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Abstract 
 

An implementation of a visual DEVS formalism in 
two meta-modeling tools, GenGED and AToM3 is 
described. In particular an attempt is made to exploit 
the specialized nature of these tools to build the 
implementation in as little time as possible. The need 
for graphical layout, an easy to use  user interface, 
model correctness checking, and generation of DEVS 
simulation code push these tools to the limit. This 
paper can be read as an informal comparison of the 
approaches the two tools have taken to the problem of 
rapid prototyping of visual languages.  
 

1. Introduction 
 

A visual DEVS formalism is implemented using the 
the research tools GenGED and AToM3. DEVS, the 
Discrete Event Specification System, is an excellent 
simulation formalism due to its expressivity and formal 
underpinnings that allow for detailed analysis. 
However, DEVS models can grow to be as large as 
400,000 lines of code as at leas one example in [1] 
shows. This makes it difficult for users of the 
formalism to keep a mental map of what the model 
really represents, hence suggesting a need for a visual 
implementation of the formalism.   

Traditionally, visual modeling tools are manually 
coded from the ground up for a specific formalism. 
Although this usually leads to an efficient and user-
friendly tool, it is extremely time-intensive and cost 
inefficient. The alternative is meta-modeling, whereby 
the desired visual formalism is itself specified in the 
form of a model, and the tool is automatically 
generated from this model. Two research tools that can 
do this are GenGED and AToM3.  

GenGED, [7,8,10,11], is the first tool used to 
implement a visual DEVS formalism in this paper. The 
key benefit of using this system is the tight integration 
of a layout constraint manager PARCON. Just as letters 

need to be aligned horizontally in a word, visual 
languages require visual components to be positioned 
in a restricted number of ways. Thus it shall be 
interesting to see what the final output of this tool will 
be.  

AToM3, [4,5], is the second tool used. The 
advantage of this tool will lie in with its great flexibility 
with regards to the plugging in of new code in the rapid 
proto-typing language Python. This will be especially 
critical, as AToM3 does not currently provide any 
native support for either hierarchical structures nor 
hierarchical layout.  

Regardless of the meta-modeling tool used, the end 
result should be a useable visual DEVS modeling tool. 
It should be useable in the sense that small to medium 
sized DEVS problems can be specified with it in 
reasonable time and that the specification can then be 
outputted to a simulator so that results can be obtained.  
 

2. Background 
 

Prior to the implementation of a visual DEVS tool, 
the literature behind both meta-modeling tools is 
examined. Moreover, the DEVS formalism itself 
requires some scrutiny if a reasonable implementation 
is to be built.  
 
2.1. GenGED 
 

The GenGED meta-modeling tool, short for 
Generation of Graphical Environments for Design, is 
designed to make the visual definition and 
manipulation of visual languages relatively quick and 
easy. Also built-in are modules that make simulation 
and animation trivial to implement [6,9]. The most 
important consideration for the implementation of a 
visual formalism however, is the integration of a layout 
constraint manager called Parcon. This allows the very 
difficult task of positioning and re-sizing visual objects 
in a logical way, to be specified very easily, with no 



need for coding in most cases. Parcon does have a 
drawback however, only binaries of it are available, 
and they work only on very old Linux distributions or 
Solaris operating systems. This is a shame since 
GenGED is otherwise a platform independent Java 
program.  

GenGED can be broken down into three major 
components. The alphabet editor, the grammar rule 
editor, and the simulation and animation editors. 
However the simulation and animation capabilities of 
GenGED fall outside the scope of this paper.  

 
 2.1.1. Alphabet Editor 
 

The alphabet editor is the component of GenGED 
whereby the visual symbols and the relations between 
these symbols, are specified for a given formalism. 
This involves three different specification editors 
according to [7].  

The first of these editors is the Graphical Object 
Editor. In this editor, visual symbols are defined for 
each visual entity in the formalism. This can be as 
simple as creating a circle for a state and a line with an 
arrowhead for an arrow, or can involve creating a 
double rectangle with a layout constraint enforcing one 
rectangle always remains above the other.  

The second editor is the TypiEditor. Entities in the 
formalism to be created are assigned either a visual 
symbol defined in the Graphical Object Editor or are 
given a non-visual placeholder. Additionally, 
displayable attributes, such as strings for the names, are 
instantiated, although they are not tied to any entity at 
this point.  

