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Abstract

An implementation of a visual DEVS formalism in
two meta-modeling tools, GenGED and AToM? is
described. In particular an attempt is made to exploit
the specialized nature of these tools to build the
implementation in as little time as possible. The need
for graphical layout, an easy to use user interface,
model correctness checking, and generation of DEVS
simulation code push these tools to the limit. This
paper can be read as an informal comparison of the
approaches the two tools have taken to the problem of
rapid prototyping of visual languages.

1. Introduction

A visual DEVS formalism is implemented using the
the research tools GenGED and ATONDEVS, the
Discrete Event Specification System, is an excetllen
simulation formalism due to its expressivity andiial
underpinnings that allow for detailed analysis.

However, DEVS models can grow to be as large as

need to be aligned horizontally in a word, visual
languages require visual components to be posiione
in a restricted number of ways. Thus it shall be
interesting to see what the final output of thisl teill

be.

AToM?® [4,5], is the second tool used. The
advantage of this tool will lie in with its gredeXibility
with regards to the plugging in of new code in thpid
proto-typing language Python. This will be espdgial
critical, as AToM does not currently provide any
native support for either hierarchical structures n
hierarchical layout.

Regardless of the meta-modeling tool used, the end
result should be a useable visual DEVS modeling too
It should be useable in the sense that small taumed
sized DEVS problems can be specified with it in
reasonable time and that the specification can been
outputted to a simulator so that results can baiobd.

2. Background

Prior to the implementation of a visual DEVS tool,

400,000 lines of code as at leas one examp|e in [l]the literature behind both meta'mode“ng tools is
shows. This makes it difficult for users of the €xamined. Moreover, the DEVS formalism itself

formalism to keep a mental map of what the model fequires some scrutiny if a reasonable implementati

really represents, hence suggesting a need fosualvi
implementation of the formalism.

Traditionally, visual modeling tools are manually
coded from the ground up for a specific formalism.
Although this usually leads to an efficient and ruse
friendly tool, it is extremely time-intensive anast
inefficient. The alternative is meta-modeling, wdimy
the desired visual formalism is itself specifiedtive
form of a model, and the tool is automatically
generated from this model. Two research toolsdhat
do this are GenGED and ATGM

GenGED, [7,8,10,11], is the first tool used to
implement a visual DEVS formalism in this papereTh
key benefit of using this system is the tight imgipn
of a layout constraint manager PARCON. Just asrkett

is to be built.

2.1. GenGED

The GenGED meta-modeling tool, short for
Generation of Graphical Environments for Design, is
designed to make the visual definition and
manipulation of visual languages relatively quigida
easy. Also built-in are modules that make simutatio
and animation trivial to implement [6,9]. The most
important consideration for the implementation of a
visual formalism however, is the integration ofgdut
constraint manager called Parcon. This allows &1y v
difficult task of positioning and re-sizing visuabjects
in a logical way, to be specified very easily, with



need for coding in most cases. Parcon does have d always correct. In precise terms, this meansttie
drawback however, only binaries of it are available model is always in the set of all possible validdeis
and they work only on very old Linux distributions and never enters a configuration that would camstit
Solaris operating systems. This is a shame sincean invalid model for the given formalism. Syntax
GenGED is otherwise a platform independent Javagrammars are enforced at the level of each
program. manipulation to the model. This means that it is
GenGED can be broken down into three major impossible to interactively modify the model in buz
components. The alphabet editor, the grammar ruleway that even a temporarily incorrect model occurs.
editor, and the simulation and animation editors. In an interactive setting, it is sometimes highly
However the simulation and animation capabilitiés o desirable to be able to modify a model into a

GenGED fall outside the scope of this paper. temporarily incorrect configuration. This is somagis
called freehand-editing. To enable this, syntax
2.1.1. Alphabet Editor grammars must be weakened to allow some incorrect

configurations, but now model checking is
The alphabet editor is the component of GenGED compromised! Ideally we would like to have our cake
whereby the visual symbols and the relations batwee and eat it too, hence the motivation for using es@a
these symbols, are specified for a given formalism. grammar. The parse grammar is run by the user to
This involves three different specification editors check the correctness of the model and works it

according to [7]. reducing the model to an empty one using just i v
The first of these editors is the Graphical Object graph grammar rules, or in the opposite directign b
Editor. In this editor, visual symbols are definfex growing an empty model to the current model.

