further broken down into 
lower level control processes (such as Speed Control Retarder, Retarder 
Control and Retarder Actuator). 

B.4.3. Hardware Structure 
This section defines an instance of the meta-meta-model - the Hardware Structure 
meta-model. Through the ACC case study, we describe how this model is used to 
describe the system’s hardware. 

The model of the hardware architecture needs to describe the major computational 
units as well as their connections through which data communication is possible. 
At the early architectural analysis of this case study, information about the 
physical location of these units and their connections is sufficient. The accurate 
physical dimensions are of no interest and we resort to a very simplified 
geometrical model, specifying approximate unit dimensions. A more accurate 
model such as that provided by a CAD model could also have been utilised. This 
is not adopted at this stage, since such models would not contribute to our aim in 
experimenting with multi-view modelling.  

B.4.3.1. Elements 
Two types of elements are defined: hardware units and cables. In describing 
simple systems, these elements can be elementaries, while composite elements can 
be used for more complicated descriptions. 

An elementary hardware unit element designates a physical block occupying a 
certain amount of space. It is simply modelled as a 3-D square box and its 
attributes describe its geometrical dimensions and position. An elementary cable 
element designates a single cable with a certain geometrical path. Its attributes 
describe its diameter, density, and its spatial path.  

A composite hardware unit element designates an aggregation of other units and 
cable elements, providing a certain interface to them. Note the abstract nature of 
these composites. A composite hardware unit is simply an abstract aggregation of 
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a number of physical hardware units and cables, and cannot be viewed as a 
physical unit itself. 

A composite cable element designates an aggregation of cables. A certain length 
of the cables share a common path, while the extremities can be separated, hence 
the end-points can have different physical locations. A composite cable is simply a 
hierarchical management of a number of independent cables which can, but not 
necessarily have to, be physically bundled together. 

B.4.3.2. Element Interface 
For hardware unit and cabling elements, port properties consist of a set of 
coordinate items, where a coordinate item specifies a spatial location at which the 
element can be connected to other elements. A port can be used to specify more 
than one connection point that can be physically situated in different locations.  

Connection relations between ports indicate that the ports’ coordinates are 
physically connected to each other. That is, the connection points of the two ports 
have the same spatial position. A port connected to more than one port indicates 
that all connected ports share the same spatial location. 

Interface relations indicate that the port of the internal element is available for 
external connections.  

B.4.3.3. Constraints Summary 
For a valid model, the following constraints need to be satisfied: 

• A connection relation cannot be setup between two ports of hardware unit 
elements. 

• The internal definition of a cable element can only contain other cable 
elements. 

• The connection point properties of two connected ports should have equal 
values. 

B.4.3.4. ACC Hardware Structure Model 
Figure 22 shows the complete Scania EE architecture needed to implement the 
complete functionality set of a truck. The hardware architecture is based on the 
Controller Area Network (CAN) protocol, with three buses separated by an ECU 
unit that also acts as a gateway between them. The gateway unit (COO) features 
some software functionality apart from the role of a gateway. ECUs with different 
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levels of system criticality are separated by being placed on different buses. The 
Red bus has ECUs with the highest criticality; ECUs on the Yellow bus are 
estimated to have intermediate criticality; and the ones on the Green bus have the 
lowest level of criticality.  
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Figure 22. Scania EE architecture 

Figure 23 illustrates a subset of the hardware architecture relevant for the case 
study considered in this report. This Hardware Structure model is hypothetical and 
does not necessarily match that adopted at Scania. Additional components such as 
the AICC hardware unit were added to suit the case study. Moreover, components 
such as sensors and actuators are also defined, providing a more complete 
hardware specification. The original model is restructured to provide a hierarchical 
representation. For example, the powertrain management system (PTMS) is 
introduced to group the engine and gearbox management systems (EMS and 
GMS). The naming of the ECUs is adopted from the original Scania architecture of 
figure 22. It would be desired to avoid such naming in the future, since the names 
are misleading and imply certain functionality, causing bias in the allocation 
process.  
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Figure 23. A Hardware Structure model of the truck ACC functionality. 

B.4.4. Requirements on View Integration 
By specifying the function and hardware architectures as the system’s two separate 
views, the allocation of functions to hardware units and communication links to 
cables becomes a design decision that lies in between these two views. This 
allocation step can obviously be treated in a view of its own, with its own model, 
but as it only deals with relationships between entities of other views this is not 
needed. Instead the two views can be integrated making use of inter-view 
relationships.  

The simplest and most common solution for integrating views is to flatten the 
hierarchical structure in either one or both views before inter-view relations are 
specified. Assuming that both of the views described in section B.3 are flattened, 
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leaf (elementary) functions would be allocated to leaf hardware units. This method 
obviously fails to make use of the complexity management advantage provided by 
the hierarchical models during the allocation step. A number of related 
shortcomings of the method can be identified: Since only leaf entities are related, 
the context of these, given by their respective hierarchies, is lost during the 
allocation process. Furthermore, it is difficult to make early coarse design 
decisions and it becomes necessary to have detailed knowledge about both the 
particular function and hardware elements by any person performing allocation. 
Also, if an allocation has been specified and a function is later further decomposed 
into sub-functions, during a refining design stage, the already existing allocations 
are lost. In summary, the inter-view allocation is unnecessarily affected by intra-
view design changes. All these arguments hold also for the case when only one of 
the two views is flattened. 

Forcing allocation to be done on a leaf level will make the allocation sensitive to 
changes in either of the two views. What would be desirable is to integrate the 
different views in a way such that they can both be developed as independently as 
possible, without affecting the validity of an already chosen allocation. 
Furthermore, since designers work on different levels of detail in potentially very 
large systems, one would like to allow allocation decisions to be made on an 
arbitrary level in the hierarchies. Any decision made would need to be reflected up 
and down the system hierarchies. This also means that the designer can start with 
performing rough allocations of a group of functions to a group of hardware units, 
and then refine the choice down the hierarchy.  

Another common approach to view integration is to setup the relationships 
between the different views based on an import mechanism, where the user in 
essence maps a complete model into another. Such a mechanism creates a 
precedence relationship between the views, where one view needs to be first fully 
developed before the other. In addition, any changes made to the source model are 
not reflected in the destination until the next transformation is performed, causing 
inconsistencies between the models. This approach inhibits the possibility of 
concurrent development between disciplines. 

One can also assume a primary view under which the other view is defined. For 
example, the hardware view can be first defined, and then the functions are 
distributed over the hardware structure, where each function definition is specified 
under the hardware units to which it is allocated. This in essence creates a single 
model structure for the system views. Again, precedence relationship between the 
views is created, inhibiting concurrent and independent development of the views.  

In summary, a model-based view integration environment should satisfy the 
following: 
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• One view – one model. Preserve the need for a single model for each view of 
the system since, in most cases, a model user needs only to concentrate on a 
single aspect at a time. 

• Allocation is inter-view and not intra-view information. It should therefore 
not lie in either view, but across views. 

• Preserve the hierarchy. The inter-view relationships between hierarchically 
decomposed views should be performed across the hierarchies of the views, 
independently of the two hierarchies. 

• Independence between the hierarchies. The choice of hierarchical 
decomposition within one view should be independent of that specified in 
another view. Since hierarchy is a tool used to reduce the complexity 
perceived by a given stakeholder, the use of this tool should not be 
compromised by the complexity needs of other stakeholders. 

• Concurrent development. A view development should be performed 
independently and concurrently of the other views. Each discipline should be 
able to work independently, yet support for a holistic view should be 
provided. No precedence should exist in the development of the views. 

B.5. Two-View Integration 
Similar to the argument in section B.3.1.2, the properties in the different views 
may be interdependent and hence the multi-view solution is accompanied by the 
need to setup relations between the views.  

To differentiate relations between properties within a view from relations across 
different views, we refer to the latter as associations between properties, while 
relations hereafter only refer to the former.  

This section discusses the mechanisms needed to establish these associations 
between views for the particular case of integrating a Function Structure with a 
Hardware Structure view. While these mechanisms are not general enough to be 
adopted for any kind of inter-view associations, it is believed that they can be 
easily reused for the mapping of system functionality to the software architecture, 
or software to hardware allocation. Essentially, the mechanisms can be generalised 
with little effort to any inter-view information that implies a “implemented by” or 
“allocated to” relationship. It remains however to test this claim through other case 
studies in the future. 

Setting associations between properties is practically performed through property 
placeholders, namely elements and ports. Section B.5.1 presents such relationships 
between elements, and section B.5.2 deals with relationships between ports. 
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B.5.1. Element Associations 
Associating an element in one view to another element in a second view has 
different implications, depending on the particular views and elements involved. 
Concerning the case study, the following rules apply when associating elements 
between the Function Structure and Hardware Structure views: 

• Function and communication link elements from the Function Structure view 
can be associated with hardware unit elements from the Hardware Structure 
view, indicating that the functional element is physically implemented in that 
unit. 

• Communication link elements can be associated with cable elements, 
indicating that the communication mechanism designated by the link is 
performed through the cable. 

Associations can be specified between any function and hardware elements, 
irrespective of whether they are composite or elementary. 

Note that an association of a function, f, to a hardware unit, h, does not necessarily 
mean that the complete function f is implemented on the complete unit h, nor that f 
cannot be implemented by other units as well. Instead, the association simply 
implies that some of the f functionality is implemented on some of h’s hardware. 
The remaining f functionality may (or may not) be implemented by other hardware 
units; similarly, the remaining h hardware may (or may not) implement other 
(parts of) functions. This interpretation is important when understanding the 
element association rules in the following subsections. 

When performing design decisions across views, designers would at a given time 
want to focus on specific parts of the system, at a certain level of abstraction, 
without being concerned with more detailed design decisions. For example, a 
designer may wish to specify that the brake system is to be implemented on a 
certain group of processors, without needing to specify in detail which specific 
brake sub-functions is to be allocated to which processor. Such a decision can be 
further refined by others or at a later stage. Conversely, the more detailed 
allocation design decision of a particular function to a processor must be reflected 
to the high level functions containing it.  

In addition, to satisfy the requirement that views should be developed 
independently, it is necessary to allow associations between elements of different 
views to be made across the hierarchy. In other words, an element in a certain 
view, at a certain depth in its hierarchy is not restricted to be associated to 
elements in the same depth in another view, instead it can be associated to any 
valid element throughout the hierarchy. 
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However, consistency between the high level and the lower level design decisions 
needs to be maintained. This can be realised by specifying that: A function 
implemented on a certain hardware unit means that it is also implemented by 
hardware units containing this hardware unit. Conversely, a unit implementing a 
certain function, means that this unit also implements (part of) functions that 
contain this function.  

The following subsections discuss how such cross-hierarchy associations ought to 
be interpreted and managed in order to satisfy these needs. 

B.5.1.1. Associated Elements 
We define the following, for associations between elements from view Vx to view 
Vy: 

• The direct associated elements of element ex in view Vy, Ad(ex, Vy), is defined 
as the set of elements in Vy, directly associated by the user on element ex. 
Direct associations are bidirectional meaning that if ex is associated to ey, then 
ey is also associated to ex. See section B.5.1.3 for conditions for such a valid 
set. 

• The inherited associated elements of element ex in view Vy, Ai(ex,Vy), is 
defined as the set of topmost direct associated elements of ex’s children, 
excluding those which have already been defined, or generalised, through the 
direct associated elements of ex, Ad(ex, Vy). 
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• The associated elements of element ex in view Vy, Aa(ex,Vy), consists of the 
union of its direct associated elements and its inherited associated elements. 

( ) ( )yxdyxiyxa VeAVeAVeA ,,),( U=  

Note that the above definitions are specified so that ( ) ( ) ∅=yxiyxd VeAVeA ,, I . 

The associated elements, Aa(ex,Vy), can be interpreted as the result of a filter 
applied onto the associated view Vy, in which only the elements associated to ex 
and additional associations specified at the more detailed levels are considered. 

In figure 24, the COO hardware unit is directly associated to the Main Controller 
and Operator Inputs functions, 
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{ }Inputs Operator,Controller Main)(COO,VA FSd = ; where VFS denotes the 
Function Structure view. 

 

Figure 24. The direct associations of the hardware unit COO, as well as some of 
its child units ECU, Clutch Sensor and Throttle Sensor. The associations from 

ECU to ACC State Machine and Distance Control specialise that specified to Main 
Controller. 

Furthermore, the sub-function HMI Logic is associated to the ECU unit of COO. 
The association between the ECU and HMI Logic indirectly implies that the COO 
unit also implements HMI Logic. HMI Logic is said to be an inherited associated 
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element of COO, { }LogicHMIVCOOA FSi  ),( = . In integrating these design 
decisions from the various levels, the COO is to (partly) implement the Main 
Controller and Operator Input functions, as well as HMI Logic, 

{ },HMI LogicInputs Operator,Controller Main)(COO,VA FSa = . 

In refining the above design decisions, the direct association between COO and 
Main Controller can be further refined by directly associating the ECU hardware 
unit to the ACC State Machine and Distance Control functions. This association 
implies a more detailed specification of the allocation of the Main Controller’s 
functionality to specific hardware units. The associated functions are not 
considered as inherited associations to COO, since they specialise an already 
existing association, namely the parent Main Controller. In a similar refinement 
step, Clutch Pedal Sensing and Throttle Pedal Sensing are associated to the Clutch 
Sensor and Throttle Sensor sub-units respectively.  

