
Implementation of a Visual DEVS Formalism in Both GenGED and AToM3

Denis Dubé
Modelling, Simulation and Design Lab

McGill University
d3n14@yahoo.com

Abstract

An implementation of a visual DEVS formalism in
two meta-modeling tools, GenGED and AToM3 is
described. In particular an attempt is made to exploit
the specialized nature of these tools to build the
implementation in as little time as possible. The need
for graphical layout, an easy to use user interface,
model correctness checking, and generation of DEVS
simulation code push these tools to the limit. This
paper can be read as an informal comparison of the
approaches the two tools have taken to the problem of
rapid prototyping of visual languages.

1. Introduction

A visual DEVS formalism is implemented using the
the research tools GenGED and AToM3. DEVS, the
Discrete Event Specification System, is an excellent
simulation formalism due to its expressivity and formal
underpinnings that allow for detailed analysis.
However, DEVS models can grow to be as large as
400,000 lines of code as at leas one example in [1]
shows. This makes it difficult for users of the
formalism to keep a mental map of what the model
really represents, hence suggesting a need for a visual
implementation of the formalism.

Traditionally, visual modeling tools are manually
coded from the ground up for a specific formalism.
Although this usually leads to an efficient and user-
friendly tool, it is extremely time-intensive and cost
inefficient. The alternative is meta-modeling, whereby
the desired visual formalism is itself specified in the
form of a model, and the tool is automatically
generated from this model. Two research tools that can
do this are GenGED and AToM3.

GenGED, [7,8,10,11], is the first tool used to
implement a visual DEVS formalism in this paper. The
key benefit of using this system is the tight integration
of a layout constraint manager PARCON. Just as letters

need to be aligned horizontally in a word, visual
languages require visual components to be positioned
in a restricted number of ways. Thus it shall be
interesting to see what the final output of this tool will
be.

AToM3, [4,5], is the second tool used. The
advantage of this tool will lie in with its great flexibility
with regards to the plugging in of new code in the rapid
proto-typing language Python. This will be especially
critical, as AToM3 does not currently provide any
native support for either hierarchical structures nor
hierarchical layout.

Regardless of the meta-modeling tool used, the end
result should be a useable visual DEVS modeling tool.
It should be useable in the sense that small to medium
sized DEVS problems can be specified with it in
reasonable time and that the specification can then be
outputted to a simulator so that results can be obtained.

2. Background

Prior to the implementation of a visual DEVS tool,
the literature behind both meta-modeling tools is
examined. Moreover, the DEVS formalism itself
requires some scrutiny if a reasonable implementation
is to be built.

2.1. GenGED

The GenGED meta-modeling tool, short for
Generation of Graphical Environments for Design, is
designed to make the visual definition and
manipulation of visual languages relatively quick and
easy. Also built-in are modules that make simulation
and animation trivial to implement [6,9]. The most
important consideration for the implementation of a
visual formalism however, is the integration of a layout
constraint manager called Parcon. This allows the very
difficult task of positioning and re-sizing visual objects
in a logical way, to be specified very easily, with no

need for coding in most cases. Parcon does have a
drawback however, only binaries of it are available,
and they work only on very old Linux distributions or
Solaris operating systems. This is a shame since
GenGED is otherwise a platform independent Java
program.

GenGED can be broken down into three major
components. The alphabet editor, the grammar rule
editor, and the simulation and animation editors.
However the simulation and animation capabilities of
GenGED fall outside the scope of this paper.

 2.1.1. Alphabet Editor

The alphabet editor is the component of GenGED
whereby the visual symbols and the relations between
these symbols, are specified for a given formalism.
This involves three different specification editors
according to [7].

The first of these editors is the Graphical Object
Editor. In this editor, visual symbols are defined for
each visual entity in the formalism. This can be as
simple as creating a circle for a state and a line with an
arrowhead for an arrow, or can involve creating a
double rectangle with a layout constraint enforcing one
rectangle always remains above the other.

The second editor is the TypiEditor. Entities in the
formalism to be created are assigned either a visual
symbol defined in the Graphical Object Editor or are
given a non-visual placeholder. Additionally,
displayable attributes, such as strings for the names, are
instantiated, although they are not tied to any entity at
this point.