each visual entity in the formalism. This can be as Specification of a grammar in GenGED begins with
simple as creating a circle for a state and auiitle an an alphabet defined in the alphabet editor. GenGED
arrowhead for an arrow, or can involve creating a then automatically generates basic grammar rutes fr
double rectangle with a layout constraint enforaing this alphabet. There are three types of generatied:r
rectangle always remains above the other. insertion, deletion, and attribute modification. ejh

The second editor is the TypiEditor. Entities ie th essentially do the obvious thing; insert entitiex a
formalism to be created are assigned either a lisuarelationships along with their associated attribute
symbol defined in the Graphical Object Editor oe ar delete entities and relationships, and change the
given a non-visual placeholder. Additionally, attribute values. A typical insert rule for an awro
displayable attributes, such as strings for theesgamre  would have a source and target entity on the laftdh
instantiated, although they are not tied to anytyeat side of the rule, and a source and target entity
this point. connected by an arrow on the right hand side.

The third editor, the ConEditor, then allows you to Using the automatically generated rules as
specify the actual relationship between the various primitives, rules of greater complexity can be teda
entities, including which attributes belong to whic As a trivial example, in a class diagram formaligme
entities. Moreover, layout constraints can be setmight want to a single rule to insert both a neassl
throughout this process, so attributes can appeardiagram object and a new class inside of it. Taus
anchored to the top of an entity, and arrows arethor new rule would be created with an empty left aigthtri
to the borders of the entities it connects. hand side. The primitive rule for class diagram

The visual formalism specification these three insertion would be applied to the right hand side,
editors creates is sufficient for a prototype ttmlbe followed by the primitive rule to insert a classioe a
generated. The prototype tool allows for the coratf class diagram.

all the entities in the formalism and for testirfte t From a set of primitive and composite rules,

layout. GenGED allows the creation of a syntax or parse
grammar for use in a final formalism specificatidime

2.1.2. Grammar Rules Editor final specification simply takes as input the alphia

syntax, and (optionally) parse grammar to credtsoh
The next major component of GenGED involves the that can be used to create models in the specified
specification of grammar rules for the formalisnneT  formalism. Note that the final specification carsaal
first type of grammar to create is the syntax gramm include simulation and/or animation grammars as. wel
The motivation for syntax grammars lies in theiiligh
to ensure that a model being constructed in a fisma



2.2. AToM?

The second meta-modeling tool, ATkr A Tool
for Multi-formalism and Meta-Modeling, is also
designed to make the creation of visual formalisisye
The multi-formalism part of the name stems from the

2.3. DEVS

A flavor of DEVS known as classic DEVS,
shorthand for Discrete EVent System Specificatien,
now quickly summarized. The difference between

fact that models can be created using more than ondDEVS and many other simulation models is the fact
formalism at once or can be transformed from one that it is derived from mathematical dynamical teys

formalism to another. This tool also implements a
graph re-writing system and this is what is tygdical
used to perform the aforementioned formalism
transformation. Unfortunately, at the time of this
writing the tool lacks the flexible graphical layou
constraints available in GenGED, so layout is tgjhc
achieved by hard-coding it into the formalism, sing
some of the few layouting methods available. Tha# to
is written entirely in Python and has been succdigsf
run on Windows, Linux, and Mac operating systems.

In AToM?3, visual formalisms are generated from a
model. Indeed, the Entity Relationship diagram
formalism is generated from a model in that venyasa
formalism. Although the Class Diagram formalism is
far superior to Entity Relationship due to the

theory and thus has a formal framework supporting i
Moreover, despite the discrete nature of the sitimra
continuous systems can be successfully approximated
with it. DEVS has been applied or is being applied
large real-life problems, including next generat®RS
systems, spaced based laser systems, and costfoller
blast furnaces used in steel production [1]. Atinfal
description of DEVS, taken from the inventor of the
formalism, Ziegler [12], follows.