Finally, the allocation of functions to COO is not considered complete in this case 
since the allocations to its remaining sub-units (the sensor cables) still need to be 
specified (see section B.5.1.7 for a discussion on completeness conditions).  

As a consequence of the above association definitions, if ex is associated (directly 
or indirectly) with the elements e1, e2, …. en, then ex’s children will in effect only 
be associated with e1, e2, …. en, or any of their children. As soon as a child of ex is 
associated with an element that is not in this set, this element also becomes an 
associated element of ex (unless its parent already is), and hence the above rule still 
applies. In other words, the children of ex can either specialise (refine) the parent’s 
associations, or extend them; the propagation of the extended associations up the 
hierarchy have the same effect as specialisation. 

Allocation is strongly related to the design process and can of course be carried 
out in different ways. The above mechanisms support a process-independent 
allocation practice. By placing certain restrictions, the allocation practices can be 
constrained. For example, disallowing the possibilities for association extensions 
through the sub-systems enforces a top-down approach, where sub-system design 
can only refine design decisions specified at the higher level. 

Given the above definitions, in order to deduce the Ai(ex, Vy) set, one needs to 
consider the Ad set of all the children of ex down the hierarchy. The Ai set of the 
children can be ignored since these will be reflected anyway by other children 
down the hierarchy. However, as specified in section B.3.1.4, it would be desired 
to establish Ai(ex, Vy) by only considering ex’s direct children. 

As proved in Appendix C.1, Ai(ex, Vy) can be redefined in terms of ex’s direct 
children only as follows: 
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B.5.1.2. Associated Views 
As argued in this paper, a system model consists of a set of views. An element in 
the system hierarchy is also considered a system of its own, and hence its 
description would need to consist of a set of views. One such view is its internal 
view which consists of its composing elements. The other views are constructed 
from the associations made to that element.  

We define the associated view Vy of an element ex in view Vx, to consist of the 
elements from view Vy that are associated to element ex (taken across the whole 
hierarchy of Vy). The elements from view Vy are also said to be in the Vy view of 
ex. An associated view of the element is a subset of that view for the complete 
system since the element is only part of the system. 

The views of an element are hence its internal view, as well as the set of associated 
views. This reinforces our concept of system decomposition into small systems, 
which themselves have multiple views. The designer of that element need only to 
look at these views for the analysis of the current status of the design since they 
summarise all the decisions made so far. However, in extending or specialising 
these decisions, the designer needs access to the complete views. 

Considering the earlier example shown in figure 24 and assuming that COO (or 
one of its children) is further associated with the Clutch Pedal, Throttle Pedal and 
the User Inputs (of both Truck and Human Interface functions) communication 
links, figure 25 illustrates the Function Structure associated view, as well as the 
internal view (Hardware Structure) of COO. 

Given the independence of the views, a user can choose to focus on a single view 
of the whole system and ignore all references made to other views, giving a single 
perspective of the whole system. On the other hand, a user can take an element 
with all its internal views and treat it as a complete system with many views. 

The relations between the associated elements are also included in the associated 
view. If two ports of two elements that are in the associated view of ex, have a 
connection relation between them, then this connection relation is also in the 
associated view Vy of ex. In the example of figure 25, the direct connection 
relations between the ports of Operator Inputs with Clutch Pedal and Throttle 
Pedal communication links are included in the associated view. Note that 
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connections between ports can be indirect, which is the case when the ports belong 
to elements in different parts of the Vy hierarchy. For example, in figure 21, the 
indirect connection between the port of Main Controller and the User Inputs 
communication link is included in the associated view. 

 

Figure 25. The views of the COO hardware unit, consisting of its internal 
(Hardware Structure) view, as well as the associated Function Structure view. 

In the case where there exists a connection relation between two ports and only 
one of the ports is in the associated view of an element ex, then it is necessary to 
indicate that such a connection is missing. This is shown by connecting the 
existing port to an associated view interface port, to indicate that the port needs to 
connect to other external ports that do not exist in the current (associated) view. In 
figure 21, an Operator Inputs’s port is connected to the Brake Pedal 
communication link, yet Brake Pedal is not in the associated view, hence the port 
is shown as an associated view interface port  in figure 25. 

The associated view ought to be automatically constructed. Such a mechanism 
allows a developer to view information in alternative views from its own 
perspective, defined by its source view (Vx), at a given point in the hierarchy. Note 
that the elements, ports and relations shown in the associated view Vy of an 
element ex are a duplication from the complete view Vy. Changes to these elements 
are reflected in the complete view Vy. Alternatively, an associated view is only 
used for visual purposes, and no information ought to be specified in that view. 
The elements, ports and relations are then considered as ‘clones’ of the real ones. 

Decomposition/ 
Internal Definition 

Associated View  
(Function Structure) 
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B.5.1.3. Validating Element Associations 
Naturally, not all associations between elements in different views are permitted. 
Certain restrictions, which depend on the currently established associations, are 
imposed.  

For element ex from view Vx to be directly associated to element ey in view Vy, the 
following conditions need to be satisfied: 

• ey is not a child of one of the direct associated elements of one of ex’s children. 

• Neither ey, nor any of ey’s parents or children is already directly associated 
with ex. 

The first condition ensures that associations are specialised down the hierarchy, 
and that associations do not ‘cross-back’ up the hierarchy. Referring to figure 24, 
given that COO is directly associated to Operator Inputs, it is not possible to 
specify a direct association between ECU (a child of COO) and Human Interface 
(Operator Input’s parent). 

The second condition ensures that direct associations cannot be made to an 
element as well as its children or parent. Referring to figure 24, given that COO is 
directly associated to Operator Inputs, it is not possible to specify a direct 
association between COO and Pedals nor Clutch Pedal Sensor (Children of 
Operator Inputs down in the hierarchy), nor Human Interface (Operator Input’s 
parent). 

Formally, the conditions are represented as follows: 
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As shown in Appendix C.2, this can be simplified to  
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Direct associations are bidirectional meaning that if ex can be associated to ey, then 
ey should also be associated to ex. To ensure that this condition is satisfied, the 
validity check becomes: 
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B.5.1.4. Associating Elements 
It may sometimes be desired to find out what elements in view Vy have element ex 
as an associated element (direct or inherited). An example of such a need is found 
in the analysis of section B.6.1.3. We define the associating elements of ex in view 
Vy, Aai(ex, Vy), to be such a set. Mathematically, Aai(ex, Vy) is represented as 
follows: 

( ) ( ){ }xyaxyyyxai VeAeEeVeA ,:, ∈∈=  

Where Ey is the set of elements in view Vy. 

Recall that if ey is an associated element of ex, it is not necessarily the case that ex 
is an associated element of ey, unless ex and ey are directly associated.  

Now, rather than searching the entire set of element in Vy, we know that the 
associating elements of ex, Aai(ex, Vy), are constrained to the following subset: 

• The elements that have ex as a direct associated element, Ad(ex, Vy)  (which are 
the direct associated elements of ex due to the bidirectionality of element 
associations). 

• For each of the above direct associated elements, their parents up the hierarchy 
that are also associated to ex. That is the parents up until, but not including, 
the parent that is associated to a parent of ex. 

The associating elements  of ex in Vy, Aai(ex, Vy), can hence be rewritten as:  
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For example, in figure 24, the associat ing elements of Clutch 
Sensor, ), ( FSai VSensorClutchA , consists of the Clutch Pedal Sensing element (its 
direct associated element), as well as the Pedals element (the direct parent of 
Clutch Pedal Sensing). However, the parent Operator Inputs is not an 
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associating element to Clutch Sensor, since it is associated to the parent of 
Clutch Sensor, namely COO. 

B.5.1.5. Existence in the Associated View 
If neither the element ex, nor any of its children, have been associated to any 
element in view Vy, element ex is defined to be not exist in associated view Vy, 
since from the perspective of view Vy, element ex simply does not exist. 

Element ex is said to be exist  in associated view Vy, axv(ex, Vy), if 

( )( ) ( ) ( )( )∅≠∈∃∨∅≠ ydxcyxd VnAeEnVeA ,:,  

As shown in Appendix C.3, this is equivalent to  

( ) ∅≠yxa VeA ,  

Notation: ∅≠⇔ ),(),( yxayxxv VeAVea  

For example, consider the association between Target Sensing and the AICC 
hardware unit shown in figure 26, noting that none of the children of Target 
Sensing are further associated. In this case, Signal Processing is considered to not 
exist  in Hardware Structure associated 
view, ), ( HSxv VProcessingSignala¬ , since it is not associated to any elements in 
VHS, ( ) ∅=HSa ,VProcessingSignal A  (VHS denotes the Hardware Structure view). 

Note that if an element ex does not exist  in associated view Vy, then none of 
its children can either, since otherwise the associated elements of ex would not 
have been empty in the first place. 

( )yxvxcyxxv VnaeEnVea ,:)(),( ¬∈∀⇒¬  

B.5.1.6. Elementary in Associated View 
If the associations of a given element ex are not further specified by its children, 
then the element is treated as elementary with respect to the associated view Vy, 
since it is not possible to further specify the details of the internal elements’ 
associations. In other words, from the perspective of the associated view Vy, the 
internal elements of ex, whether ex is elementary or composite, are not relevant.  

We define an element ex to be elementary in associated view Vy, alv(ex, Vy), if none 
of the children of ex is associated with any elements in view Vy (in other words, 
none of the children exist  in the associated view Vy), yet ex has associations 
with at least one element in Vy. 
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( ) ( )( ) ( ) ∅≠∧¬∈∀ yxdyxvxc VeAVnaeEn ,,:  

As specified in section B.3.1.4, it would be desired to define alv(ex, Vy) in terms of 
the direct children of ex. The above condition can be rewritten as: 

( ) ( )( ) ( ) ∅≠∧¬∈∀ yxdyxvxdc VeAVnaeEn ,,:  

Since ( ) ( )( ) ( ) ( )( )yxvxdcyxvxc VnaeEnVnaeEn ,:,: ¬∈∀≡¬∈∀  as shown in 
Appendix C.4. 

 

Figure 26. Element association between the Target Sensing element and the 
AICC hardware unit. 

Note that the definition of ex as elementary in associated view is only 
appropriate in the case where ex exists  in associated view Vy.  

Notation: ( ) ( )( ) ( )( )∅≠∧¬∈∀⇔ yxdyxvxdcyxlv VeAVnaeEnVea ,,:),(  

In figure 26, the element Target Sensing is considered to be elementary in 
Hardware Structure associated view, ),( HSlv V SensingTargeta , since none 
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of its children are further associated. On the other hand, in figure 24, the element 
Operator Inputs is considered to be not elementary in Hardware Structure 
associated view, )Inputs,V(Operator a HSlv¬ , since some of its children, such 
as Clutch Pedal Sensing, are further associated. 

B.5.1.7. Completeness Condition 
The element association validation checks (section B.5.1.3) ensure that no invalid 
associations between elements are introduced into the model. However, a given set 
of valid associations is not necessarily complete, and completeness needs also to 
be ensured before any analysis of models can be performed. See [17] and section 
B.6 in this report for a discussion on correctness and completeness. 

A feature of the approach described in this report is that associations between 
elements from different views need not be performed all the way down to the 
elementary level. For example, in the case where a composite function is to be 
completely implemented within one hardware unit (composite or elementary), it is 
sufficient to specify the association between the function and the implementing 
hardware unit. All sub-functions are implicitly implemented by the same unit. In 
the case where the hardware unit is a composite, one does not know exactly which 
sub-unit is to implement which sub-function. This can be considered as a 
conscious design decision, where, for example, more detailed design is performed 
externally by a sub-contractor. Nevertheless, the specifications can be considered 
complete for this function. However, if the association is further refined by one of 
the sub-functions, it becomes necessary to further specify the allocation of the 
other sibling sub-functions for a complete specification.  

In the example of figure 24, the allocation to the COO hardware unit is specified, 
yet only some of its sub-units (ECU, Clutch Sensor and Throttle Sensor) further 
specialise this mapping while the mapping of the sub-cables (Sensor Cable 1 and 
Sensor Cable 2) is not specified. This is hence considered an incomplete allocation 
specification of COO, and needs to be dealt with before any analysis can be 
performed. A completion of the specification can for example be performed by 
allocating the Clutch Pedal and Throttle Pedal Communication links (direct 
children of Human Interface) to these sensor cables. 

So, while associations established at the children of an element are appropriately 
inherited upwards in the hierarchy, associations established at the element can be 
regarded as requirements on further refinement or specifications of these 
associations by the children. If the latter associations are not established, the set of 
associations may be considered incomplete since it cannot be worked out how to 
further specify the associations on the children elements.  
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A prerequisite to be able to check for the completeness of associations of an 
element ex in view Vy, is that the element ex exists  in associated view Vy, 
axv(ex, Vy). Furthermore, the condition for completeness differs, depending on 
whether ex is elementary in associated view Vy or not. 

If ex is elementary in associated view Vy, then ex is defined to be completely 
associated in Vy, aca(ex, Vy). 