The third editor, the ConEditor, then allows you to 
specify the actual relationship between the various 
entities, including which attributes belong to which 
entities. Moreover, layout constraints can be set 
throughout this process, so attributes can appear 
anchored to the top of an entity, and arrows anchored 
to the borders of the entities it connects.  

The visual formalism specification these three 
editors creates is sufficient for a prototype tool to be 
generated. The prototype tool allows for the creation of 
all the entities in the formalism and for testing the 
layout.  

 
2.1.2. Grammar Rules Editor 

 
The next major component of GenGED involves the 

specification of grammar rules for the formalism. The 
first type of grammar to create is the syntax grammar. 
The motivation for syntax grammars lies in their ability 
to ensure that a model being constructed in a formalism 

is always correct. In precise terms, this means that the 
model is always in the set of all possible valid models 
and never enters a configuration that would constitute 
an invalid model for the given formalism. Syntax 
grammars are enforced at the level of each 
manipulation to the model. This means that it is 
impossible to interactively modify the model in such a 
way that even a temporarily incorrect model occurs.   

In an interactive setting, it is sometimes highly 
desirable to be able to modify a model into a 
temporarily incorrect configuration. This is sometimes 
called freehand-editing. To enable this, syntax 
grammars must be weakened to allow some incorrect 
configurations, but now model checking is 
compromised! Ideally we would like to have our cake 
and eat it too, hence the motivation for using a parse 
grammar. The parse grammar is run by the user to 
check the correctness of the model and works by either 
reducing the model to an empty one using just the valid 
graph grammar rules, or in the opposite direction by 
growing an empty model to the current model.  

Specification of a grammar in GenGED begins with 
an alphabet defined in the alphabet editor. GenGED 
then automatically generates basic grammar rules from 
this alphabet. There are three types of generated rules: 
insertion, deletion, and attribute modification. They 
essentially do the obvious thing; insert entities and 
relationships along with their associated attributes, 
delete entities and relationships, and change the 
attribute values. A typical insert rule for an arrow 
would have a source and target entity on the left hand 
side of the rule, and a source and target entity 
connected by an arrow on the right hand side.  

Using the automatically generated rules as 
primitives, rules of greater complexity can be created. 
As a trivial example, in a class diagram formalism, one 
might want to a single rule to insert both a new class 
diagram object and a new class inside of it.  Thus a 
new rule would be created with an empty left and right 
hand side. The primitive rule for class diagram 
insertion would be applied to the right hand side, 
followed by the primitive rule to insert a class inside a 
class diagram.  

From a set of primitive and composite rules, 
GenGED allows the creation of a syntax or parse 
grammar for use in a final formalism specification. The 
final specification simply takes as input the alphabet, 
syntax, and (optionally) parse grammar to create a tool 
that can be used to create models in the specified 
formalism. Note that the final specification can also 
include simulation and/or animation grammars as well. 

 



2.2. AToM3 
 

The second meta-modeling tool, AToM3 or A Tool 
for Multi-formalism and Meta-Modeling, is also 
designed to make the creation of visual formalism easy. 
The multi-formalism part of the name stems from the 
fact that models can be created using more than one 
formalism at once or can be transformed from one 
formalism to another. This tool also implements a 
graph re-writing system and this is what is typically 
used to perform the aforementioned formalism 
transformation. Unfortunately, at the time of this 
writing the tool lacks the flexible graphical layout 
constraints available in GenGED, so layout is typically 
achieved by hard-coding it into the formalism, or using 
some of the few layouting methods available. The tool 
is written entirely in Python and has been successfully 
run on Windows, Linux, and Mac operating systems.  

In AToM3, visual formalisms are generated from a 
model. Indeed, the Entity Relationship diagram 
formalism is generated from a model in that very same 
formalism. Although the Class Diagram formalism is 
far superior to Entity Relationship due to the 
inheritance mechanism, it was not mature enough to 
use until recently and has not made a big impact on the 
AToM3 literature yet. Thus the focus here shall be on 
Entity Relationship diagrams for the generation of new 
formalisms.  