The third editor, the ConEditor, then allows you to
specify the actual relationship between the various
entities, including which attributes belong to which
entities. Moreover, layout constraints can be set
throughout this process, so attributes can appear
anchored to the top of an entity, and arrows anchored
to the borders of the entities it connects.

The visual formalism specification these three
editors creates is sufficient for a prototype tool to be
generated. The prototype tool allows for the creation of
all the entities in the formalism and for testing the
layout.

2.1.2. Grammar Rules Editor

The next major component of GenGED involves the

specification of grammar rules for the formalism. The
first type of grammar to create is the syntax grammar.
The motivation for syntax grammars lies in their ability
to ensure that a model being constructed in a formalism

is always correct. In precise terms, this means that the
model is always in the set of all possible valid models
and never enters a configuration that would constitute
an invalid model for the given formalism. Syntax
grammars are enforced at the level of each
manipulation to the model. This means that it is
impossible to interactively modify the model in such a
way that even a temporarily incorrect model occurs.

In an interactive setting, it is sometimes highly
desirable to be able to modify a model into a
temporarily incorrect configuration. This is sometimes
called freehand-editing. To enable this, syntax
grammars must be weakened to allow some incorrect
configurations, but now model checking is
compromised! Ideally we would like to have our cake
and eat it too, hence the motivation for using a parse
grammar. The parse grammar is run by the user to
check the correctness of the model and works by either
reducing the model to an empty one using just the valid
graph grammar rules, or in the opposite direction by
growing an empty model to the current model.

Specification of a grammar in GenGED begins with
an alphabet defined in the alphabet editor. GenGED
then automatically generates basic grammar rules from
this alphabet. There are three types of generated rules:
insertion, deletion, and attribute modification. They
essentially do the obvious thing; insert entities and
relationships along with their associated attributes,
delete entities and relationships, and change the
attribute values. A typical insert rule for an arrow
would have a source and target entity on the left hand
side of the rule, and a source and target entity
connected by an arrow on the right hand side.

Using the automatically generated rules as
primitives, rules of greater complexity can be created.
As a trivial example, in a class diagram formalism, one
might want to a single rule to insert both a new class
diagram object and a new class inside of it. Thus a
new rule would be created with an empty left and right
hand side. The primitive rule for class diagram
insertion would be applied to the right hand side,
followed by the primitive rule to insert a class inside a
class diagram.

From a set of primitive and composite rules,
GenGED allows the creation of a syntax or parse
grammar for use in a final formalism specification. The
final specification simply takes as input the alphabet,
syntax, and (optionally) parse grammar to create a tool
that can be used to create models in the specified
formalism. Note that the final specification can also
include simulation and/or animation grammars as well.

2.2. AToM3

The second meta-modeling tool, AToM3 or A Tool
for Multi-formalism and Meta-Modeling, is also
designed to make the creation of visual formalism easy.
The multi-formalism part of the name stems from the
fact that models can be created using more than one
formalism at once or can be transformed from one
formalism to another. This tool also implements a
graph re-writing system and this is what is typically
used to perform the aforementioned formalism
transformation. Unfortunately, at the time of this
writing the tool lacks the flexible graphical layout
constraints available in GenGED, so layout is typically
achieved by hard-coding it into the formalism, or using
some of the few layouting methods available. The tool
is written entirely in Python and has been successfully
run on Windows, Linux, and Mac operating systems.

In AToM3, visual formalisms are generated from a
model. Indeed, the Entity Relationship diagram
formalism is generated from a model in that very same
formalism. Although the Class Diagram formalism is
far superior to Entity Relationship due to the
inheritance mechanism, it was not mature enough to
use until recently and has not made a big impact on the
AToM3 literature yet. Thus the focus here shall be on
Entity Relationship diagrams for the generation of new
formalisms.