If ex is not elementary in associated view Vy, ex is defined to be 
completely  associated  in Vy, aca(ex, Vy), if the following conditions are true: 

• Each of ex’s direct children exists  in associated view Vy. 

• For each of ex’s associated elements, ( )yxaa VeAe ,∈ , at least one of ex’s direct 
children has ea, or any of its children, as an associated element. 

The first condition ensures that if one of the children of ex exists  in associated 
view Vy (which is the case since ex is not elementary in associated view 
Vy), the other children need also to exist  in associated view, since it has been 
established that further refinement of ex’s associations need to be performed, and 
hence we need to specify each of the children’s role in this refinement. The 
example given above illustrates the need for this condition. 

The second condition ensures that any association specified for element ex is 
further refined by its children. Considering the example of figure 24, and assuming 
that the sub-units Clutch Sensor and Throttle Sensor are not associated to Clutch 
Pedal Sensing and Throttle Pedal Sensing, then COO is not considered 
completely  associated, since its associated element Operator Inputs would 
not have been specialised by any of COO’s direct children. 

Note that the conditions above are based on the direct children of element ex. A 
precondition for these conditions is that these children have complete associations 
themselves, which can be specified as a third condition for complete associations. 

Formally, if ex is not elementary in associated view Vy, ex is said to be 
completely  associated  in Vy, aca(ex, Vy), if: 
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Note that the association completeness of ex, does not imply the association 
completeness of ex’s associated elements, Aa(ex,Vy). It may be desired to reinterpret 
the definition of complete association to include the completeness of its associated 
elements as well. In this case, the following condition is added: 
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The condition becomes: 
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B.5.1.8. Refined Associated Elements 
The associated elements set of an element ex is based on the direct associations 
established on that element by the user, as well as any associations inherited from 
ex’s children.  

The associated view, Vy, of element ex based on these associated elements, Aa(ex, 
Vy), provides a fairly high level description of the associations since any refined 
associations from the children of ex are not apparent in this view, in the case where 
a more general association exists. 

Given that the children’s associations actually refine the associations of ex, it may 
be of interest to determine the most refined set of associated elements of ex. In 
many cases, only certain children of a specified associated element are effectively 
associated to ex (as specified by its children), while other children are associated to 
another element. This set is referred to as the refined associated elements of ex. It 
differs from associated elements in that it provides a finer grain set of associated 
elements. An associated view based on this refined associated set defines a more 
detailed specification than the associated view as specified in section B.5.1.2. 

A prerequisite for establishing the refined associated elements of ex in view 
Vy, is that ex is completely associated in Vy, aca(ex, Vy). Furthermore, the 
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refined associated elements set of ex differs depending on whether ex is 
elementary in associated view Vy or not. 

If element ex is elementary in associated view Vy, the refined associated 
elements of ex in Vy, Ara(ex, Vy),  is defined as ex’s associated elements. 

( ) ( )yxayxra VeAVeA ,, =  

If element ex is not elementary in associated view Vy, the refined 
associated elements of ex in Vy, Ara(ex, Vy), is defined as the union of the 
refined associated elements of ex’s direct children, excluding those which 
have at least one child in the set as well.  
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For example, in figure 24, assuming that COO is completely associated as 
suggested in section B.5.1.7, the refined associated elements of the COO 
hardware unit, ),( FSra VCOOA , consists of Clutch Pedal Sensing, Throttle Pedal 
Sensing, ACC State Machine, Distance Control and HMI Logic elements. More 
elements belong to this set since COO and its children are associated to elements 
not shown in figure 24. 

B.5.2. Port Associations 
Similar to associations between elements, associations can be specified between 
the ports across the views. Concerning the case study, in the allocation of 
functions to hardware units, the association of a function port to a hardware port 
indicates that the functional communication occurs physically through that 
hardware port.  

For a given element, the association between ports of different views occurs 
between the element’s ports (its interface definition) and the interface ports of the 
associated view (described in section B.5.1.2). For example, in figure 27, the COO 
hardware unit has three ports in its interface definition connecting to each of the 
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CAN buses, while its interface in the associated Function Structure view consists 
of 13 associated view interface ports. So, the function ports of its 
associated functions (such as port p3 of element Operator Inputs and port p2 of 
element HMI Logic) need to communicate with their connected ports via one of 
the three hardware ports. 

 

Figure 27. A reproduction of figure 25, highlighting certain port names in the 
associated view of COO, such as p2 of the HMI Logic element. 

The associated ports of port px in view Vy, Ap(px, Vy), is defined as the set of 
associations to ports in Vy, directly specified by the user on port px. Port 
associations are also governed by certain validation and completeness rules. These 
will be discussed in detail in sections B.5.2.2 and B.5.2.3. In addition to these 
rules, the following constraint applies for a port pf (from the Function Structure 
view) to be associated to port ph (from the Hardware Structure view): 

• pf can be associated to a maximum of one port from the Hardware Structure 
view. However, ph could be associated to any number of ports from the 
Function Structure view, indicating that more than one communication occur 
through that same port ph.  

B.5.2.1. The Associated View Interface 
As discussed in section B.5.1.2, when viewing the associated view Vy of an 
element ex, the relations between the associated elements are also included in Vy. If 
two ports of two elements that are in the associated view of ex, have a connection 
relation between them, then this connection relation is also in the associated view 
Vy of ex.  

In the case where there exists a connection relation between two ports and only 
one of the ports, py, is in the associated view Vy of ex, then py is said to be not all 
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connected ports associated in ex. To indicate that py needs to connect to other 
external ports that do not exist in the associated view Vy of ex, py is connected to an 
associated view interface port . If all the connected ports of py are in the 
associated view, then py needs not interface to any element not associated to ex, 
and hence needs not be related to such a port.  

We define a port py to be al l  connected ports  associated in element ex, 
acpa(py, ex), if all its connected ports, Pc(py), (or one of their equivalent ports) have 
their containing element associated to ex. 

It suffices for one equivalent port of each of the connected ports of py to exist in 
associated view, since a connection to this port implies a connection to all its 
equivalent ports. A single port from a set of equivalent ports can exist in 
associated view, given that an associated view cannot contain an element as well 
as its parent or child element. 

Notation: ( ) ( ) ( ) ( )( )yxaegceqeyccxycpa VeApepPppPpepa ,::),( ∈∈∃∈∀⇔  

For example, considering the associations in figure 27, port p2 of element 
Operator Inputs, p2,OperatorInputs, (we denote port px of element y as px,y) is an al l  
connected ports  associated in element COO, ( )COOpa putsOperatorIncpa ,,2 , since 
all its connected ports, (the port of the communication link Throttle Pedal) have 
their elements also associated to COO. On the other hand, port p3,OperatorInputs is not 
an al l  connected ports  associated in element 
COO, ( )COOpa putsOperatorIncpa ,,3¬ , since a connected port of p3,OperatorInputs, the port 
of the communication link Brake Pedal (see figure 21), does not have its element 
associated to COO. 

A precondition to be able to define, acpa(py, ex), is that the containing element of py 
is an associated element of ex. 

( ) ( )yxayg VeApe ,∈  

B.5.2.2. Port Association Validity Check 
In this section, we will incrementally deduce the validity condition for port 
associations. 

First, for a port py (of containing element ey) to be associated to port px (of 
containing element ex), the following conditions need to be satisfied: 

• ey is an associated element of ex. 

• py is not an al l  connected ports  associated in the element ex. 
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The first condition simply ensures that the second condition can be validly 
performed, as required in section B.5.2.1. The second condition ensures that the 
interface ports of element ex are associated to ports that need to connect to other 
external ports that do not exist in associated view Vy of ex. An all  connected 
ports associated port needs not interface to any element not associated to ex. 

Formally, the condition is represented as follows: 

( ) ( ) ( )( )xgycpayxayg pepaVeApe ,, ¬∧∈  

For example, considering the associations in figure 28, port p2,ecu can be associated 
to port p2,DistanceControl, since:  

• The containing element of p2,ecu is associated to the containing element of 
p2,DistanceControl, ( )HSa ,VControl DistanceAECU ∈ ;  

• And, p2,ecu is not an al l  connected ports  associated in element Distance 
Control, ( )Control Distancepa ecucpa ,,2¬ . This is true since the connected port 
of p2,ecu, p1,SensorCable2, is not in the associated view of Distance Control. 

Similar to element associations, port associations are bidirectional meaning that if 
py can be associated to px, then px should also be associated to py. To ensure that 
this condition is satisfied, the validity check becomes: 

( ) ( ) ( )( )( )
( ) ( ) ( )( )( )ygxcpaxyaxg

xgycpayxayg

pepaVeApe

pepaVeApe

,,

,,

¬∧∈∧

¬∧∈
 

In the example above, with a similar argument, we can deduce that port 
p2,DistanceControl can also be associated to port p2,ecu. Hence, the association between 
p2,ecu and p2,DistanceControl remains valid. 

Note however that, since elements are associated and inherited across the various 
hierarchies, it often occurs that element ey is associated to ex, yet ex is not 
associated to ey. Hence, guaranteeing the condition for py is no guarantee for px. 
The condition may not even be possible to test for px if port px’s element (ex) is not 
associated to ey. 

For example, COO is in the associated view of Control by inheritance.  Hence 
p3,coo can be associated to p1,Control since 

( ) ( ),ControlpaControl,VACOO ,coocpaHSa 3¬∧∈ . However, p1,Control cannot be 

associated to p3,coo since ( )FSa COO,VAControl∉ . Hence, according the condition 
above, p3,coo cannot be associated to p1,Control and vice versa. 



Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems 

118 

 

Figure 28. A reproduction of relevant parts from figure 24, focusing on specific 
direct associations of the hardware unit COO, and its child unit ECU. 

The above example illustrates the case where port py is not an al l  connected 
ports  associated in ex (satisfying the first part of the condition), but px is not 
even associated to ey (failing the second part of the condition). Hence, px and py 
cannot be associated.  

But, in many cases, there may exist an equivalent port of px, px/e, which is not al l  
connected ports  associated in the associating element ey. In this case, py 
should be associated to px, while px/e is associated to py. 

To allow such associations, the validity check changes to become: 

( ) ( ) ( )( )
( )

( ) ( ) ( )( )ygexcpaxyaexg

xeqex

xgycpayxayg

pepaVeApe

pPp

pepaVeApe

,,           

:

,,

//

/

¬∧∈

∈∃∧

¬∧∈

 

With this new condition, and considering the earlier example, p3,coo can be 
associated to p1,Control (as argued earlier). In addition, the equivalent port of 
p1,Control, p2,MainController, can now be associated to p3,coo 
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since ( ) ( ),COOpaCOO,VAollerMain Contr oller,MainContrcpaFSa 2¬∧∈ . Hence, p3,coo 
is associated to p1,Control, and p2,MainController is associated to p3,coo. 

It is important to remember that upon satisfying this condition, py gets associated 
to px, while px/e (and not px) is associated to py. In summary, the bidirectionality of 
associations is extended to allow that if a port py is associable to px, then px, or one 
of its equivalent ports, can be associated to py. This extension should be acceptable 
since equivalent ports, by definition, are representations of the same properties. 

In addition to these rules, equivalent ports that will potentially inherit the 
associated ports impose further validity conditions that need to be met. This is 
further discussed in the following subsection. 

B.5.2.3. Port Association Inheritance 
Equivalent ports must have the same set of associated ports and the rules of 
inheritance similar to those specified for port properties apply. That is, port 
associations should be defined on only one port among the set of equivalent ports 
in order to avoid definition duplications and hence inconsistency problems. 

In order to guarantee that for each equivalent port py/e of py that px or one of its 
equivalent ports forms a valid association, the validity check becomes: 

( ) ( ) ( )( )
( )

( ) ( ) ( ) ( )( )( )
( )
( ) ( ) ( )( )
( )

( ) ( ) ( ) ( )( )( )eygexcpaxeyaexgyeqey

xeqex

ygexcpaxyaexg

xeqex

exgeycpayexaeygxeqex

yeqey

xgycpayxayg

pepaVeApepPp

pPp

pepaVeApe

pPp

pepaVeApepPp

pPp

pepaVeApe

/////

/

//

/

/////

/

,,:              

:

,,              

:

,,:              

:

,,

¬∧∈∈∃

∈∀∧

¬∧∈

∈∃∧

¬∧∈∈∃

∈∀∧

¬∧∈

 

Continuing the previous example, port p3,ecu (an equivalent port of p3,coo) can 
inherit the port association of p2,MainController to p3,coo, where an equivalent port of 
p2,MainController, namely p2,DistanceControl, is associated to p3,ecu by inheritance, since 

( ) ( ),ECUpaECU,VA ControlDistance ceControl,DiscpaFSa tan2¬∧∈ . 