DEVS models have input and output ports through
which all interaction with the external world takes
place. By coupling together output ports of ongtesy
to input ports of another, outputs are transmithsd
inputs and acted upon by the receiving system. ,Thus
there are two types of DEVS modelstomic and

inheritance mechanism, it was not mature enough tocoupled. An atomic model directly specifies the

use until recently and has not made a big impad¢hen
AToM? literature yet. Thus the focus here shall be on
Entity Relationship diagrams for the generatiomedv
formalisms.

An Entity Relationship diagram consists of just an
entity object and a relationship object that links
together multiple entities, including a loop oniagte
entity. For each entity and relationship, one qaecgy
a name, graphical appearance, cardinality, at&ibst,
constraint list, and action list. The graphical
appearance consists of a set of primitive shapg<samn
include attributes, which can change at run-timemf
the attribute list. The cardinality is just like eth
mechanism employed in UML class diagrams. The
attribute list consists of any number of attributkeat
entities in the generated formalism will posseshsas
strings for names. The constraints list allows the
formalism maker to specify constraints that catch
certain events and run code to check that the msdel
correct. Finally, the actions list allows the creatof

system’s response to events on its input portse sta
transitions, and generation of events on its oypouts.

A coupled model is a composition of DEVS models
that presents the same external interfaces asodaicat
models. For example, in Figure 1, CM is a coupled
model with four components. A coupled model
specifies three types of coupling:

e external input — from the input ports of the
coupled model to the input ports of the
components (e.g., from start of CM to start of

counter)
 internal — from the output ports of
components to input ports of other

components (e.g., from explosion of bomb to
strike of target)

* external output — from the output ports of
components to output ports of the coupled
model (e.g., from damage of target to damage
of CM)

Although arbitrary fan-out and fan-in of couplirgy i

actions that occur at a specific event, such asallowed, no self-loops are permitted. DEVS is ctbse

performing a layout operation.

Thus in AToM, the generation of a formalism is
accomplished by creating a model in an existing
formalism, such as Entity Relationship diagramsd a
filling out the necessary details directly in thisual

model. Unlike GenGED, no syntax or parse grammars

are defined, but instead cardinalities and condtrai
code are used to ensure the correctness of thelmode

under coupling, which means that a coupled mode! ca
itself be a component within a higher level coupled
model, leading to hierarchical, modular model
construction.



instantiation of a string for the name attributerovs,
such as for transitions and channels, are simply li
primitives with an arrow head. Note that layout

oM constraints are not employed at this stage since no
S| counter defuse composite visual objects are needed for a simple
start | strike implementation of the DEVS formalism.

B N The second step is to specify the actual relatipssh
Iﬂe oo | erplosion . between the visual symbols. For the coupled DEVS,

T | il damage this means we must attach the associated namtsudetri

target {'damag to it. Furthermore, a layout constraint is spedifsich

that the name attribute is anchored to the top of

coupled DEVS object at all times. This is fairly
straightforward to do, one simply selects the antbp
constraint, and then selects a target and sourjeztob

Fig. 1. Bomb defusal DEVS example for the constraint.
Completing the second step is the insideness and
3. Prototype DEVS Tool arrow relations. Insideness is very straightforvdoad

a coupled DEVS inside a coupled DEVS, one simply
selects as source one instance of coupled DEV&snd

In this section, the development of a prototypd too ; -
that allows us to create basic visual models in the [2rgét another instance. Then one just chooses the

DEVS formalism, using both GenGED and ATdig inside constraint, select source and target again,

described. First the necessary components forualis |2Y0Ut is taken care of. Arrows are somewhat more
DEVS formalism are enumerated. complicated, as it is necessary to specify firsatthe