An Entity Relationship diagram consists of just an 
entity object and a relationship object that links 
together multiple entities, including a loop on a single 
entity. For each entity and relationship, one can specify 
a name, graphical appearance, cardinality, attribute list, 
constraint list, and action list. The graphical 
appearance consists of a set of primitive shapes and can 
include attributes, which can change at run-time, from 
the attribute list. The cardinality is just like the 
mechanism employed in UML class diagrams. The 
attribute list consists of any number of attributes that 
entities in the generated formalism will posses, such as 
strings for names. The constraints list allows the 
formalism maker to specify constraints that catch 
certain events and run code to check that the model is 
correct. Finally, the actions list allows the creation of 
actions that occur at a specific event, such as 
performing a layout operation. 

Thus in AToM3, the generation of a formalism is 
accomplished by creating a model in an existing 
formalism, such as Entity Relationship diagrams,  and 
filling out the necessary details directly in the visual 
model. Unlike GenGED, no syntax or parse grammars 
are defined, but instead cardinalities and constraint 
code are used to ensure the correctness of the model. 

 
2.3. DEVS 

 
A flavor of DEVS known as classic DEVS, 

shorthand for Discrete EVent System Specification, is 
now quickly summarized. The difference between 
DEVS and many other simulation models is the fact 
that it is derived from mathematical dynamical  system 
theory and thus has a formal framework supporting it. 
Moreover, despite the discrete nature of the simulation, 
continuous systems can be successfully approximated 
with it. DEVS has been applied or is being applied to 
large real-life problems, including next generation GPS 
systems, spaced based laser systems, and controllers for 
blast furnaces used in steel production [1]. An informal 
description of DEVS, taken from the inventor of the 
formalism, Ziegler [12], follows.  

DEVS models have input and output ports through 
which all interaction with the external world takes 
place.  By coupling together output ports of one system 
to input ports of another, outputs are transmitted as 
inputs and acted upon by the receiving system. Thus, 
there are two types of DEVS models, atomic and 
coupled. An atomic model directly specifies the 
system’s response to events on its input ports, state 
transitions, and generation of events on its output ports.  

A coupled model is a composition of DEVS models 
that presents the same external interfaces as do atomic 
models. For example, in Figure 1, CM is a coupled 
model with four components. A coupled model 
specifies three types of coupling:  

• external input – from the input ports of the 
coupled model to the input ports of the 
components (e.g., from start of CM to start of 
counter) 

• internal – from the output ports of 
components to input ports of other 
components (e.g., from explosion of bomb to 
strike of target)  

• external output – from the output ports of 
components to output ports of the coupled 
model (e.g., from damage of target to damage 
of CM) 

Although arbitrary fan-out and fan-in of coupling is 
allowed, no self-loops are permitted. DEVS is closed 
under coupling, which means that a coupled model can 
itself be a component within a higher level coupled 
model, leading to hierarchical, modular model 
construction. 
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Fig. 1. Bomb defusal DEVS example 
 

3. Prototype DEVS Tool 
 

In this section, the development of a prototype tool 
that allows us to create basic visual models in the 
DEVS formalism, using both GenGED and AToM3 is 
described. First the necessary components for a visual 
DEVS formalism are enumerated.  

There are four different entities: a coupled DEVS, 
an atomic DEVS, a state, and a port. Visually they, 
appear as a rectangle and a name, a slightly different 
rectangle and a name, a circle and a name, and a port 
and a name respectively. Relating these entities are four 
insideness relations. A coupled DEVS can be inside a 
coupled DEVS, an atomic DEVS can be inside a 
coupled DEVS, a state can be inside an atomic DEVS, 
and a port can be on the border of an atomic or coupled 
DEVS. Finally, there are two types of arrows, channels 
between ports and transitions between states. The 
transitions can be external or internal, thus there are a 
total of three distinct arrows.  

Given these basic visual primitives, a minimum 
amount of work is done, in both meta-modeling tools, 
to generate a limited-functionality DEVS modeling 
tool. Bear in mind that although the two tools require 
essentially the same steps to be performed, that the 
order is quite different.  