Note that the inheritance (and hence the application of the inheritance condition) is 
only applicable to equivalent ports whose element exist  in associated view, 
since from the associated view perspective, elements that do not exist cannot 
inherit. The final validity condition becomes: 
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( ) ( ) ( )( )
( ) ( )( )

( ) ( ) ( ) ( )( )( )
( )
( ) ( ) ( )( )
( ) ( )( )

( ) ( ) ( ) ( )( )( )eygexcpaxeyaexgyeqey

yexgxvxeqex

ygexcpaxyaexg

xeqex

exgeycpayexaeygxeqex

xeygxvyeqey

xgycpayxayg

pepaVeApepPp

VpeapPp

pepaVeApe

pPp

pepaVeApepPp

VpeapPp

pepaVeApe

/////

//

//

/

/////

//

,,:                

:,:

,,               

:

,,:               

:,:

,,

¬∧∈∈∃

∈∀∧

¬∧∈

∈∃∧

¬∧∈∈∃

∈∀∧

¬∧∈

 

In the above example, the containing element of p3,ecu, (ECU) exists  in the 
Function Structure associated view, and hence p3,ecu can inherit the 
association to p2,DistanceControl. 

As an example of an invalid port association, we return to the association between 
port p2,ecu and p2,DistanceControl discussed earlier in the previous subsection. Given the 
new port association validation condition, port p2,DistanceControl can no longer be 
associated to p2,ecu since for an equivalent port of p2,DistanceControl, p2,MainController, there 
exists no equivalent port of p2,ecu, to which p2,MainController can be associated by 
inheritance. As a consequence, port p2,ecu cannot be associated to p2,DistanceControl 
either. 

B.5.2.4. Associable Ports 
In summary, we define the associable ports of px in view Vy, Aap(px, Vy), to be the 
set of ports in Vy that satisfy the port association validity check. These ports can 
naturally only belong to containing elements that are associated to px’s containing 
element. Formally, Aap(px, Vy) is represented as follows: 

( )( )
( )

( ) ( ) ( )( )
( ) ( )( )

( ) ( ) ( ) ( )( )( )
( )

( ) ( ) ( )( )
( ) ( )( )

( ) ( ) ( ) ( )( )( )}eygexcpaxeyaexgyeqey

yexgxvxeqex

ygexcpaxyaexg

xeqex

exgeycpayexaeygxeqex

xeygxvyeqey

xgycpayxayg

yepeAeyyxap

pepaVeApepPp

VpeapPp

pepaVeApe

pPp

pepaVeApepPp

VpeapPp

pepaVeApe

ePpVpA
xgay

/////
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//

/

/////
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,,:       

:,:

,,      

:

,,:      

:,:

,,

:),(

¬∧∈∈∃

∈∀∧

¬∧∈

∈∃∧

¬∧∈∈∃

∈∀∧

¬∧∈
⎩
⎨
⎧ ∪∈=

∈
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B.5.3. Maintaining Model Integrity 
The following actions can be performed on a model by the user: 

• Create and delete elements 

• Create and delete ports 

• Create, delete and modify properties 

• Create and delete relations (interface or connection) 

• Create and delete associations (element or port) 

Validity checks (such as those described in sections B.5.1.3 and B.5.2.2) prevent 
any action from invalidating the model. In case the user wishes to perform such a 
violating action, certain modifications need to be performed prior to the originally 
intended modification.  

The port and element association validity checks guarantee the model validity 
when attempting to create a new association. This however does not guarantee the 
validity of established associations at all times. 

For example, while the port association validity check prevents invalid port 
associations, we have not considered other actions that the user can perform that 
makes existing port associations invalid. In a way, it is so far assumed that port 
associations are performed once all elements, ports, port relations and element 
associations are already established, and none will be modified in the future. Such 
a restriction on the order of performing actions within a model is not desired. 

According to the port validity check in section B.5.2.2, a port py (of containing 
element ey) can no longer be associated to port px (of containing element ex) if one 
of the following becomes true: 

• ey becomes no longer associated (direct or inherited) to ex, ( )yxay VeAe ,∉ . 
This may be caused by the following actions: 

a. The direct association between ey and ex is deleted. 

b. A parent of ey is directly associated to ex, causing ey to no longer be an 
inherited associated element of ex. 

• py becomes an all  connected ports  associated in ex, ),( xycpa epa . That 
is, all the connected ports of py become associated to ex, 

( ) ( ) ( )yxaigyci VeApepPp ,: ∈∈∀ . This may be caused by the following 
actions: 

a. The containing elements of all connected ports are associated to ex. 
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b. The ports whose elements are not associated to ex are deleted. 

c. Connection relations to ports whose elements are not associated to ex 
are deleted. 

d. Interface relations are deleted, indirectly deleting connections to ports 
whose elements are not associated to ex. 

• One of py’s equivalent ports, which exist in associated view Vx, can no longer 
be associated to px or one of its equivalent ports, for similar reasons/actions as 
above, or if caused by the following action: 

a. An interface relation is created between py and another port, creating a 
new set of equivalent ports to py. 

• One of py’s equivalent ports becomes exist in associated view Vx, and the port 
cannot be associated to px or one of its equivalent ports. This may be caused 
by the following actions: 

a. The port’s containing element is associated to an element in Vx. 

b. An interface relation is created between py and another port, creating a 
new set of equivalent ports to py. 

• Given the bidirectionality of port associations, port px can no longer be 
associated to port py for similar reasons/actions as above. 

So in principle, any user action that causes the above conditions to be satisfied, 
should be prevented in order to maintain the model validity. 

However, in many cases, such modifications are predictable and hence the 
mechanism of induced actions is introduced, automating the process and 
modifying the model in order to maintain its validity. These modifications are 
specified as actions themselves, possibly triggering further actions. 

Considering the example of port associations above, actions can be automatically 
performed in order to re-establish the model integrity, by deleting the existing 
invalid port associations once any of the above actions are performed. However, in 
certain cases, it is not possible to perform such induced actions since more than a 
single option is available to ensure validity. For example, in case where two ports 
are made equivalent and each of the ports is associated to other ports, it is not 
possible to decide automatically which of the redundant port specifications ought 
to be deleted. Such a decision ought to be left to the user instead. 

In summary, to keep a model valid when being modified, one of two alternative 
mechanisms can be adopted: 
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• Validity checks - performed before an action can be taken, that prevent the user 
from performing certain actions that may jeopardise the model correctness or 
consistency. 

• Induced automatic actions - performed as a consequence of a certain user 
action in order to re-establish the model integrity.  

It is not always clear whether to introduce validity checks, preventing invalid 
actions from occurring, or whether further actions can be induced returning the 
model to a valid state. Validity checks are simplest to implement since they simply 
decline the user from performing a certain action unless other actions are 
performed first, keeping the model correct. Automatic actions, on the other hand, 
facilitate the work needed to be performed by the user, with the slight risk that the 
user may be left unaware of any such actions. 

The general principle adopted is that induced actions are performed in case there 
exists a single obvious choice (with obvious consequences) available to the user in 
order to keep the model valid. In certain situations, restoring validity can be 
performed in many different ways, and hence a validity check is setup to prevent 
the action from occurring in the first place and leaving it to the user to make a 
choice. 

As illustrated earlier with port associations, by analysing the dependencies 
between user actions and the various model aspects (such as element association 
validity, port association validity, etc.), the consequences of each user action on 
each of these aspects can be established. For example, a consequence of deleting 
element ex from the model is the need to induce the following actions:  

• Delete any direct element associations to ex. This action affects the directly 
associated element of ex, Ad(ex, Vy).  

• Re-evaluate the inherited associated elements (and redraw the associated view) 
of the associating elements of ex, Aai(ex, Vy). 

• Delete each of the ports of ex. (This action leads to further induced actions to 
maintain the validity of port associations, etc.) 

In the implemented tool (section B.7), we have systematically defined the 
consequences of each such user action on the validity of each aspect of the model, 
and defined the necessary induced actions that need to be performed in order to 
maintain model validity. These actions can themselves trigger further induced 
actions. It remains however an effort for future work to formalise these actions. 
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B.6. Cross-view Analysis 
As well as domain-specific analyses that can be performed within a view, certain 
analyses require information from multiple views, and are hence of interest for the 
proposed view integration environment. The approach advocated in this paper 
allows a designer to treat an element of the system as a system of its own, with its 
own set of views. By allowing the multi-view approach to propagate at each level 
in the system hierarchies, the same analysis that can be performed at the system 
level can also be easily performed at the sub-system (element) level. 

Three categories of analysis can be identified: 

• Correctness analysis 

• Completeness analysis 

• Keyfigure calculations 

Correctness analyses are used to check if any incorrectness or inconsistencies exist 
in a model. It is generally preferable to perform dynamic correctness checks, 
detecting and preventing any incorrectness from being introduced into the model 
as soon as they occur. The validity checks in sections B.5.1.3 and B.5.2.2 are 
examples of correctness analysis. 

Compared to the dynamic correctness checks, certain checks cannot be performed 
at random instances since not enough information is yet specified by the user to 
perform the analysis, while the lack of information cannot be flagged as an error. 
These completeness checks can be triggered by the user once it is believed the 
model to be complete. The analysis in section B.5.1.7 is an example of a 
completeness check. 

A keyfigure analysis produces a summary of the system properties being 
modelled. These properties were not specified by the user directly, but emerged 
from the combination of other properties. Prior to any keyfigure analysis, a 
completeness check needs to be performed that establishes whether enough 
information is available for the analysis to be performed. Different keyfigure 
analyses may require different completeness analyses since a different set of 
information may be needed. 

In [10], the various keyfigure analyses of interest for the design of the EE 
architecture are discussed. Examples of cross-view keyfigure analyses that can be 
performed for any element are: 

• The number of hardware units and cables needed to realise a given function 
element. 

• The cable length or weight needed for a given function. 
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• Given a certain function, statistics on the other functions that share some of its 
resources. 

For a given Function or Hardware Structure element, these keyfigure values can be 
easily calculated based on the associated view of the element. For example, given 
the associated view in figure 25 of the COO hardware unit, one can easily 
calculate the required utilisation on COO, given the execution times and rates of 
execution of each of the allocated function elements. 

The following subsection provides an extended example of cross-view keyfigure 
analysis relevant for the case study of section B.2. 

B.6.1. Complete Cabling Paths for Communication 
This analysis checks that any Function Structure element that needs to 
communicate through their connected Communication Links, can do so, given its 
specified allocations to hardware units and cables. The analysis can be performed 
on the complete system, as well as any sub-system (element). 

Prior to introducing this analysis, certain terms need to be first defined. For this 
discussion, the function and hardware unit elements are termed as container 
elements, while the communication link and cable elements are termed as linker 
elements. 

B.6.1.1. Internally Linked Ports 
The internally linked ports of port p, Pil(p), is defined as the set of ports of the 
containing element, e=eg(p), where ( )pPp ilx ∈  implies that px is internally 
connected to p through a set of internal linker elements only, connected together to 
form a path from px to p. 

The Pil(p) set differs, depending on the property of e: 

• If e is an elementary linker element, Pil(p) is the remaining ports of e, since all 
the element’s ports share the internal buffer of the elementary. Considering 
the Function Structure model in the example of figure 29, 

( ) { }11,311,211,1 , CLCLCLil pppP = . 

( ) ( )( ) ppePpP geil −=   

• If e is an elementary container element, then there exists no internally  
l inked ports , since e performs a functional transformation between its ports, 
and not simply a data transfer. In the example of figure 29, ( ) ∅=111,1 Fil pP . 
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( ) ∅=pPil  

• If e is a composite element, and p has no direct interfaced port, pde(p), then 
there exists no internally  l inked ports  since p is not even related to any 
internal ports of e to further link through. In the example of figure 29, 

( ) ∅=12,3 CLil pP . 

( ) ∅=pPil  

• If e is a composite element, and p has a direct interfaced port, pde(p), then  

( ) ( )( )ppPpP deelil =  

where the externally linked ports of port pi, Pel(pi), is defined as the set of ports of 
the parent element, ei=edp(eg(pi)), where ( )iely pPp ∈  implies that py is related to 
pi through a set of linker elements, connected together to form a path from py to pi. 
Pel(pi) consists of the union of: 

• The direct interfacing port of each of the internally  l inked ports of pi. 

• The externally  l inked ports of the direct connected ports of each of the 
internally  l inked ports  of pi. 

( )
( )

( ) ( )
( )⎟

⎠
⎞

⎜
⎝
⎛ ∪∪∪=

∈∈∈
mPnppP elnPmpPndipPniel

dciiliil

U)(  

In the example of figure 29, ( ) { }1,61,31,1 , FFFil pppP = . However, ( ) ∅=1,2 Fil pP , 
since the set of linker elements is broken by the direct child of F11, namely F111. 

Notation: 
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Figure 29. A hypothetical Function Structure model to illustrate internal ly 
l inked ports. 

B.6.1.2. Communicating Ports 
Two ports, p1 and p2, are defined to be communicating ports, pcp(p1, p2), if a 
continuous path of only linker elements exists between them, in which the ports 
along the path are either directly connected or internally  l inked.  

pcp(p1, p2) differs depending on whether p1 and p2 are connected or not. 

If p1 and p2 are connected, then they are said to not be communicating ports, 
since we expect at least one linker element between p1 and p2. In the example of 
figure 29, the ports p1,F1 and p2,CL1 are not communicating ports , 

( )1,21,1 , CLFcp ppp¬ , since p1,F1 and p2,CL1 are directly connected. 