An Entity Relationship diagram consists of just an
entity object and a relationship object that links
together multiple entities, including a loop on a single
entity. For each entity and relationship, one can specify
a name, graphical appearance, cardinality, attribute list,
constraint list, and action list. The graphical
appearance consists of a set of primitive shapes and can
include attributes, which can change at run-time, from
the attribute list. The cardinality is just like the
mechanism employed in UML class diagrams. The
attribute list consists of any number of attributes that
entities in the generated formalism will posses, such as
strings for names. The constraints list allows the
formalism maker to specify constraints that catch
certain events and run code to check that the model is
correct. Finally, the actions list allows the creation of
actions that occur at a specific event, such as
performing a layout operation.

Thus in AToM3, the generation of a formalism is
accomplished by creating a model in an existing
formalism, such as Entity Relationship diagrams, and
filling out the necessary details directly in the visual
model. Unlike GenGED, no syntax or parse grammars
are defined, but instead cardinalities and constraint
code are used to ensure the correctness of the model.

2.3. DEVS

A flavor of DEVS known as classic DEVS,

shorthand for Discrete EVent System Specification, is
now quickly summarized. The difference between
DEVS and many other simulation models is the fact
that it is derived from mathematical dynamical system
theory and thus has a formal framework supporting it.
Moreover, despite the discrete nature of the simulation,
continuous systems can be successfully approximated
with it. DEVS has been applied or is being applied to
large real-life problems, including next generation GPS
systems, spaced based laser systems, and controllers for
blast furnaces used in steel production [1]. An informal
description of DEVS, taken from the inventor of the
formalism, Ziegler [12], follows.

DEVS models have input and output ports through
which all interaction with the external world takes
place. By coupling together output ports of one system
to input ports of another, outputs are transmitted as
inputs and acted upon by the receiving system. Thus,
there are two types of DEVS models, atomic and
coupled. An atomic model directly specifies the
system’s response to events on its input ports, state
transitions, and generation of events on its output ports.

A coupled model is a composition of DEVS models
that presents the same external interfaces as do atomic
models. For example, in Figure 1, CM is a coupled
model with four components. A coupled model
specifies three types of coupling:

• external input – from the input ports of the
coupled model to the input ports of the
components (e.g., from start of CM to start of
counter)

• internal – from the output ports of
components to input ports of other
components (e.g., from explosion of bomb to
strike of target)

• external output – from the output ports of
components to output ports of the coupled
model (e.g., from damage of target to damage
of CM)

Although arbitrary fan-out and fan-in of coupling is
allowed, no self-loops are permitted. DEVS is closed
under coupling, which means that a coupled model can
itself be a component within a higher level coupled
model, leading to hierarchical, modular model
construction.

start defuse counter

fuse

defuse
explosion bomb

strike
target

strike
target

start

CM

damage

damage

damage

Fig. 1. Bomb defusal DEVS example

3. Prototype DEVS Tool

In this section, the development of a prototype tool
that allows us to create basic visual models in the
DEVS formalism, using both GenGED and AToM3 is
described. First the necessary components for a visual
DEVS formalism are enumerated.

There are four different entities: a coupled DEVS,
an atomic DEVS, a state, and a port. Visually they,
appear as a rectangle and a name, a slightly different
rectangle and a name, a circle and a name, and a port
and a name respectively. Relating these entities are four
insideness relations. A coupled DEVS can be inside a
coupled DEVS, an atomic DEVS can be inside a
coupled DEVS, a state can be inside an atomic DEVS,
and a port can be on the border of an atomic or coupled
DEVS. Finally, there are two types of arrows, channels
between ports and transitions between states. The
transitions can be external or internal, thus there are a
total of three distinct arrows.

Given these basic visual primitives, a minimum
amount of work is done, in both meta-modeling tools,
to generate a limited-functionality DEVS modeling
tool. Bear in mind that although the two tools require
essentially the same steps to be performed, that the
order is quite different.

3.1. GenGED

The first step in GenGED involves the purely visual
specification of each entity and arrow. In the current
version of the software (version 1.1, dated
05/11/2004), the Graphical Object Editor and the
TypiEditor have been merged into a single editor called
the Symbol Editor. Thus when implementing a coupled
DEVS entity in the DEVS formalism, we must define
two separate symbols, a rectangle primitive and an

instantiation of a string for the name attribute. Arrows,
such as for transitions and channels, are simply line
primitives with an arrow head. Note that layout
constraints are not employed at this stage since no
composite visual objects are needed for a simple
implementation of the DEVS formalism.