There are four different entities: a coupled DEVS, Start of the arrow connects to, and then what tieas

an atomic DEVS, a state, and a port. Visually they, the arrow conn.ects to in two separgte connection
appear as a rectangle and a name, a slightly efiffer entries. Two. different I.ayout c'ons'tralnts are also
rectangle and a name, a circle and a name, andta poneeded, a typical constraint for this will force trrow

and a name respectively. Relating these entitesomr ~ €nd POINt to lie on the border of the target object
insideness relations. A coupled DEVS can be inside A Prototype visual DEVS modeling tool can now be

coupled DEVS, an atomic DEVS can be inside a generated. This tool allows us to create each graph
coupled DEVS, a state can be inside an atomic DEVS,SYMPol defined and connect them together accoriing
and a port can be on the border of an atomic opledu the connections defined. Moreover, layout constsain
DEVS. Finally, there are two types of arrows, clelsn &€ enforced. Unfortunately, creating a coupled BEV
between ports and transitions between states. ThdOf €xample, requires first creating the rectangle

transitions can be external or internal, thus teeea  SYMPOl, then the associated name attribute, ardlyfin
total of three distinct arrows. using an operation to tell GenGED that these two

Given these basic visual primitives, a minimum belqng toge_ther. Creation of arrows is just as user
amount of work is done, in both meta-modeling tools Unfriendly, since the arrow must first be creataudd
to generate a limited-functionality DEVS modeling then for each endpoint the correct attachment ¢ipera
tool. Bear in mind that although the two tools riegu must be selected, followed by selection of the \arro

essentially the same steps to be performed, theat th @nd the target object. o ,
order is quite different. Thus a prototype DEVS tool is implemented in

GenGED. Unfortunately, the prototype has an interfa
3.1. GenGED that is too restrictive to create anything morenttaa
trivial model, no model checking, and no capacity f
extra capabilities. The latter means that it is not
possible to add arbitrary action code that woutd, f
example, allow us to generate code. However,
automatic layout works very nicely and it is alrgad
possible to save and load models.

The first step in GenGED involves the purely visual
specification of each entity and arrow. In the entr
version of the software (version 1.1, dated
05/11/2004), the Graphical Object Editor and the
TypiEditor have been merged into a single editdleda
the Symbol Editor. Thus when implementing a coupled
DEVS entity in the DEVS formalism, we must define
two separate symbols, a rectangle primitive and an

3.2. AToM?



Since the meta-modeling tool ATOMillows meta-  Worse, it is not possible to send objects from
models to be explicity modeled, the first steptas foreground to background or vice versa, so creading
choose the meta-modeling environment in which to model requires judicious ordering of entity creatio
model the DEVS formalism. Two possibilities forghi However, models can be saved and loaded, and it
are Entity Relationship diagrams and Class diagrams would be possible to immediately generate codeafor
As mentioned previously, the latter were not mature DEVS simulator using either a graph grammar or by
enough at the time the DEVS formalism was simply adding a button that runs arbitrary code
implemented, so the former was chosen, despitadks generating... code.

of inheritance. Thus a prototype visual DEVS formalism is now
The second step is then to create one entity ftin ea implemented in both meta-modeling tools. In both
of the entities described at the beginning of sleistion, cases, this is done in a matter of hours. The dlitjrh