If p1 and p2 are not connected, then pcp (p1, p2) is true if one of the following is 
true: 

• p2 is internally  l inked to p1. In the example of figure 29, the ports p1,F1 and 
p6,F1 are communicating ports , ( )1,61,1 , FFcp ppp , since ( )1,11,6 FilF pPp ∈ . 
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• ( )1pPp il∈∃ such that p is a communicating port  with p2, ( )2, pppcp , or p2 

is connected to p, ( )pPp c∈2 . In the example of figure 29, the ports p1,F1 and 
p1,CL2 are communicating ports , ( )2,11,1 , CLFcp ppp , since ( )1,1 Fil pPp∈∃ , 
namely p6,F1, such that  ( )1,62,1 FcCL pPp ∈ . Extending this example further, it 
can be deduced that the ports p1,F1 and p2,CL2 are communicating ports , 

( )2,21,1 , CLFcp ppp , since ( )1,1 Fil pPp∈∃ , namely p6,F1, such that  
( )2,21,6 , CLFcp ppp . 

• ( )1pPp c∈∃ such that p is a communicating port  with p2, ( )2, pppcp . In 
the example of figure 29, the ports p2,CL1 and p6,F1 are communicating 
ports , ( )1,61,2 , FCLcp ppp , since ( )1,2 CLc pPp∈∃ , namely p1,F1, such that  

( )1,61,1 , FFcp ppp (as discussed earlier, ( )1,11,6 FilF pPp ∈ ). 

In summary, pcp (p1, p2) is true if 

( )
( ) ( ) ( )( )
( ) ( )21

221

12

,:

,:

ppppPp

pPpppppPp
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ccpil

il

∈∃∨

∈∨∈∃∨
∈

 

As a final example, by combining all these conditions together, and performing the 
test on ports across the hierarchy, it can be deduced that the ports p1,F2 and p1,CL13 
are communicating ports , ( )13,12,1 , CLFcp ppp . 

Notation: ( )

( )

( ) ( )
( ) ( ) ( )( )
( ) ( )⎪

⎪
⎪

⎩

⎪
⎪
⎪
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∉∈
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 if                                  

 if                                               false

,

ppppPp

pPpppppPp
pPppPp

pPp

ppP

cpc

ccpil

cil

c

cp  

Two ports, p1 and p2, are defined to be communicating ports in associated view of 
element ex, pcp,av(p1, p2, ex), if they are communicating ports , considering only 
ports whose containing elements are in the associated view of ex. Naturally, a 
precondition for this test is that the containing elements of p1 and p2 are associated 
to ex. 
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B.6.1.3. The Complete Cabling Path Analysis 
In the current implementation of the analysis, it is assumed that a Function 
Structure port is associated to a single Hardware Structure port, ( ) 1, =hsp VpA . 

The completeness test for this analysis is that the Function Structure element f has 
complete associations, aca(f, Vhs). Failing this condition implies that there exists 
missing associations and hence such a cross-view analysis cannot be performed. 

The condition for completeness differs, depending on whether f is elementary 
in associated view Vy or not. 

If f is elementary in associated view Vhs, alv(f, Vhs), then f is defined to have 
complete cabling paths for communication, fccp(f), since all its children are 
implicitly associated to the same hardware elements, within which the 
communication occurs internally. 

If f is not elementary in associated view Vhs, ¬alv(f, Vhs), f is defined to have 
complete cabling paths for communication, fccp(f), if the following 
conditions are satisfied: 

• Each port, pf, of each of f’s direct children, is associated to a hardware port, if 
the pf‘s associable ports  set, Aap(pf, Vhs), is not empty. A non-empty 
associable ports  set of pf implies that pf itself is not an al l  connected 
ports  associated in one of the associating elements of eg(pf), Aai(eg(pf), 
Vhs). pf hence needs to be associated to one of the associable ports in order 
to communicate to its unassociated connected ports. 

( )
( )

( ) ∅≠

∅≠∪∈∀
∈

hsfp

hsfapefEnf

VpA

VpAnPp
dc

,

:),(:
 

• For each pair, p1 and p2, of directly connected ports of f’s direct children that 
have associations to hardware ports, the pair of associated hardware ports are 
connected. We need not handle a port that has no associable ports, since 
its containing element, and that of its directly connected ports (which have 
also no associable ports), would be associated to the same hardware 
element, within which the communication occurs internally. 
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( ) ( )

( ) ( )( )( )hspchsp

dchsphspefEn

VpAPVpA

pPpVpAVpAnPpp
dc

,,
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∈
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∈  

• For each pair, p1 and p2, of internally l inked ports  of f’s direct children 
that have associations to hardware ports, the pair of associated hardware ports 
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are communicating ports in associated view of f. It is necessary to 
make sure that the ports are communicating by only considering the elements 
and ports of the associated view, to ensure that the element f is completely 
defined using its own set of views, independently of other views and elements 
in the system. 
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∈  

Note that the condition is defined such that it only deals with the direct children of 
element f, with no consideration of the children further down the hierarchy. This 
definition is in line with the inheritance argument presented in section B.3.1.4. For 
this reason, the communication completeness check for f, does not guarantee the 
communication completeness of its children. A complete check can be performed 
by recursively running the same test through the hierarchy.  
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For example, consider the simple example in figure 30, showing the associations 
between the child elements of the Speed Sensing function element and the BMS 
hardware unit (See figure 21 and figure 23). In this example, the Speed Sense and 
Filter function elements are associated to the Speed Sensor and ECU child 
elements of BMS respectively. 

Now, for the Speed Sense element to be able to communicate with Filter via the 
Speed communication link, it is necessary to associate Speed to the Sensor Cable 
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in the hardware view. In addition, the port associations ought to be performed as 
shown in the figure.  

Any other choice of element or port associations would not be satisfactory. For 
example, it can be easily realised that it would not be acceptable to associate the 
Speed communication link to the Actuator Cable of BMS. While such an element 
association is valid and can be performed, no valid port association can thereafter 
be specified for which the Speed Sensing function can have complete cabling 
paths for communication, fccp(Speed Sensing).  

 

Figure 30. Element and port associations between the child elements of the 
Speed Sensing function element and the BMS hardware unit. 

Similarly, it would not be acceptable to associate the port pin,Filter to port p3,ecu, 
while ensuring  fccp(Speed Sensing). Such a port association would violate the 
second condition for path completeness since the port pin,Filter would be associated 
to a port, p3,ECU, which is not connected to the associated port of the connected port 
to pin,Filter, p1,Speed. That is, ( ) ( )( )( )hsSpeedpchsFilterinp VpAPVpA ,, ,1, ∉   

Now, consider the more elaborate example in figure 31, showing the associations 
between the child elements of the Human Interface function element and the 
hardware elements onto which it is desired to implement them. It is desired to 
establish whether Human Interface has complete cabling paths for 
communication, fccp(Human Interface). However, the discussion in this section 
will be limited to the communication path formed by Operator Inputs, Brake 
Pedal and HMI Logic elements only. 
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Figure 31. Element and port associations between the child elements of the 
Human Interface function element and the hardware elements onto which it is 

desired to implement them. 

The Operator Inputs and HMI Logic functions are associated to the COO and the 
ECU unit of COO (COO/ECU) respectively. In addition, the child of Operator 
Inputs, Brake Pedal Sensing, is associated to the Brake Pedal Sensor hardware 
unit of the BMS hardware unit (BMS/Brake Pedal Sensor). This later association 
also implies that Operator Inputs is associated to the Brake Pedal Sensor hardware 
unit by inheritance. 

Now, given that port p1,BrakePedalSensing is equivalent to p3,OperatorInputs, the only 
possible association to p3,OperatorInputs would be to p1,BrakePedalSensor. Given that 
restriction, for Operator Inputs and HMI Logic to be able to communicate via the 
Brake Pedal communication link, Brake Pedal needs to be associated to 
BMS/Sensor Cable, BMS/ECU as well as Red CAN. In this way, a communication 
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path between BMS/Brake Pedal Sensor and COO/ECU is provided. The Hardware 
Structure associated view of Brake Pedal becomes as shown in figure 32. 

In addition, the port associations ought to be performed as shown in the figure. 
Any other choice of port associations would have not been satisfactory. For 
example, associating p3,HMILogic to p3,COO/ECU would not satisfy the second condition 
for path completeness since this port p3,COO/ECU is not connected to p4,RedCAN (the 
associated port of the connected port to p3,HMILogic, p2,BrakePedal). 

 

Figure 32. The Hardware Structure associated view of the Brake Pedal element. 

Finally, consider the internally l inked ports  p1,BrakePedal and p2,BrakePedal. 
According to the third condition for complete communication paths, the 
associations to these ports (p2,SensorCable2 and p4,RedCAN) should be communicating in 
the associated view of Human Interface. But as can be seen in figure 32, this is not 
the case due to the hardware unit BMS/ECU. One remedy to this problem, is to 
further detail the internal definition of BMS/ECU, in which a cable is setup 
between the ports p2,BMS/ECU and p4,BMS/ECU. 

B.7. Tool implementation 
In order to investigate the feasibility of the inter-view mechanisms introduced in 
this report, a prototype tool was implemented in the Dome prototyping 
environment [12], in which views, as well as, inter-view design information and 
analysis, could be performed.  

The integration of views is easier when all views are specified within a single tool. 
However, different tools are typically used by an organisation to specify the 
various views of the system. The approach is hence expected to deal with views 
specified in separate domain-specific tools. A central tool integration and 
management system can then be used to perform the inter-view information 
specification and analysis. To prove and test this concept, a partial implementation 
of the approach has been developed based on the MDM platform [18]. The 

Associated View  
(Hardware Structure) 
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Simulink [15] and Dome [12] tools were used for the specification of the Function 
Structure and Hardware Structure views respectively. A generic inter-view 
association mechanism is then used to perform element associations between the 
two tools. The implementation is limited to the associations between elements, 
while port associations remain the subject of future work. 

Some ideas from the suggested solution have also been partly implemented in the 
industrial analysis tool [10] of the case study of section B.2. The tool is able to 
evaluate different architectural solutions, based on the keyfigure analysis 
mentioned in section B.6. The case study presented in this report forms a small 
subset of the functionality studied in the industrial case study, which covered the 
complete EE architecture of a set of truck variants. An important contribution of 
the study was the division of the available dataset into different views, thereby 
facilitating the desired analysis as well as the possibility to perform multiple 
allocation strategies without needing to re-model the system functionality. While 
the implementation is based on our meta-meta-model, the cross-hierarchy 
associations were not adopted. 

B.8. Related Work 
The use of the view notion and related concepts (such as viewpoint, model and 
roles) in high level modelling and framework standards is discussed in [24], 
concluding that ‘in addition to accommodating multiple perspectives, views are 
used in standards to: examine and define content, expose content to enable 
interoperability, reduce apparent complexity, provide focus, enable modularity of 
process, and enforce “need to know” restrictions’. One such standard is the IEEE-
1471 [1]. This standard addresses the content and organisation of architectural 
descriptions of software-intensive systems. In the standard, concepts such as 
stakeholders, concerns, viewpoint, view and model and the relationships among 
them, form a fundamental basis for the organisation of these descriptions. No 
specific views are specified in the standard and although it is specified that 
consistency among views shall be recorded, how such consistency can be achieved 
is not specified. 

The need to separate the captured design information into different views is 
gaining increased recognition and is found in many modern engineering modelling 
languages and tools (such as [2], [3], [4] and [5]). In addition, most modelling 
approaches adopt some form of decomposition techniques in describing each of 
the supported views [19]. In combining these two techniques, it becomes essential 
to integrate the various hierarchical views, through the specification of inter-view 
design information, in order to form a consistent and complete system definition. 
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When integrating the system views, modelling approaches (such as [20], [21], 
[22], [23] and [3]) normally provide the simple mechanism to reference a 
component from one view to another component in another view. For example, it 
may be possible to specify the software components in the software view that are 
to be allocated to a specific processor in the hardware view. Many of these 
approaches only allow the establishment of relationships at the leaf of their 
hierarchies ([22], [23] and [3]). In this way, the complexity of interrelating the 
system views across their hierarchies is simply avoided. However, the advantages 
gained in using hierarchical descriptions within a view are then lost during view 
integration, forcing developers to work at the lowest levels of abstractions. 

In the few cases where references can be specified across the hierarchies (such as 
[20] and [21]), the semantics of such references are restricted to the context of the 
specific system part at which they are specified. Views are hence only loosely tied 
at the points at which the references are specified. It would instead be desired to 
obtain a tighter integration by propagating these references across the system 
hierarchies. For example, having specified the allocation of certain software 
components onto hardware components, mechanisms ought to be provided that use 
this information to facilitate the more refined allocation of software to hardware at 
a more detailed level of abstraction of the system. 

From the software engineering domain, the work presented in [16] also deals with 
the documentation of software architectures, in which the concept of views plays a 
central role. The work categorises a specific set of views found in common use. 
Similar to the meta-meta-model suggested in this report, in describing each view, 
the set of elements, relations, their properties and a topology that can be defined in 
the view are described. The views are grouped into different styles, which are 
themselves grouped into viewtypes forming a hierarchy. For each view, the 
relationships to other views across this hierarchy are described, by stating the 
relations between the different elements in the views to each other. While stating 
that certain relations may be quite complex (such as the allocation of modules to 
components), no guidelines are given on how this complexity should be handled.  