The second step is to specify the actual relationships
between the visual symbols. For the coupled DEVS,
this means we must attach the associated name attribute
to it. Furthermore, a layout constraint is specified such
that the name attribute is anchored to the top of
coupled DEVS object at all times. This is fairly
straightforward to do, one simply selects the anchor top
constraint, and then selects a target and source object
for the constraint.

Completing the second step is the insideness and
arrow relations. Insideness is very straightforward, for
a coupled DEVS inside a coupled DEVS, one simply
selects as source one instance of coupled DEVS and as
target another instance. Then one just chooses the
inside constraint, select source and target again, and
layout is taken care of. Arrows are somewhat more
complicated, as it is necessary to specify first what the
start of the arrow connects to, and then what the end of
the arrow connects to in two separate connection
entries. Two different layout constraints are also
needed, a typical constraint for this will force the arrow
end point to lie on the border of the target object.

A prototype visual DEVS modeling tool can now be
generated. This tool allows us to create each graphical
symbol defined and connect them together according to
the connections defined. Moreover, layout constraints
are enforced. Unfortunately, creating a coupled DEVS,
for example, requires first creating the rectangle
symbol, then the associated name attribute, and finally
using an operation to tell GenGED that these two
belong together. Creation of arrows is just as user
unfriendly, since the arrow must first be created, and
then for each endpoint the correct attachment operation
must be selected, followed by selection of the arrow
and the target object.

Thus a prototype DEVS tool is implemented in
GenGED. Unfortunately, the prototype has an interface
that is too restrictive to create anything more than a
trivial model, no model checking, and no capacity for
extra capabilities. The latter means that it is not
possible to add arbitrary action code that would, for
example, allow us to generate code. However,
automatic layout works very nicely and it is already
possible to save and load models.

3.2. AToM3

Since the meta-modeling tool AToM3 allows meta-
models to be explicitly modeled, the first step is to
choose the meta-modeling environment in which to
model the DEVS formalism. Two possibilities for this
are Entity Relationship diagrams and Class diagrams.
As mentioned previously, the latter were not mature
enough at the time the DEVS formalism was
implemented, so the former was chosen, despite its lack
of inheritance.

The second step is then to create one entity for each
of the entities described at the beginning of this section,
and one relationship for each of the insideness relations
and arrows. Relationships are specified by simply
drawing arrows between the entities or around a single
entity. In contrast with GenGED, the relationships are
defined in a far more natural and visual fashion. On the
other hand no mechanism for setting up layout
constraints exists.

As a third step, cardinalities are specified for each
entity and relationship. This is just like the UML
(Unified Modeling Language) notion of cardinalities.
For example, a coupled DEVS can contain 0 to N
atomic or coupled DEVS, but can only be contained by
another coupled DEVS 0 to 1 times. These cardinalities
are enforced at run-time and provide at least some
limited model correctness checking. This step is shown
in figure 2.

In the fourth step, generative attributes are added to
the model. For example a coupled DEVS will receive a
string attribute for name. As a more complicated
example, a state receives not only a string attribute for
a name, but also two text attributes for storing time
advance and output function code and a Boolean
attribute to indicate if it is the default state.

Finally, the visual appearance of the DEVS
formalism is specified. Note how this is done in a
completely opposite order from GenGED. For each
entity, basic primitives are drawn using a Paint-like
icon-editor tool. Connection ports are added for arrows
to automatically attach to, and generative attributes like
names are added as well. No special layout constraints
are added nor seemingly needed here; the entity will
appear as it is drawn, although the name attribute will
change and the scale may be modified. Lastly, a special
dialog is used to specify the appearance of
relationships as either arrows or as non-visual for the
case of insideness relations.

A prototype can now be generated from this Entity
Relationship model. The prototype has buttons for
creating each entity and arrow relationships are drawn
by selecting one entity as a source and another as a
target. Although it is possible to draw a DEVS model,
the lack of any notion of layout is a serious bottleneck.