 
3.1. GenGED 
 

The first step in GenGED involves the purely visual 
specification of each entity and arrow. In the current 
version of the software (version 1.1, dated 
05/11/2004), the Graphical Object Editor and the 
TypiEditor have been merged into a single editor called 
the Symbol Editor. Thus when implementing a coupled 
DEVS entity in the DEVS formalism, we must define 
two separate symbols, a rectangle primitive and an 

instantiation of a string for the name attribute. Arrows,  
such as for transitions and channels, are simply line 
primitives with an arrow head. Note that layout 
constraints are not employed at this stage since no 
composite visual objects are needed for a simple 
implementation of the DEVS formalism.  

The second step is to specify the actual relationships 
between the visual symbols. For the coupled DEVS, 
this means we must attach the associated name attribute 
to it. Furthermore, a layout constraint is specified such 
that the name attribute is anchored to the top of 
coupled DEVS object at all times. This is fairly 
straightforward to do, one simply selects the anchor top 
constraint, and then selects a target and source object 
for the constraint.  

Completing the second step is the insideness and 
arrow relations. Insideness is very straightforward, for 
a coupled DEVS inside a coupled DEVS, one simply 
selects as source one instance of coupled DEVS and as 
target another instance. Then one just chooses the 
inside constraint, select source and target again, and 
layout is taken care of. Arrows are somewhat more 
complicated, as it is necessary to specify first what the 
start of the arrow connects to, and then what the end of 
the arrow connects to in two separate connection 
entries. Two different layout constraints are also 
needed, a typical constraint for this will force the arrow 
end point to lie on the border of the target object.  

A prototype visual DEVS modeling tool can now be 
generated. This tool allows us to create each graphical 
symbol defined and connect them together according to 
the connections defined. Moreover, layout constraints 
are enforced. Unfortunately, creating a coupled DEVS, 
for example, requires first creating the rectangle 
symbol, then the associated name attribute, and finally 
using an operation to tell GenGED that these two 
belong together. Creation of arrows is just as user 
unfriendly, since the arrow must first be created, and 
then for each endpoint the correct attachment operation 
must be selected, followed by selection of the arrow 
and the target object.  

Thus a prototype DEVS tool is implemented in 
GenGED. Unfortunately, the prototype has an interface 
that is too restrictive to create anything more than a 
trivial model, no model checking, and no capacity for 
extra capabilities. The latter means that it is not 
possible to add arbitrary action code that would, for 
example, allow us to generate code. However, 
automatic layout works very nicely and it is already 
possible to save and load models. 

 
3.2. AToM3 
 



Since the meta-modeling tool AToM3 allows meta-
models to be explicitly modeled, the first step is to 
choose the meta-modeling environment in which to 
model the DEVS formalism. Two possibilities for this 
are Entity Relationship diagrams and Class diagrams. 
As mentioned previously, the latter were not mature 
enough at the time the DEVS formalism was 
implemented, so the former was chosen, despite its lack 
of inheritance.  

The second step is then to create one entity for each 
of the entities described at the beginning of this section, 
and one relationship for each of the insideness relations 
and arrows. Relationships are specified by simply 
drawing arrows between the entities or around a single 
entity. In contrast with GenGED, the relationships are 
defined in a far more natural and visual fashion. On the 
other hand no mechanism for setting up layout 
constraints exists.  

As a third step, cardinalities are specified for each 
entity and relationship. This is just like the UML 
(Unified Modeling Language) notion of cardinalities. 
For example, a coupled DEVS can contain 0 to N 
atomic or coupled DEVS, but can only be contained by 
another coupled DEVS 0 to 1 times. These cardinalities 
are enforced at run-time and provide at least some 
limited model correctness checking. This step is shown 
in figure 2.   

In the fourth step, generative attributes are added to 
the model. For example a coupled DEVS will receive a 
string attribute for name. As a more complicated 
example, a state receives not only a string attribute for 
a name, but also two text attributes for storing time 
advance and output function code and a Boolean 
attribute to indicate if it is the default state. 

Finally, the visual appearance of the DEVS 
formalism is specified. Note how this is done in a 
completely opposite order from GenGED. For each 
entity, basic primitives are drawn using a Paint-like 
icon-editor tool. Connection ports are added for arrows 
to automatically attach to, and generative attributes like 
names are added as well. No special layout constraints 
are added nor seemingly needed here; the entity will 
appear as it is drawn, although the name attribute will 
change and the scale may be modified. Lastly, a special 
dialog is used to specify the appearance of 
relationships as either arrows or as non-visual for the 
case of insideness relations.  