and one relationship for each of the insidenesgiogls are not yet very impressive though, so the
and arrows. Relationships are specified by simply implementation of a finalized tool is described thex
drawing arrows between the entities or around glein
entity. In contrast with GenGED, the relationshigrs 4. Final DEVS Tool
defined in a far more natural and visual fashion.te
other hand no mechanism for setting up layout A full featured extension, or an attempt theredf, o
constraints exists. the basic prototype visual DEVS formalism described
As a third step, cardinalities are specified foctea in the previous section is now described. The
entity and relationship. This is just like the UML extension requirements for the GenGED and AtoM
(Unified Modeling Language) notion of cardinalities jmplementations are nearly complete opposites. In
For example, a coupled DEVS can contain 0 to N GenGED, an improved user interface for constructing
atomic or coupled DEVS, but can only be containgd b models is desperately needed, while in AFoMis
another coupled DEVS 0 to 1 times. These cardieslit |ayout constraints that are needed. In both cases
are enforced at run-time and provide at least somejmplementations, model checking and code generation
limited model correctness checking. This step @x8h  need to be added.
in figure 2.
In the fourth step, generative attributes are added 4 1. GenGED
the model. For example a coupled DEVS will receive
string attribute for name. As a more complicated A complete specification of a visual DEVS
example, a state receives not only a string ateiior  ormajism in GenGED requires the definition of
a name, but also two text atfributes for storimgeti  grammar rules. Given that an alphabet has already b
advance and output function code and a Booleanjefined, GenGED automatically generates primitive
attribute to indicate if it is the default state. grammar rules for the insertion and deletion oftiest
Finally, the visual appearance of the DEVS 54 relationships as well as the modification of
formalism is specified. Note how this is done in a ,iribytes. However, even if the alphabet defimethe
completely opposite order from GenGED. For each nrqiotype tool worked perfectly, it does not neaeis
entity, basic primitives are drawn using a Paikeli  fo)10\ that the generated grammar rules will bereot.
icon-editor tool. Connection ports are added fooas For example, one might get a primitive rule for
to automatically attach to, and gene.rative attabuike _ inserting an atomic DEVS that has a coupled DEVS in
names are added as well. No special layout consirai he |eft hand side. Worse only a single primitiuéeris
are added nor seemingly needed here; the entity wil yonerated for the insertion of any given entitustimo
appear as it is drawn, although the name attribiiite  5imitive or composite rule will allow us to cread
change and the scale may be modified. Lastly, aiabe  4tomic DEVS on its own. This merely means that the
dialog is used to specify the appearance of gpacification of a visual formalism must be giveithw
relationships as either arrows or as non-visualtfier greater care in the alphabet editor.
case of insideness relations. _ , However, let us assume correct grammar rules are
A prototype can now be generated from this Entity generated, and that composite rules are not neieded
Relationship model. The prototype has buttons for ihe pEVS formalism. GenGED then takes the grammar
creating each entity and arrow relationships aeavdr  les as is, and generates a syntax grammar
by selecting one entity as a source and anoth& as gpecification. Yet another editor simply takes msut
target. Although it is possible tq draw a DEVS mlpde  he alphabet and the syntax grammar and generates a
the lack of any notion of layout is a serious BotCk.  fing| visual DEVS modeling tool. Note that the pars



grammar is also being ignored since the focus is onreally actions but are just methods called by the
functionality rather than model correctness at this Connect actions of the relationships.
point. Now that a hierarchy is constructed, it is temptimg
The final visual DEVS modeling tool now allows us simply call a method that performs hierarchicalolaty
to create entities and their associated attribitesne each time part of a model is modified. Indeed ftst f
click. Seemingly the user interface issue of the implementation was done as such, but additional
prototype tool is resolved. Unfortunately, the tiwa complexities, such as allowing for drag-and-drop
of new relations and all specific deletions havednee hierarchical add and removal, resulted in spaghetti
much harder than in the prototype tool. This is ttue code inside the actions. Thus the reactive behafior
the heavy reliance on graph grammars in GenGED. Inthe DEVS formalism was modeled in the DCharts
order to connect a channel arrow for example, it formalism. DCharts are a form of statecharts
requires 8 user clicks, to select the correct timer  developped by Thomas Feng [13].
rule, select the source DEVS port in the model, the
source DEVS port in the left hand side of the rate, 4.2.1. Entity Relationship diagrams and DCharts
Moreover, GenGED does not have any built-in
support for adding arbitrary code even at this poin Merging what has become two models in two
This means it is not possible to generate code d@hat different formalisms, Entity Relationship and DCisar
DEVS simulator would understand. Our only option is not too difficult in AToM. The current
would be to implement a graph grammar DEVS implementation accomplishes this by having entities
simulator inside GenGED, assuming a meaningful the Entity Relationship model instantiate a comgpile
DEVS simulator can even be implemented as a graphstatechart upon creation. In other words, the DGhar
grammar. model separately generates a statechart description
Thus the attempt to implement a visual DEVS which is then compiled into executable code. Action
formalism in GenGED ends here for two reasons: 1)in the Entity Relationship model can then send
The user-interface, while quite interesting anchpps messages to the compiled statechart.
of research value, is completely innadequate ferins In the Entity Relationship diagram shown in figure
the creation of non-trivial models and 2) It is not 3, this corresponds to "initilize" actions and "@Gent"
possible to generate code from GenGED models in theactions. These actions pass several messages to the