Worse, it is not possible to send objects from
foreground to background or vice versa, so creating a
model requires judicious ordering of entity creation.
However, models can be saved and loaded, and it
would be possible to immediately generate code for a
DEVS simulator using either a graph grammar or by
simply adding a button that runs arbitrary code
generating… code.

Thus a prototype visual DEVS formalism is now
implemented in both meta-modeling tools. In both
cases, this is done in a matter of hours. The capabilities
are not yet very impressive though, so the
implementation of a finalized tool is described next.

4. Final DEVS Tool

A full featured extension, or an attempt thereof, of
the basic prototype visual DEVS formalism described
in the previous section is now described. The
extension requirements for the GenGED and AToM3
implementations are nearly complete opposites. In
GenGED, an improved user interface for constructing
models is desperately needed, while in AToM3 it is
layout constraints that are needed. In both cases
implementations, model checking and code generation
need to be added.

4.1. GenGED

A complete specification of a visual DEVS
formalism in GenGED requires the definition of
grammar rules. Given that an alphabet has already been
defined, GenGED automatically generates primitive
grammar rules for the insertion and deletion of entities
and relationships as well as the modification of
attributes. However, even if the alphabet defined in the
prototype tool worked perfectly, it does not necessarily
follow that the generated grammar rules will be correct.
For example, one might get a primitive rule for
inserting an atomic DEVS that has a coupled DEVS in
the left hand side. Worse only a single primitive rule is
generated for the insertion of any given entity, thus no
primitive or composite rule will allow us to create an
atomic DEVS on its own. This merely means that the
specification of a visual formalism must be given with
greater care in the alphabet editor.

However, let us assume correct grammar rules are
generated, and that composite rules are not needed in
the DEVS formalism. GenGED then takes the grammar
rules as is, and generates a syntax grammar
specification. Yet another editor simply takes as input
the alphabet and the syntax grammar and generates a
final visual DEVS modeling tool. Note that the parse

grammar is also being ignored since the focus is on
functionality rather than model correctness at this
point.

The final visual DEVS modeling tool now allows us
to create entities and their associated attributes in one
click. Seemingly the user interface issue of the
prototype tool is resolved. Unfortunately, the creation
of new relations and all specific deletions have become
much harder than in the prototype tool. This is due to
the heavy reliance on graph grammars in GenGED. In
order to connect a channel arrow for example, it
requires 8 user clicks, to select the correct insertion
rule, select the source DEVS port in the model, the
source DEVS port in the left hand side of the rule, etc.

Moreover, GenGED does not have any built-in
support for adding arbitrary code even at this point.
This means it is not possible to generate code that a
DEVS simulator would understand. Our only option
would be to implement a graph grammar DEVS
simulator inside GenGED, assuming a meaningful
DEVS simulator can even be implemented as a graph
grammar.

Thus the attempt to implement a visual DEVS
formalism in GenGED ends here for two reasons: 1)
The user-interface, while quite interesting and perhaps
of research value, is completely innadequate for use in
the creation of non-trivial models and 2) It is not
possible to generate code from GenGED models in the
current implementation.

4.2. AToM3

In the second AToM3 implementation phase, sorely
needed graphical layout constraints are added. Since
AToM3 has no layout constraint manager custom layout
code must be developed and/or built-in layout routines
must be manually called. This will require explicitly
keeping track of the hierarchy implicit in a DEVS
model, which is also not automatically handled by
AToM3 yet.

To keep track of the hierarchy of the DEVS model,
simple actions are added to each entity. For example, in
relationships, Connect actions are required to inform
the source of the relationship of a new child entity, and
the target of the relationship of its new parent.
Likewise Delete actions, in a relationship, will remove
children and reset the parent status of the previously
connected entities. This is sufficient to create and
maintain a hierarchy, not necessarily just for the DEVS
formalism. See figure 3, for what the final Entity
Relationship model with these actions looks like. Note
that actions like "setParent" and "addChildren" are not

really actions but are just methods called by the
Connect actions of the relationships.