A prototype can now be generated from this Entity 
Relationship model. The prototype has buttons for 
creating each entity and arrow relationships are drawn 
by selecting one entity as a source and another as a 
target. Although it is possible to draw a DEVS model, 
the lack of any notion of layout is a serious bottleneck. 

Worse, it is not possible to send objects from 
foreground to background or vice versa, so creating a 
model requires judicious ordering of entity creation. 
However, models can be saved and loaded, and it 
would be possible to immediately generate code for a 
DEVS simulator using either a graph grammar or by 
simply adding a button that runs arbitrary code 
generating… code.  

Thus a prototype visual DEVS formalism is now 
implemented in both meta-modeling tools. In both 
cases, this is done in a matter of hours. The capabilities 
are not yet very impressive though, so the 
implementation of a finalized tool is described next.  
 

4. Final DEVS Tool 
 

A full featured extension, or an attempt thereof, of 
the basic prototype visual DEVS formalism described 
in the previous section is now described.  The 
extension requirements for the GenGED and AToM3 
implementations are nearly complete opposites. In 
GenGED, an improved user interface for constructing 
models is desperately needed, while in AToM3 it is 
layout constraints that are needed. In both cases 
implementations, model checking and code generation 
need to be added.   

 
4.1. GenGED 
 

A complete specification of a visual DEVS 
formalism in GenGED requires the definition of 
grammar rules. Given that an alphabet has already been 
defined, GenGED automatically generates primitive 
grammar rules for the insertion and deletion of entities 
and relationships as well as the modification of 
attributes. However, even if the alphabet defined in the 
prototype tool worked perfectly, it does not necessarily 
follow that the generated grammar rules will be correct. 
For example, one might get a primitive rule for 
inserting an atomic DEVS that has a coupled DEVS in 
the left hand side. Worse only a single primitive rule is 
generated for the insertion of any given entity, thus no 
primitive or composite rule will allow us to create an 
atomic DEVS on its own. This merely means that the 
specification of a visual formalism must be given with 
greater care in the alphabet editor.  

However, let us assume correct grammar rules are 
generated, and that composite rules are not needed in 
the DEVS formalism. GenGED then takes the grammar 
rules as is, and generates a syntax grammar 
specification. Yet another editor simply takes as input 
the alphabet and the syntax grammar and generates a 
final visual DEVS modeling tool. Note that the parse 



grammar is also being ignored since the focus is on 
functionality rather than model correctness at this 
point. 

The final visual DEVS modeling tool now allows us 
to create entities and their associated attributes in one 
click. Seemingly the user interface issue of the 
prototype tool is resolved. Unfortunately, the creation 
of new relations and all specific deletions have become 
much harder than in the prototype tool. This is due to 
the heavy reliance on graph grammars in GenGED. In 
order to connect a channel arrow for example, it 
requires 8 user clicks, to select the correct insertion 
rule, select the source DEVS port in the model, the 
source DEVS port in the left hand side of the rule, etc.  

Moreover, GenGED does not have any built-in 
support for adding arbitrary code even at this point. 
This means it is not possible to generate code that a 
DEVS simulator would understand. Our only option 
would be to implement a graph grammar DEVS 
simulator inside GenGED, assuming a meaningful 
DEVS simulator can even be implemented as a graph 
grammar.  

Thus the attempt to implement a visual DEVS 
formalism in GenGED ends here for two reasons: 1) 
The user-interface, while quite interesting and perhaps 
of research value, is completely innadequate for use in 
the creation of non-trivial models and 2) It is not 
possible to generate code from GenGED models in the 
current implementation.   

 
4.2. AToM3 
 

In the second AToM3  implementation phase, sorely 
needed graphical layout constraints are added. Since 
AToM3 has no layout constraint manager custom layout 
code must be developed and/or built-in layout routines 
must be manually called. This will require explicitly 
keeping track of the hierarchy implicit in a DEVS 
model, which is also not automatically handled by 
AToM3 yet.  