In [25], an environment in which domain-specific components can be composed to 
develop large applications is presented. The approach recognises that since 
domains are developed independently, they may contain similar concepts defined 
in different ways; and domain composition needs to identify and define relations 
between these concepts. Two types of relations can be established: general 
associations and correspondence relating similar or overlapping concepts. The 
approach is model-based in that components are modelled in different domains, 
using domain-specific languages, and the composition is performed at the model 
level before code generation is performed. The approach is focused on software 
applications where each component/domain results in source code that need to be 
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integrated. While the approach deals with system decomposition into different 
domains, the decomposition mechanisms within each domain are not considered. 

Aspect Oriented Programming (AOP) [26] is another approach within the software 
engineering community where a system specification is separated between its 
functional components and its other properties that affect the system semantics and 
performance. AOP deals with the cross-cutting of the hierarchical decomposition 
of a system into components, with the various non-functional aspects of the system 
such as its error handling and performance aspects. This cross-cutting is necessary 
since the aspects must compose differently from the functional decomposition, yet 
the different compositions must be coordinated. An aspect weaver is then used to 
integrate and coordinate the co-composition of the aspects with the functional 
components. In this approach, while the functional decomposition is hierarchical, 
the remaining aspects are not. 

A framework and a set of techniques for the view integration of the existing views 
in UML with other architectural views is presented in [27]. The framework allows 
the mapping of architectural components/connectors to the classes of the design 
view. This mapping is closely related to the hardware to functionality allocation 
approach discussed in this report. However, the suggested mapping deals with a 
flat structure in each view, and assumes that a design class can only be mapped to 
a single architectural element. In addition, once the mapping is performed, 
conformance analysis can be automated in order to identify mismatches between 
the architectural view of a system and its design view, based on a set of constraints 
rules. For example, it becomes possible to check that class interactions belonging 
to different components are appropriately constrained to the architectural topology 
adopted. Such analysis is similar to the correctness and completeness check 
analysis presented in section B.6.1. 

B.9. Conclusion 
In this paper, the need for a systematic approach to multi-view integration is 
discussed. The establishment of inter-view design information is common practice 
in many modern design tools. The approach presented here takes advantage of 
such information in order to tightly interweave the views’ hierarchies. In this way, 
the system views are reflected to a stakeholder within a given domain at a 
sufficient level of abstraction and detail that makes him/her appreciate the 
information provided.  

Through the use of a case study, model integration is investigated for a particular 
type of inter-view relationships (function to hardware allocation). The resulting 
approach maintains the principle of hierarchical design within, as well as between 
the views, by systematically integrating the two generally accepted complexity 
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reduction techniques of hierarchical decomposition and multi-viewing. Rules and 
mechanisms were developed to ensure the completeness and correctness of any 
inter-view design decisions. Additional mechanisms allow a developer within a 
given domain to view the other aspects of the system from his/her own 
perspective, making view integration a good basis for information sharing. The 
proposed approach promotes the independent development of the views, allowing 
developers from each discipline to work concurrently, yet providing support for a 
holistic view.  

Allocation is strongly related to the design process and can of course be carried 
out in different ways. The defined allocation inheritance rules permit the 
specialisation (refinement) of allocation specifications performed higher up in the 
hierarchies, as well as their extensions at the lower levels, propagating the 
extended associations up to the higher levels. Such mechanisms support a process-
independent allocation practice. By placing certain restrictions, the allocation 
practices can be constrained. For example, disallowing the possibilities for 
association extensions through the sub-systems provides a top-down approach, 
where sub-system design can only refine design decisions specified at the higher 
level. 

The approach also reinforces the principle that a part of the complete system is a 
system of its own, with its own set of views. This provides the possibilities to 
perform cross-view analysis on the complete system as well as its individual parts, 
since all relevant inter-view relationships established across the system are 
propagated.  

To investigate the approach’s feasibility, various tool implementations were 
performed. Less focus has so far been placed on scalability and implementation 
efficiency considering many views and large systems. Future developments would 
need to address these issues appropriately. 

Even though it is based on simple concepts, using the approach is suspected to 
require a new mind-set. This places certain doubts on whether the approach 
actually facilitates the developer’s work. From the limited gained experiences, the 
ability to focus on specific parts of the system design, as well as inheriting and 
extending other decisions made elsewhere in the system, is rewarding. This 
however does depend on good feedback and support by the integration tool. In the 
worst case, the approach advocated here can be seen as an experiment, or an initial 
step, towards other possibilities of view integration. 

While specific to the allocation of system functions to hardware, it is believed that 
the mechanisms can be applied to other types of relationships such as that of 
mapping software components to hardware. No claim can be made that these 
mechanisms are general enough to handle all types of relationships. However, it is 
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intended to expand on this work in order to cover many of the relationships 
identified in [19] such as dependencies and refinement. In addition, the ability to 
perform inter-view associations over a larger number of views is a challenge to 
handle in future developments. 

A systematic approach when implementing these relationships should allow a 
reuse of many of the concepts already explored. What is essential is to provide 
mechanisms that reflect design decisions between design teams from the various 
disciplines, and across the different levels of abstractions. This provides a good 
basis for an information sharing environment enabling model-based, 
multidisciplinary development. 
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Appendix 

Appendix A Terminology  

A.1 Single-view Modelling 
analysis view – A view used to present specific aspects from the set of design 
views in a certain way that facilitates the performance of an certain analysis. 

attributes - A placeholder used to represent a single property of an element, port or 
relation. 

child element – of element ex is an element lower down in ex’s hierarchy, forming 
a part of ex’s internal definition. There may exist more than one child element of 
ex. 

composite element – A more elaborate description of an element where the 
properties of the system are decomposed into smaller, less complex, interacting 
elements, in which each element contains a subset of the original system 
properties. 

connected ports - of port px, Pc (px), is the set of direct connected ports of px and 
each of their equivalent ports, together with the direct connected ports of the 
equivalent ports of px. 

connection relation – a relation established between a port of an element and a 
port of another peer element, implying a certain dependency between their 
properties. 

containing element – of a port px, eg(px), is the element for which the port presents 
an interface. 

design view – a view used to model and document the design decisions made by 
developers. 

direct child element – of element ex is a child element of ex which exists directly 
one level down in ex’s hierarchy. There may exist more than one child element of 
ex. 

direct connected port - of port px is the port in a connection relation with px. There 
may exists more than one direct connected port of a single port px. 

direct interfaced port – of port px, pde(px), is the port of the internal element in 
which px is a direct interfacing port. There may only be one direct interfaced port 
of a port px. 



Paper-B-Towards a Multi-View Modelling Environment for Mechatronics Systems 

142 

direct interfacing port – of port px, pdi(px), is the port in an interface relation, in 
which px is a port of an internal element. There may only be one direct interfacing 
port of a port px. 

direct parent element – of element ex, edp(c), is a parent element of ex which exists 
directly one level up in ex’s hierarchy. There exists a maximum of one direct 
parent of ex. 

direct properties – of a port px are properties defined directly on it by the user.  

element – a placeholder of properties describing the represented system 

elementary element - element ex is defined to be elementary, el(ex), if ex contains 
no child elements. ex has a simple description where the properties can be 
specified as a set of attributes.  

equivalent ports - of a port px, Peq(px), is the combined sets of its interfacing ports 
and interfaced ports, as well as px itself.  

inherited properties – of a port px are properties defined through one of px’s 
equivalent ports (the inheriting equivalent port of px). 

inheriting equivalent port – of a port px is the equivalent port of px in which the 
properties are directly defined. 

interface (external) definition – of element ex reveals only those properties of ex 
that need to be shared with the system environment. 

interface relation - a relation between an element’s port and a port of one of its 
internal elements,  externally indicating that the internal port is externally 
accessible. 

interfaced ports – of port px, Pe(px), is the direct interfaced port of px, together with 
its interfaced ports. 

interfacing ports – of port px, Pi(px), is the direct interfacing port of px, together 
with its interfacing ports. 

internal (white-box) definition – of element ex deals with ex’s complete set of 
properties, which consists of its set of internal elements. 

internal element – see child element 

parent element – of element ex is the composite element higher up in ex’s 
hierarchy, in which ex is a child element. There may exist more than one parent 
element of ex. 

port – forms part of the interface definition of its containing element and acts as a 
placeholder for a subset of its element’s externally accessible properties. Two 
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representations of a port can be defined: an internal port representation which is a 
representation of the port as seen from the containing element’s internal definition; 
an external port representation which is a representation of the port as seen from 
the containing element’s interface definition. 

property placeholder – an element or a port. 

root element – of view Vx, er(Vx), is the single element within Vx which has no 
parent elements. 

A.2 Two-View Integration 
all connected ports associated - port py is defined to be al l  connected ports 
associated in element ex, acpa(py, ex), if all its connected ports, Pc(py), (or one of 
their equivalent ports) have their containing element associated to ex. 

associable ports – of port px in view Vy, Aap(px, Vy), is the set of ports in Vy that 
satisfy the port association validity check, and can hence be associated to px. 

associated elements - of element ex in view Vy, Aa(ex,Vy), consists of the union of 
its direct associated elements and its inherited associated elements. 

associated ports – of port px in view Vy, Ap(px, Vy), is the set of associations to 
ports in Vy, directly specified by the user on port px. 

associated view - Vy of element ex in view Vx is a subset of the complete view Vy 
for the complete system. It consists of the elements from view Vy that are 
associated to element ex (taken across the whole hierarchy of Vy). 

associated view interface port – of port py is an interface port to py, presented in 
the associated view of element ex, in the case where py is not an all  connected 
ports associated port, indicating that certain connections to py are missing in 
the associated view. 

associating elements - of element ex in view Vy, Aai(ex, Vy), is the set of elements in 
view Vy have element ex as an associated element (direct or inherited). 

association - a relation between property placeholders across different views 

completely associated – element ex is defined to be completely associated in 
view Vy, aca(ex, Vy), if given the set of associated elements specified for ex, no 
further refinement of these associations are needed by ex’s children in order to 
complete the system specification. 

direct associated elements - of element ex in view Vy, Ad(ex, Vy), is the set of 
associations to elements in Vy, directly specified by the user on element ex. 
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elementary in associated view - element ex is defined to be elementary in 
associated view Vy, alv(ex, Vy), if none of the children of ex is associated with 
any elements in view Vy, yet ex has associations with at least one element in Vy. 

exist in associated view - element ex is defined to be exist  in associated view 
Vy, , axv(e, Vy), if either ex, or one of its children, have been associated to at least 
one element in view Vy. 

inherited associated elements - of element ex in view Vy, Ai(ex,Vy), is the set of  
(top most) direct associated elements of ex’s children, excluding those which have 
already been defined, or generalised, through the direct associated elements of ex, 
Ad(ex, Vy). 

refined associated elements – of element ex in view Vy, Ara(ex, Vy), is the most 
refined set of associated element of ex, based on the associated elements if ex’s 
direct children. 

A.3 Example Views - Function structure and Hardware 
Structure 

cable – an element designating a physical cable with a certain geometrical path. 

communicating ports - Two ports, p1 and p2, are defined to be communicating 
ports , pcp(p1, p2), if a continuous path of purely linker elements exists between 
them, in which the ports along the path are either directly connected or 
internally l inked. 

communicating ports in associated view - Two ports, p1 and p2, are defined to be 
communicating ports in associated view of element ex, pcp,av(p1, p2, ex), if 
they are communicating ports, considering only ports whose containing 
elements are in the associated view of ex. 

communication link – an element designating a link that transports data between 
functions. 

complete cabling paths for communication – the Function Structure element f is 
defined to have complete cabling paths for communication, fccp(f), if all 
of f’s direct children can communicate to each other through their connected 
communication links, given their associated hardware units and cables.  

container element – a function or hardware unit element. 

function – an element designating certain functionality that given a certain input, 
produces a certain output.  
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hardware unit – an element designating a physical block occupying a certain 
amount of space.  

internally linked ports - of port p, Pil(p), is the set of ports of the containing 
element that are internally connected to p through a set of internal purely linker 
elements, connected together to form a path from to p. 

linker element – a communication link or cable element. 
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Appendix B Notations 
aca(ex, Vy) element ex is completely associated in view Vy 

acpa(py, ex) port py is al l  connected ports associated in element ex 

alv(ex, Vy) element ex is elementary in associated view Vy 

axv(ex, Vy) element ex is exist  in associated view Vy 

Aa(ex,Vy) Associated elements of element ex in view Vy 

Aai(ex, Vy) associating elements of element ex in view Vy 

Aap(px, Vy) Associable ports of port px in view Vy 

Ad(ex, Vy) direct associated elements of element ex in view Vy 

Ai(ex,Vy) inherited associated elements of element ex in view Vy 

Ap(px, Vy) Associated ports of port px in view Vy 

Ara(ex, Vy) refined associated elements of element ex in view Vy 

edp(ex) direct parent element of element ex  

eg(px) Containing element of port px 

el(ex) element ex is elementary  

er(Vx) root element of view Vx 

Edc(ex) direct children elements of element ex 

Ep(ex) Parent elements of element ex 

Ec(ex) Children elements of element ex 

fccp(f) the Function Structure element f has complete cabling 
paths for communication 

pcp(p1, p2) ports, p1 and p2, are communicating ports  

pcp,av(p1, p2, ex) ports, p1 and p2, are communicating ports  in 
associated view of element ex 

pde(px) Direct interfaced port of port px 

pdi(px) Direct interfacing port of port px 

px,e port px of element e 
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Pc (px) Connected ports of port px 