Now that a hierarchy is constructed, it is tempting to
simply call a method that performs hierarchical layout
each time part of a model is modified. Indeed the first
implementation was done as such, but additional
complexities, such as allowing for drag-and-drop
hierarchical add and removal, resulted in spaghetti
code inside the actions. Thus the reactive behavior of
the DEVS formalism was modeled in the DCharts
formalism. DCharts are a form of statecharts
developped by Thomas Feng [13].

4.2.1. Entity Relationship diagrams and DCharts

Merging what has become two models in two

different formalisms, Entity Relationship and DCharts,
is not too difficult in AToM3. The current
implementation accomplishes this by having entities in
the Entity Relationship model instantiate a compiled
statechart upon creation. In other words, the DCharts
model separately generates a statechart description
which is then compiled into executable code. Actions
in the Entity Relationship model can then send
messages to the compiled statechart.

In the Entity Relationship diagram shown in figure
3, this corresponds to "initilize" actions and "Connect"
actions. These actions pass several messages to the
statechart shown in Figures 4 and 5, causing the
statechart to switch to describing the behaviour of the
given entity or relationship. Note that a statechart
could have been created for each entity and
relationship, however the current method was chosen as
it minimizes redundant code, improving robustness and
understandability.

To understand how the Entity Relationship diagram
and DCharts models complement each other an
example is given. Starting with an empty model, the
user creates a coupled DEVS. From the Entity
Relationship diagram, this triggers a Create event, and
thus the "initilize" action. This in turn instantiates the
statechart and sends the messages: "createComposite",
"isCoupled", and "Drag-n-drop". For the last message,
a guard checks if the coupled DEVS has a parent, since
it does not, a check is made for whether or not it is
inside another coupled DEVS in which case the user is
asked if they wish to perform the hierarchical addition
of one coupled DEVS inside another. Finally, the
layout method coded into the action "doLayout" in the
Entity Relationship diagram for coupled DEVS is
triggered. The "doLayout" method is simply several
hard-coded layout routines that eliminate overlapping
at a given hierarchical level (using a built-in force

transfer implementation), position and re-size
composite components to fit their children, position
ports along the border of the composite components,
and use built-in AToM3 code to redraw the arrows
automatically.

Continuing this example, suppose an atomic DEVS
is now added directly over the existing coupled DEVS.
Again a statechart is instantiated and the following
messages sent to the statechart: "createComposite",
"isAtomic", and "Drag-n-drop". Since the new atomic
has no parent, the hierarchical adder asks us to add it or
not, and we allow it to add it. Now the coupled DEVS
is re-positioned and re-sized to ensure the atomic
DEVS fits inside. Now suppose we select the coupled
DEVS. This results in a "Select" message being
generated, label 1 in figure 5. This highlights the
coupled DEVS and generates a "recursiveSelect"
message, label 2 in also in figure 5, being generated.
Thus the atomic DEVS is selected and highlighted as
well. This means that if we now use drag or delete
operations, both the coupled and atomic DEVS will be
acted upon.

Taking this example a little further, suppose we now
select just the atomic DEVS and then drag it outside of
the coupled DEVS. As soon as we drop the atomic
DEVS, the "Drag-n-drop" message arrives, and since
the atomic DEVS has a parent, it is label 3 of figure 5
that is triggered. This causes a check to be made for
whether or not the atomic DEVS is still inside the
coupled DEVS. Since it is not, the user is prompted as
to whether or not they wish to hierarchically remove
the atomic DEVS. If not, the coupled DEVS is re-
positioned and re-sized appropriately to contain it.
Otherwise, the atomic DEVS is disconnected, and a
"Drag-n-drop" message is generated for the atomic
DEVS, allowing it to be immediately added to another
coupled DEVS. In both cases, the parent of the atomic
DEVS, the coupled DEVS, receives the message
"recursiveDrop" which is propagated to the root parent.
This message causes layout to be performed, so that
each hierarchical level properly contains its children.

Although the example described is quite trivial, it
should give the reader some intuition as to how Entity
Relationship diagrams and DCharts have been merged
to create a visual DEVS formalism with graphical
layout handling.