To keep track of the hierarchy of the DEVS model, 
simple actions are added to each entity. For example, in 
relationships, Connect actions are required to inform 
the source of the relationship of a new child entity, and 
the target of the relationship of its new parent.  
Likewise Delete actions, in a relationship, will remove 
children and reset the parent status of the previously 
connected entities. This is sufficient to create and 
maintain a hierarchy, not necessarily just for the DEVS 
formalism. See figure 3, for what the final Entity 
Relationship model with these actions looks like. Note 
that actions like "setParent" and "addChildren" are not 

really actions but are just methods called by the 
Connect actions of the relationships. 

Now that a hierarchy is constructed, it is tempting to 
simply call a method that performs hierarchical layout 
each time part of a model is modified. Indeed the first 
implementation was done as such, but additional 
complexities, such as allowing for drag-and-drop 
hierarchical add and removal, resulted in spaghetti 
code inside the actions. Thus the reactive behavior of 
the DEVS formalism was modeled in the DCharts  
formalism. DCharts are a form of statecharts 
developped by Thomas Feng [13].    

 
4.2.1. Entity Relationship diagrams and DCharts 

 
Merging what has become two models in two 

different formalisms, Entity Relationship and DCharts, 
is not too difficult in AToM3. The current 
implementation accomplishes this by having entities in 
the Entity Relationship model instantiate a compiled 
statechart upon creation. In other words, the DCharts 
model separately generates a statechart description 
which is then compiled into executable code. Actions 
in the Entity Relationship model can then send 
messages to the compiled statechart.  

In the Entity Relationship diagram shown in figure 
3, this corresponds to "initilize" actions and "Connect" 
actions. These actions pass several messages to the 
statechart shown in Figures 4 and 5, causing the 
statechart to switch to describing the behaviour of the 
given entity or relationship.   Note that a statechart 
could have been created for each entity and 
relationship, however the current method was chosen as 
it minimizes redundant code, improving robustness and 
understandability.  

To understand how the Entity Relationship diagram 
and DCharts models complement each other an 
example is given. Starting with an empty model, the 
user creates a coupled DEVS. From the Entity 
Relationship diagram, this triggers a Create event, and 
thus the "initilize" action. This in turn instantiates the 
statechart and sends the messages: "createComposite", 
"isCoupled", and "Drag-n-drop". For the last message, 
a guard checks if the coupled DEVS has a parent, since 
it does not, a check is made for whether or not it is 
inside another coupled DEVS in which case the user is 
asked if they wish to perform the hierarchical addition 
of one coupled DEVS inside another. Finally, the 
layout method coded into the action "doLayout" in the 
Entity Relationship diagram for coupled DEVS is 
triggered. The "doLayout" method is simply several 
hard-coded layout routines that eliminate overlapping 
at a given hierarchical level (using a built-in force 



transfer implementation), position and re-size 
composite components to fit their children, position 
ports along the border of the composite components, 
and use built-in AToM3 code to redraw the arrows 
automatically.  

Continuing this example, suppose an atomic DEVS 
is now added directly over the existing coupled DEVS. 
Again a statechart is instantiated and the following 
messages sent to the statechart: "createComposite", 
"isAtomic", and "Drag-n-drop". Since the new atomic 
has no parent, the hierarchical adder asks us to add it or 
not, and we allow it to add it. Now the coupled DEVS 
is re-positioned and re-sized to ensure the atomic 
DEVS fits inside. Now suppose we select the coupled 
DEVS. This results in a "Select" message being 
generated, label 1 in figure 5. This highlights the 
coupled DEVS and generates a "recursiveSelect" 
message, label 2 in also in figure 5, being generated. 
Thus the atomic DEVS is selected and highlighted as 
well. This means that if we now use drag or delete 
operations, both the coupled and atomic DEVS will be 
acted upon.  

Taking this example a little further, suppose we now 
select just the atomic DEVS and then drag it outside of 
the coupled DEVS. As soon as we drop the atomic 
DEVS, the "Drag-n-drop" message arrives, and since 
the atomic DEVS has a parent, it is label 3 of figure 5 
that is triggered. This causes a check to be made for 
whether or not the atomic DEVS is still inside the 
coupled DEVS. Since it is not, the user is prompted as 
to whether or not they wish to hierarchically remove 
the atomic DEVS. If not, the coupled DEVS is re-
positioned and re-sized appropriately to contain it. 
Otherwise, the atomic DEVS is disconnected, and a 
"Drag-n-drop" message is generated for the atomic 
DEVS, allowing it to be immediately added to another 
coupled DEVS. In both cases, the parent of the atomic 
DEVS, the coupled DEVS, receives the message 
"recursiveDrop" which is propagated to the root parent. 
This message causes layout to be performed, so that 
each hierarchical level properly contains its children.  