Pdc(p) Direct connected ports of port px 

Pe(px) interfaced ports of port px 

Pe(ex) ports of element ex 

Peq(px) Equivalent ports of a port px  

Pel(px) externally l inked ports  of port px 

Pi(px) Interfacing ports of port px 

Pil(px) internally l inked ports  of port px 

VFS Function Structure view 

VHS Hardware Structure view 
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Appendix C Proofs 

C.1 Proof 1 
Let 

( )
( )

( )
( ) ( )

( ) ( )( )}amaEmVeAm

aEmVnAmVnAaVeA

pyxd

pydeEnydeEnyxi
xcxc

=∨∈∈¬∃∧
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⎨
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⎠
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⎜
⎝
⎛ ∈∪∈¬∃∪∈=
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:,:,),(
 

[1] 

( ) ( )yxdyxiyxa VeAVeAVeA ,,),( U=  [2] 

And 

( )
( )

( )
( ) ( )

( ) ( )( )}amaEmVeAm

aEmVnBmVnBaVeB

pyxd

pyaeEnyaeEnyxi
xdcxdc

=∨∈∈¬∃∧

⎩
⎨
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⎟
⎠
⎞

⎜
⎝
⎛ ∈∪∈¬∃∪∈=

∈∈
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:,:,),(
 

[3] 

( ) ( )yxdyxiyxa VeAVeBVeB ,,),( U=  [4] 

We need to prove that  

( )( ) ( )),(),(,),( yxayxayxiyxi VeBVeAVeBVeA =∧=  [5] 

1. Considering all the elementary elements ex of the model tree, M, [5] is true since 
( ) ( ) ∅≡≡ xcxdc eEeE  

Hence, 

( ){ } ( )( ) ( )( )),(),(,),(:: yxayxayxiyxidcx VeBVeAVeBVeAaEEae =∧=∅=∈∈∀  [6] 

2. Considering the nodes of the M tree one level up in the hierarchy (that 
is ( ) ( ){ }∅=∈∀∈ nEeEnEe dcxdcx :: ), [5] is true since ( ) ( )xcxdc eEeE ≡ . 

Hence, 

( ) ( ){ } ( )( ) ( )( )),(),(,),(:: yxayxayxiyxicdcx VeBVeAVeBVeAaEaEEae =∧==∈∈∀  [7] 

3. Now, assume that for a given ex2, ( )21 xcx eEe ∈∀ , condition [5] is true.  

That is: 
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( ) ( )( ) ( )( )),(),(,),(: 111121 yxayxayxiyxixcx VeBVeAVeBVeAeEe =∧=∈∀  [8] 

Given this assumption, we now proof the condition true for ex2 itself. 
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Where ( ) ( )( )amaEmVeAmC pyxd =∨∈∈¬∃= :,2  
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[From [8], since ( ) ( ) ( ) ( ) ( )ydyiyayaxdc VnAVnAVnAVnBeEn ,,,,:2 U==∈∀ ] 
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Where x is the parent of m that is also the direct child of ex2;  

and ( ) ( ) ( )222 xdcxcxoc eEeEeE −=  

Now, let  

( )
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( ) ( )
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2
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[9] 

We have 
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, 
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( )yxi VeB ,2 can be rewritten as: 
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[11] 

We first prove: 

( ) ( ) ( )⎟
⎠
⎞⎜

⎝
⎛ ∈′∈∃∈∀ aEmVeYmVeYa pyxyx :,:, 22  

[12] 

Consider such an ( )yx VeYa ,2∈ : 
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( )
( )

( ) ( ) ( )[ ]

( )
( ) ( ) ( ) ( )[ ]2

2

2

    :,

, of Definition     :,

,

2
xoccpydeEq

yxpydxEq

yx

eExEaEpVqAp

VeYaEpVqAp

VeYa
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∈

∈
 

[13] 

( ) ( )yxyx VeYpVeYp ,, 22 ∈∨′∈ ,  

 since
( )

( )ydeEq
VqAp

xoc

,
2∈

∪∈ , and
( )

( ) ( )yxydeEq
VeYVqA

xoc

,, 2
2

⊃∪
∈

. 

If ( )′∈ yx VeYp ,2 , then we found a ( )′∈ yx VeYp ,2 , such that ( )aEp p∈ , and hence 
proving expression [12]. 

If ( )yx VeYp ,2∈ , then 
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( ) ( ) ( )[ ]
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( ) ( ) ( ) ( )[ ]2

2

2

                :,

, of Definition                 :,
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xoccpydeEq
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VeYp
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∈

∈

∈
 

This is similar to expression [13], where p replaces a, v replaces p, with ( )aEp p∈ , 
and ( )pEv p∈ . 

So, by repeating the above argument, we can either deduce the following 
statements: 

( )
( ) ( )pEvVqAv pydeEq xoc

∈∪∈∃
∈

:,
2

,
( )

( ) ( )vEuVqAu pydeEq xoc

∈∪∈∃
∈

:,
2

, … 

if ( )yx VeYv ,2∈ , ( )yx VeYu ,2∈ , etc. 

 (Where ( )aEp p∈ , ( )pEv p∈ , ( )vEu p∈ , …) 

Or prove expression [12] if ( )′∈ yx VeYv ,2 , ( )′∈ yx VeYu ,2 , since we would have 

found a ( )′∈ yx VeYuv ,/ 2 , such that ( )aEuv p∈/ . 

 (Note that ( )aEv p∈ , since ( ) ( )( ) ( )aEaEEpEv pppp ∈∈∈ ) 

This sequence is repeated along the parents of a (p, v, u, s, …, r) until either 
expression [12] is satisfied at some point in the hierarchy, or the root of the tree, r, 
is reached. In the worst case where the sequence reaches the root r, we similarly 
get 
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( )
( ) ( )rEtVqAt pydeEq xoc

∈∪∈∃
∈

:,
2

 

But, since no such t can exist since r is the root of the tree, we conclude 
that ( )yx VeYr ,2∉ , and it must be the case that ( )′∈ yx VeYr ,2 , also satisfying 
expression [12]. 

Therefore, in all cases, expression [12] is satisfied. 

Now, reconsider the equation for ( )yxi VeB ,2  in [11]: 
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One can add the ( )yx VeY ,2  set to the set of elements to choose from in the 
expression for ( )yxi VeB ,2 , since these added elements will not satisfy the condition 

of the ( )yxi VeB ,2 set: ( )
( )

( ) ( ) CaEmVnAVeYm pydeEnyx
xdc
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⎠
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⎝
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:,,
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2 U , 

since from [12], we know that for ( )yx VeYa ,2∈∀ , the expression 

( ) ( )⎟
⎠
⎞⎜

⎝
⎛ ∈′∈∃ aEmVeYm pyx :,2 is true.  

Therefore, [11] can be rewritten as: 
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[14] 

We now prove: 

( ) ( ) ( )( )aEmVeYmVeBa pyxyxi ∈∈¬∃∈∀ :,:, 22  [15] 

Assume the inverse of [15]. That is: 

( ) ( ) ( )( )aEmVeYmVeBa pyxyxi ∈∈∃∈∃ :,:, 22  [16] 

For this a, we know that ( ) ( )( )aEmVeYm pyx ∈∈∃ :,2  
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and 
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That is, if ( ) ( )⎟
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⎛ ∈′∈¬∃ aEmVeYm pyx :,2 and ( )aEp p∈ , then ( )′∉ yx VeYp ,2 . 

Therefore,  

( )yx VeYp ,2∈  

Now, 
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This is similar to expression [17], where, where p replaces m, v replaces p with, 
( )mEp p∈  and ( )pEv p∈ . 

So, by repeating the above argument, the following statements can be deduced: 
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( ) ( )pEvVqAv pydeEq xoc

∈∪∈∃
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, 
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( ) ( )vEuVqAu pydeEq xoc
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, … 

where ( )pEv p∈ , ( )vEu p∈ , ... 

This sequence is repeated along the parents of a (m, p, v, u, …, r) until the root of 
the tree, r, is reached, and concluding that  

( )
( ) ( )rEtVqAt pydeEq xoc

∈∪∈∃
∈

:,
2

 

But, since no such t can exist since r is the root of the tree, we conclude that 
assumption [16] is false. 

Hence [16]’s inverse, [15] is true. 

Now, reconsider the equation for ( )yxi VeB ,2  in [14]: 
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We know from [15] that for ( )yxi VeBa ,2∈∀ , ( ) ( )( )aEmVeYm pyx ∈∈¬∃ :,2 is 
true. 

Therefore, [14] can be rewritten: 
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CaEmVnAVeYm

VnAa

VeB

xc

xc

xdcxoc

xc

xdc

xc

xdc

xc

,

:,       

:,

:,,       

:,

:,,,       

:,

:,    

:,,       

:,

,

2

22

2

2

2

2

2

22

2

2

2

2

2

=
⎭
⎬
⎫∧⎟

⎠
⎞

⎜
⎝
⎛ ∈∪∈¬∃

⎩
⎨
⎧ ∪∈=

⎭
⎬
⎫

∧⎟
⎠
⎞

⎜
⎝
⎛ ∈⎟

⎠
⎞

⎜
⎝
⎛ ∪∪∈¬∃

⎩
⎨
⎧ ∪∈=

⎭
⎬
⎫

∧⎟
⎠
⎞

⎜
⎝
⎛ ∈⎟

⎠
⎞

⎜
⎝
⎛ ∪∈¬∃

⎩
⎨
⎧

∪∈=

∈∈¬∃∧

∧⎟
⎠
⎞

⎜
⎝
⎛ ∈⎟

⎠
⎞

⎜
⎝
⎛ ∪′∈¬∃

⎩
⎨
⎧ ∪∈=

∈

∈

∈∈

∈

∈

′

∈

∈

∈

U

UU

U

 

[18] 

Now, 
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( ) ( ) [ ][ ]
( ) ( ) [ ][ ]
( )yxa

yxdyxi

yxdyxiyxa

VeA

VeAVeA

VeAVeBVeB

,

18 from       ,,

4 from       ,,),(

2

22

222

=

=

=

U

U

 

[19] 

Combining [18] and [19], we get 

( )( ) ( )),(),(,),( 2222 yxayxayxiyxi VeBVeAVeBVeA =∧=  

We have now proved that [5] is true for ex2, assuming [5] is true for 
( )21 xcx eEe ∈∀  ([8]). 

And, given that [5] is true for the leafs of the model ([6] and [7]), then by 
induction, this proves [5] for xx Ee ∈∀  

C.2 Proof 2 
Prove that 

( )
( )

( )
( )( )

( ) ( )( )
( ) ( )( )

( ) ( )( )
( )( )

( ) ( )( )⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

∅=∧

∉∧

∅=

⇔

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪

∈

yxdyc

yxdy

yxayp

yxdyc

yxdyp

yxdy

ydeEnyp

VeAeE

VeAe

VeAeE

VeAeE

VeAeE

VeAe

VnAeE
xc

,

,

,

,

,

,

,

I

I

I

I

I

 

We first prove that 
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( )
( )

( )
( )( )

( ) ( )( )
( ) ( )( )

( ) ( )( )
( )( )

( ) ( )( )
( ) ( )( )⎟

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

∅=

⇔

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪

∈

yxdyc

yxdyp

yxdy

yxiyp

yxdyc

yxdyp

yxdy

ydeEnyp

VeAeE

VeAeE

VeAe

VeAeE

VeAeE

VeAeE

VeAe

VnAeE
xc

,

,

,

,

,

,

,

,

I

I

I

I

I

I

 

[1] 

Now, 

( )
( )

( )
( )

( )
( )

( ) ( ) ( )
( )

( )
( ) ( )( )∅=⇒

⎥⎦
⎤

⎢⎣
⎡ ∪⊂∈∈¬∃⇒

∪∈∈¬∃⇒

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪

∈

∈

∈

yxiyp

ydeEnyxiyxiyp

ydeEnyp

ydeEnyp

VeAeE

VnAVeAVeAxeEx

VnAxeEx

VnAeE

xc

xc

xc

,

,, Since                ,:

,:

,

I

I

 

Hence,  

( )
( )

( )
( )( )

( ) ( )( )
( ) ( )( )

( ) ( )( )
( )( )

( ) ( )( )
( ) ( )( )⎟

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

∅=

⇒

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪

∈

yxdyc

yxdyp

yxdy

yxiyp

yxdyc

yxdyp

yxdy

ydeEnyp

VeAeE

VeAeE

VeAe

VeAeE

VeAeE

VeAeE

VeAe

VnAeE
xc

,

,

,

,

,

,

,

,

I

I

I

I

I

I

 

[2] 

Considering the RHS of (1), 
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( ) ( )( )
( )( )

( ) ( )( )
( ) ( )( )

( ) ( )( )
( )( )

( ) ( )( )
( ) ( )( ) ⎟

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

∈∈¬∃

⇒

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

∅=

yxdyc

yxdyp

yxdy

ypyxi

yxdyc

yxdyp

yxdy

yxiyp

VeAeE

VeAeE

VeAe

eExVeAx

VeAeE

VeAeE

VeAe

VeAeE

,

,

,

:,

,

,

,

,

I

I

I

I

I

 

[3] 

Now, assume that  

( )
( ) ( )ypydeEn

eEaVnAa
xc

∈∪∈∃
∈

:,  
[4] 

( ) ( )′∈∨∈ yxiyxi VeAaVeAa ,, ,since
( )

( )ydeEn
VnAa

xc

,
∈
∪∈ , 

and
( )

( ) ( )yxiydeEn
VeAVnA

xc

,, ⊃∪
∈

. 