4.2.2. Model checking

Some form of model checking is already performed
thanks to the run-time enforcement of the cardinalities
of each entity and relationship, shown in figure 2.
However cardinalities are insufficient. For example, it

is currently possible to have more than one root node,
such as by creating two coupled DEVS with no relation
to each other. To deal with this a "checkValidity"
action is added to ensure the uniqueness of the root
node, shown in figure 3. An action rather than a
constraint is used to signal the error to the user, such as
by red-highlighting, so that the user has the freedom to
interactively edit models. Were a constraint used,
incorrect temporary models with two roots would not
be possible.

Other model checks are also implemented, including
one as a constraint, such that default states are unique
in an atomic DEVS, that internal and external
transitions only link states of the same atomic DEVS,
and that the places where channels between ports of a
given type are possible is restricted.

All this additional model checking is essentially
hard-coded, and is checked at the appropriate trigger
event. It is not as elegant as a syntax or parse grammar,
but it is actually faster and easier to create, especially
when compared with the creation of an efficient parse
grammar.

4.2.3. Code generation

To complete the visual DEVS formalism, a means
of exporting the information contained in the model to
a simulator is needed. This can be done either with
graph grammars or in an entirely hard-coded fashion.
Fortunately, a hard-coded implementation by Ernesto
Posse was already available and could be adapted to
this formalism [3]. This allows models in the visual
DEVS formalism to be converted to executable
simulation code using [4], which is ready to run as is.

5. Discussion and Future Work

Thus a visual DEVS formalism, has been
implemented in the meta-modeling tools GenGED and
AToM3 to varying degrees of completeness. Despite
the strong layout and model checking support in
GenGED, issues involving the user interface and the
lack of code generation capability result in a very basic
and incomplete implementation of DEVS. In AToM3,
the issues involved are rather the opposite, but the lack
of a dedicated layout constraints and of a grammar
based model checker are overcome using its flexibility
with regards to the addition of arbirtrary action and
constraint code. Of course this means that considerable
time is required, about a week in fact, but that is still
far cry from the amount of time that would have been
required to build the tool from scratch.

The interested reader can find the AToM3 models
used to build the DEVS formalism, along with AToM3
itself at: http://msdl.cs.mcgill.ca/people/denis/. The link
to DEVS is on the left in the navigation toolbar.

The current implementation is by no means finished
however. The layout mechanism is currently designed
around the interactive user session and cannot build a
layout from a randomized model automatically. For
example this occurs when you transform a model in
another formalism to DEVS. Also, by requiring the use
of states and arrows inside an atomic DEVS, the
infinite possibilities that are possible with a coded
output function are severely restricted, thus suggesting
the need for a special atomic DEVS that lets the user
code such things explicitly. Another useful addition, in
many situations, would be a visual notation for N
number of components connected together. Lastly, the
ability to completely hide some parts of the hierarchical
structure, while continuing to display and interact with
the rest, would greatly improve the usability of the
visual formalism, especially when used on large
problems.

6. References

[1] Bernard P. Zeigler, “DEVS Today: Recent Advances in
Discrete Event Based Information Technology”, Powerpoint,
MASCOTS' 03, Orlando, FL, October 2003,
http://www.lsis.org/vie_du_labo/uploads/Recent_advances_i
n_discrete_ev_36.ppt

[2] John Kitzinger and Prasanna Sridhar, “DEVS
TUTORIAL”, Powerpoint, University of New Mexico, July
2002, http://vlab.unm.edu/documents/Tutorial1.ppt

[3] Hans Vangheluwe, Jean-Sébastien Bolduc, Ernesto
Posse, and Spencer Borland, “pythonDEVS”, Webpage,
2002,
http://moncs.cs.mcgill.ca/MSDL/research/projects/DEVS/

[4] Ernesto Posse and Jean-Sébastien Bolduc, “Generation of
DEVS modelling and simulation environments”, In
A. Bruzzone and Mhamed Itmi, editors, Summer Computer
Simulation Conference. Student Workshop, pages S139 -
S146. Society for Computer Simulation International (SCS),
July 2003. Montréal, Canada.
http://www.cs.mcgill.ca/~hv/publications/03.SCSC.DEVSco
degen.pdf