Although the example described is quite trivial, it 
should give the reader some intuition as to how Entity 
Relationship diagrams and DCharts have been merged 
to create a visual DEVS formalism with graphical 
layout handling.  

 
4.2.2. Model checking 
 

Some form of model checking is already performed 
thanks to the run-time enforcement of the cardinalities 
of each entity and relationship, shown in figure 2. 
However cardinalities are insufficient. For example, it 

is currently possible to have more than one root node, 
such as by creating two coupled DEVS with no relation 
to each other.  To deal with this a "checkValidity" 
action is added to ensure the uniqueness of the root 
node, shown in figure 3. An action rather than a 
constraint is used to signal the error to the user, such as 
by red-highlighting, so that the user has the freedom to 
interactively edit models. Were a constraint used, 
incorrect temporary models with two roots would not 
be possible.  

Other model checks are also implemented, including 
one as a constraint, such that default states are unique 
in an atomic DEVS, that internal and external 
transitions only link states of the same atomic DEVS, 
and that the places where channels between ports of a 
given type are possible is restricted.  

All this additional model checking is essentially 
hard-coded, and is checked at the appropriate trigger 
event. It is not as elegant as a syntax or parse grammar, 
but it is actually faster and easier to create, especially 
when compared with the creation of an efficient parse 
grammar. 

 
4.2.3. Code generation 
 

To complete the visual DEVS formalism, a means 
of exporting the information contained in the model to 
a simulator is needed. This can be done either with 
graph grammars or in an entirely hard-coded fashion. 
Fortunately, a hard-coded implementation by Ernesto 
Posse was already available and could be adapted to 
this formalism [3]. This allows models in the visual 
DEVS formalism to be converted to executable 
simulation code using [4], which is ready to run as is.  
 

5. Discussion and Future Work 
 

Thus a visual DEVS formalism, has been 
implemented in the meta-modeling tools GenGED and 
AToM3 to varying degrees of completeness. Despite 
the strong layout and model checking support in 
GenGED, issues involving the user interface and the 
lack of code generation capability result in a very basic 
and incomplete implementation of DEVS. In AToM3, 
the issues involved are rather the opposite, but the lack 
of a dedicated layout constraints and of a grammar 
based model checker are overcome using its flexibility 
with regards to the addition of arbirtrary action and 
constraint code. Of course this means that considerable 
time is required, about a week in fact, but that is still 
far cry from the amount of time that would have been 
required to build the tool from scratch.  



The interested reader can find the AToM3 models 
used to build the DEVS formalism, along with AToM3 
itself at: http://msdl.cs.mcgill.ca/people/denis/. The link 
to DEVS is on the left in the navigation toolbar.  

The current implementation is by no means finished 
however. The layout mechanism is currently designed 
around the interactive user session and cannot build a 
layout from a randomized model automatically. For 
example this occurs when you transform a model in 
another formalism to DEVS. Also, by requiring the use 
of states and arrows inside an atomic DEVS, the 
infinite possibilities that are possible with a coded 
output function are severely restricted, thus suggesting 
the need for a special atomic DEVS that lets the user 
code such things explicitly. Another useful addition, in 
many situations, would be a visual notation for N 
number of components connected together. Lastly, the 
ability to completely hide some parts of the hierarchical 
structure, while continuing to display and interact with 
the rest, would greatly improve the usability of the 
visual formalism, especially when used on large 
problems.  
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Fig. 2., Entity Relationhip diagram specifying the DEVS formalism, cardinalities shown 

 



 Fig.3., Entity Relationhip diagram specifying the DEVS formalism; attributes, constraints, and actions shown 

 



Fig. 4., DCharts model of DEVS reactive behaviour; top part for insidness relations and arrows shown 

 



Fig. 5., DCharts model of DEVS reactive behaviour; bottom part for entities shown 

 



 