But ( )yxi VeAa ,∉ , since from [3], we have ( ) ( )ypyxi eExVeAx ∈∈¬∃ :, , and from 
[4] we have ( )yp eEa∈ . 

Therefore,  

( )′∈ yxi VeAa ,  

From the definition of ( )yxi VeA ,  (section B.5.1.1), we get that for ( )′∈ yxi VeAa ,  

( )
( ) ( )

( ) ( )( )⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=∨∈∈¬∃∧

⎟
⎠
⎞

⎜
⎝
⎛ ∈∪∈¬∃

¬ ∈

amaEmVeAm

aEmVnAm

pyxd

pydeEn xc

:,

:,
 

That is, 

( )
( ) ( )

( ) ( )( )amaEmVeAm

aEmVnAm

pyxd

pydeEn xc

≠∧∈∈∃∨

⎟
⎠
⎞

⎜
⎝
⎛ ∈∪∈∃

∈

:,

:,
 

[5] 



Appendix 

159 

Considering the second predicate of [5]: 

( ) ( )
( ) ( )( ) [ ] ( )[ ]
( ) ( ) ameEmVeAm

eEaameEEmVeAm

amaEmVeAm

ypyxd

ypyppyxd

pyxd

≠∧∈∈∃⇒

∈≠∧∈∈∃⇒

≠∧∈∈∃

:,

 have  we,4 from         :,

:,

 

But, this is false since it is given in [3] that ( ) ( ) ∅=yxdyp VeAeE ,I  

Hence [5] becomes: 

( )
( ) ( )⎟

⎠
⎞

⎜
⎝
⎛ ∈∪∈∃

∈
aEmVnAm pydeEn xc

:,  

This is similar to assumption [4], where m replaces a with, ( )yp eEa∈  
and ( )aEm p∈ . 

So, by repeating the argument above, the following statements can be deduced: 

( )
( ) ( )⎟

⎠
⎞

⎜
⎝
⎛ ∈∪∈∃

∈
mEpVnAp pydeEn xc

:, , 
( )

( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ ∈∪∈∃

∈
pEqVnAq pydeEn xc

:, , …,  

where ( )mEp p∈ , ( )pEq p∈ , ... 

This sequence is repeated along the parents of e (a, m, p, q, …, r) until the root of 
the tree, r, is reached, and concluding that  

( )
( ) ( )⎟

⎠
⎞

⎜
⎝
⎛ ∈∪∈∃

∈
rEvVnAv pydeEn xc

:,  

But, since no such v can exist since r is the root of the tree, we conclude that 
assumption [4] is false. 

That is  

( )
( ) ( )ypydeEn

eEaVnAa
xc

∈∪∈¬∃
∈

:,  

or 

( )
( )

( ) ∅=∪
∈ ydeEnyp VnAeE

xc

,I  
[6] 

Now, [6] is proven true based on [3], and we hence can write: 
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( ) ( )( )
( )( )

( ) ( )( )
( ) ( )( )

( )
( )

( ) ⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪

⇒

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

∈∈¬∃

∈ ydeEnyp

yxdyc

yxdyp

yxdy

ypyxi

VnAeE

VeAeE

VeAeE

VeAe

eExVeAx

xc

,

,

,

,

:,

I

I

I

 

∴ 

( ) ( )( )
( )( )

( ) ( )( )
( ) ( )( )

( )
( )

( ) ⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪

⇒

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

∅=

∈ ydeEnyp

yxdyc

yxdyp

yxdy

yxiyp

VnAeE

VeAeE

VeAeE

VeAe

VeAeE

xc

,

,

,

,

,

I

I

I

I

 

∴ 

( ) ( )( )
( )( )

( ) ( )( )
( ) ( )( )

( )
( )

( )
( )( )

( ) ( )( )
( ) ( )( ) ⎟⎟

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪

⇒

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

∅=

∈

yxdyc

yxdyp

yxdy

ydeEnyp

yxdyc

yxdyp

yxdy

yxiyp

VeAeE

VeAeE

VeAe

VnAeE

VeAeE

VeAeE

VeAe

VeAeE

xc

,

,

,

,

,

,

,

,

I

I

I

I

I

I

 

[7] 

Combining [2] and [7], we get: 
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( ) ( )( )
( )( )

( ) ( )( )
( ) ( )( )

( )
( )

( )
( )( )

( ) ( )( )
( ) ( )( ) ⎟⎟

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪

⇔

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

∅=

∈

yxdyc

yxdyp

yxdy

ydeEnyp

yxdyc

yxdyp

yxdy

yxiyp

VeAeE

VeAeE

VeAe

VnAeE

VeAeE

VeAeE

VeAe

VeAeE

xc

,

,

,

,

,

,

,

,

I

I

I

I

I

I

 

Hence, we prove [1]. 

Now,  

( ) ( )( ) ( ) ( )( )( )

( ) ( )( )∅=
⇔

∅=∧∅=

yxayp

yxdypyxiyp

VeAeE

VeAeEVeAeE

,

,,

I

II

 

Since ( ) ( ) ( )yxdyxiyxa VeAVeAVeA ,,, U=  

Hence, 

( )
( )

( )
( )( )

( ) ( )( )
( ) ( )( )

( ) ( )( )
( )( )

( ) ( )( )⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

∅=∧

∉∧

∅=

⇔

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=∧

∅=∧

∉∧

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪

∈

yxdyc

yxdy

yxayp

yxdyc

yxdyp

yxdy

ydeEnyp

VeAeE

VeAe

VeAeE

VeAeE

VeAeE

VeAe

VnAeE
xc

,

,

,

,

,

,

,

I

I

I

I

I

 

C.3 Proof 3 
Prove that 
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( )( ) ( ) ( )( ) ( )( )∅≠≡∅≠∈∃∨∅≠ yxaydxcyxd VeAVnAeEnVeA ,,:,  

First, 

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )( )
( )( ) ( ) ( )( )( )
( )( )

( )
( ) ⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪∧∅=¬≡

∅=∈∀∧∅=¬≡

∅≠∈∃¬∧∅=¬≡

∅≠∈∃∨∅≠

∈ ydeEnyxd

ydxcyxd

ydxcyxd

ydxcyxd

VnAVeA

VnAeEnVeA

VnAeEnVeA

VnAeEnVeA

xc

,,

,:,

,:,

,:,

 

[1] 

We now prove that 

( )( )
( )

( )

( )( ) ( )( )( )∅=∧∅=
⇔

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪∧∅=

∈

yxiyxd

ydeEnyxd

VeAVeA

VnAVeA
xc

,,

,,

 

[2] 

First, given the definition of Ai in section B.5.1.1: 

( )
( )

( )
( ) ( )

( ) ( )( )}
∅=⇒

=∨∈∈¬∃∧
⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ∈∪∈¬∃∅∈=⇒

∅=∪

∈

∈

),(

:,                   

:,:),(

,

yxi

pyxd

pydeEnyxi

ydeEn

VeA

amaEmVeAm

aEmVnAmaVeA

VnA

xc

xc

 

Hence,  

( )( )
( )

( ) ( )( ) ( )( )( )∅=∧∅=⇒⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪∧∅=

∈ yxiyxdydeEnyxd VeAVeAVnAVeA
xc

,,,,  
[3] 

Second, 
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( )( ) ( )( )( )

( )
( )

( )
( ) ( )

( )( )}

( )
( )

( )
( ) ( )

( )
( )

( )
( ) ( )

( )
( ) ⎟

⎠
⎞

⎜
⎝
⎛ ∅=∪∨

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ∈∪∈∃∪∈∀⇒

∅=
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ∈∪∈¬∃∪∈⇒

∅=

=∨∈∅∈¬∃∧
⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ∈∪∈¬∃∪∈⇒

∅=∧∅=

∈

∈∈

∈∈

∈∈

ydeEn

pydeEnydeEn

pydeEnydeEn

p

pydeEnydeEn

yxiyxd

VnA

aEmVnAmVnAa

aEmVnAmVnAa

amaEmm

aEmVnAmVnAa

VeAVeA

xc

xcxc

xcxc

xcxc

,

:,:,

:,:,

  

:

:,:,

,,

                  
 

[4] 

Now, assume that  

( )
( )

( )
( ) ( )⎟

⎠
⎞

⎜
⎝
⎛ ∈∪∈∃∪∈∀

∈∈
aEmVnAmVnAa pydeEnydeEn xcxc

:,:,  
[5] 

And consider an a such that
( )

( )ydeEn
VnAa

xc

,
∈
∪∈ . 

( )
( )

( )
( ) ( ) [ ][ ]

( )
( ) ( ) [ ]

( )
( )

( )
( ) ( ) [ ]

( )
( )

...

, since ,5 from           :,

, since ,5 from          :,

5 from         :,

,

⎥⎦
⎤

⎢⎣
⎡ ∪∈∈∪∈∃⇒

⎥⎦
⎤

⎢⎣
⎡ ∪∈∈∪∈∃⇒

∈∪∈∃⇒

∪∈

∈∈

∈∈

∈

∈

ydeEnpydeEn

ydeEnpydeEn

pydeEn

ydeEn

VnAppEqVnAq

VnAmmEpVnAp

aEmVnAm

VnAa

xcxc

xcxc

xc

xc

  

Note that ( )aEm p∈ , ( )mEp p∈ , ( )pEq p∈ , etc. 

This sequence is repeated along the parents of a (m, p, q, …, r) until the root of the 
tree, r, is reached, concluding that  

( )
( )ydeEn

VnAr
xc

,
∈
∪∈  

and  

( )
( ) ( )rEvVnAv pydeEn xc

∈∪∈∃
∈

:,  
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But since no such v can exist, we can conclude that [5] is not valid. 

Therefore, [4] becomes  

( )( ) ( )( )( )

( )
( ) ⎟

⎠
⎞

⎜
⎝
⎛ ∅=∪⇒

∅=∧∅=

∈ ydeEn

yxiyxd

VnA

VeAVeA

xc

,

,,
 

Hence, 

( )( ) ( )( )( ) ( )( )
( )

( ) ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪∧∅=⇒∅=∧∅=

∈ ydeEnyxdyxiyxd VnAVeAVeAVeA
xc

,,,,  
[6] 

Combining [3] and [6], we get 

( )( )
( )

( )

( )( ) ( )( )( )∅=∧∅=
⇔

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪∧∅=

∈

yxiyxd

ydeEnyxd

VeAVeA

VnAVeA
xc

,,

,,

 

and thus proving [2]. 

Combining [1] and [2], we get: 

( )( ) ( ) ( )( )
( )( )

( )
( ) [ ][ ]

( )( ) ( )( )( ) [ ][ ]
( ) ( )( )
( ) ∅≠≡

∅≠≡

∅=∧∅=¬≡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ∅=∪∧∅=¬≡

∅≠∈∃∨∅≠

∈

yxa

yxiyxd

yxiyxd

ydeEnyxd

ydxcyxd

VeA

VeAVeA

VeAVeA

VnAVeA

VnAeEnVeA

xc

,

,,

2 from                  ,,

1 from       ,,

,:,

U

 

C.4 Proof 4 
Prove that 

( ) ( )( ) ( ) ( )( )yxvxdcyxvxc VnaeEnVnaeEn ,:,: ¬∈∀≡¬∈∀  

First, 

( ) ( )( ) ( ) ( )( )
( ) ( )[ ]xcxdc

yxvxdcyxvxc

eEeE

VnaeEnVnaeEn

⊂

¬∈∀⇒¬∈∀

 Since      

,:,:
 

[1] 
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Second, 

( ) ( )( )
( ) ( ) ( )( )( )

( ) ( )[ ]
( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )( )

( ) ( ) ( )
( ) ( )( )yxvxc

xdcxcxoc

yxvxdcyxvxoc

yxvxoc

yxvxcxxv

yxvcxdc

yxvxdc

VnaeEn
eEeEeE

ABABA

VnaeEnVnaeEn

VnaeEn

VnaeEnea

VmanEmeEn

VnaeEn

,:
    and

                   

,:,:

,:

,:)( ,section1.6 From                  

,::

,:

11

¬∈∀⇒

⎥
⎦

⎤
⎢
⎣

⎡
−=

∧⇒≡⇒

¬∈∀∧¬∈∀⇒

¬∈∀⇒

¬∈∀⇒¬

¬∈∀∈∀⇒

¬∈∀

 

Hence, 

( ) ( )( ) ( ) ( )( )yxvxcyxvxdc VnaeEnVnaeEn ,:,: ¬∈∀⇒¬∈∀  [2] 

Combining [1] and [2], we get 

( ) ( )( ) ( ) ( )( )yxvxdcyxvxc VnaeEnVnaeEn ,:,: ¬∈∀⇔¬∈∀  

 