[5] Hans Vangheluwe and Juan de Lara, “Domain-Specific
Modelling for analysis and design of traffic networks”,
Winter Simulation Conference, pages 249 - 258. IEEE
Computer Society Press, December 2004. Washington, DC.
http://www.cs.mcgill.ca/~hv/publications/04.Wintersim.Traff
ic.pdf

[6] C. Ermel and R. Bardohl, “Sencario Views for Visual
Behavior Models in GenGED”, Proc. Workshop on Graph
Transformation and Visual Modeling Techniques (GT-
VMT'02), Satellite Event of First Int. Conference on Graph
Transformation (ICGT'02), Barcelona, Spain, Oct. 2002,
pages 71-83, http://www.tfs.cs.tu-
berlin.de/~rosi/publications/EB02_gtVMT.ps.gz

[7] R. Bardohl, “A Generic Graphical Editor for Visual
Languages based on Algebraic Graph Grammars”, Proc.
IEEE Symposium on Visual Languages (VL'98), Sept.1998,
Halifax, Canada, pages 48-55, http://www.tfs.cs.tu-
berlin.de/~rosi/publications/Bar98_VL98.ps.gz

[8] Bardohl,R., Ermel,C., and Weinhold,I., “GenGED - A
visual definition tool for visual modeling environments”,
Proc. Application of Graph Transformations with Industrial
Relevance (AGTIVE'03), pages 407-414, Sept./Oct., 2003,
Charlottesville/Virgina, USA.
Also in Lecture Notes in Computer Science (LNCS) 3062,
Springer, 2004, pages 413-419, http://www.tfs.cs.tu-
berlin.de/~rosi/publications/BEW03_AGTIVE03.ps.gz

[9] C. Ermel and R. Bardohl, “Sencario Views for Visual
Behavior Models in GenGED”, Proc. Workshop on Graph
Transformation and Visual Modeling Techniques (GT-
VMT'02), Satellite Event of First Int. Conference on Graph
Transformation (ICGT'02), Barcelona, Spain, Oct. 2002,
pages 71-83, http://www.tfs.cs.tu-
berlin.de/~rosi/publications/EB02_gtVMT.ps.gz

[10] R. Bardohl, “A Generic Graphical Editor for Visual
Languages based on Algebraic Graph Grammars”, Proc.
IEEE Symposium on Visual Languages (VL'98), Sept.1998,
Halifax, Canada, pages 48-55, http://www.tfs.cs.tu-
berlin.de/~rosi/publications/Bar98_VL98.ps.gz

[11] Bardohl,R., Ermel,C., and Weinhold,I., “GenGED - A
visual definition tool for visual modeling environments”,
Proc. Application of Graph Transformations with Industrial
Relevance (AGTIVE'03), pages 407-414, Sept./Oct., 2003,
Charlottesville/Virgina, USA.
Also in Lecture Notes in Computer Science (LNCS) 3062,
Springer, 2004, pages 413-419, http://www.tfs.cs.tu-
berlin.de/~rosi/publications/BEW03_AGTIVE03.ps.gz

[12] Zeigler, B. “DEVS Theory of Quantized Systems,”
Electronic document, 1998,
http://www.acims.arizona.edu/PUBLICATIONS/CDRLs/Uni
vArizonaCDRL1.pdf

[13] Thomas Huining Feng. Dcharts, a formalism for
modeling and simulation based design of reactive software
systems. M.Sc. dissertation, School of Computer Science,
McGill University, February 2004.
http://msdl.cs.mcgill.ca/MSDL/people/tfeng/thesis/thesis.pdf

Fig. 2., Entity Relationhip diagram specifying the DEVS formalism, cardinalities shown

 Fig.3., Entity Relationhip diagram specifying the DEVS formalism; attributes, constraints, and actions shown

Fig. 4., DCharts model of DEVS reactive behaviour; top part for insidness relations and arrows shown

Fig. 5., DCharts model of DEVS reactive behaviour; bottom part for entities shown