current implementation. statechart shown in Figures 4 and 5, causing the
statechart to switch to describing the behaviouthef
4.2. AToM?® given entity or relationship.  Note that a staseth

could have been created for each entity and

In the second AToM implementation phase, sorely relationship, however the current method was chasen
needed graphical layout constraints are added.eSinc it minimizes redundant code, improving robustness a
AToM?has no layout constraint manager custom layout understandability.
code must be developed and/or built-in layout ramsi To understand how the Entity Relationship diagram
must be manually called. This will require expligit ~and DCharts models complement each other an
keeping track of the hierarchy implicit in a DEVS example is given. Starting with an empty model, the
model, which is also not automatically handled by user creates a coupled DEVS. From the Entity
AToM? yet. Relationship diagram, this triggers a Create evamd,

To keep track of the hierarchy of the DEVS model, thus the "initilize" action. This in turn instartés the
simple actions are added to each entity. For exampl  statechart and sends the messages: "createComiposite
relationships, Connect actions are required torinfo  "isCoupled”, and "Drag-n-drop”. For the last messag
the source of the relationship of a new child gnind ~ a guard checks if the coupled DEVS has a parertesi
the target of the relationship of its new parent. it does not, a check is made for whether or nas it
Likewise Delete actions, in a relationship, wilhteve ~ inside another coupled DEVS in which case the isser
children and reset the parent status of the preijou asked if they wish to perform the hierarchical &ddi
connected entities. This is sufficient to created an of one coupled DEVS inside another. Finally, the
maintain a hierarchy, not necessarily just for BHeVS layout method coded into the action "doLayout"he t
formalism. See figure 3, for what the final Entity Entity Relationship diagram for coupled DEVS is
Relationship model with these actions looks likete\  triggered. The "doLayout” method is simply several
that actions like "setParent" and "addChildren"moe ~ hard-coded layout routines that eliminate overlagpi

at a given hierarchical level (using a built-in der



transfer implementation), position and re-size is currently possible to have more than one roateno
composite components to fit their children, positio such as by creating two coupled DEVS with no refati
ports along the border of the composite components,to each other. To deal with this a "checkValidity"
and use built-in AToM code to redraw the arrows action is added to ensure the uniqueness of the roo
automatically. node, shown in figure 3. An action rather than a

Continuing this example, suppose an atomic DEVS constraint is used to signal the error to the u=m&h as
is now added directly over the existing coupled 3EV by red-highlighting, so that the user has the fopedo
Again a statechart is instantiated and the follgwin interactively edit models. Were a constraint used,
messages sent to the statechart: "createComposite'incorrect temporary models with two roots would not
"isAtomic", and "Drag-n-drop". Since the new atomic be possible.
has no parent, the hierarchical adder asks usdit ad Other model checks are also implemented, including
not, and we allow it to add it. Now the coupled C&EV one as a constraint, such that default states racgiel
is re-positioned and re-sized to ensure the atomicin an atomic DEVS, that internal and external
DEVS fits inside. Now suppose we select the coupled transitions only link states of the same atomic 3£V
DEVS. This results in a "Select" message being and that the places where channels between pogs of
generated, label 1 in figure 5. This highlights the given type are possible is restricted.
coupled DEVS and generates a "recursiveSelect" All this additional model checking is essentially
message, label 2 in also in figure 5, being gerdrat hard-coded, and is checked at the appropriateetrigg
Thus the atomic DEVS is selected and highlighted asevent. It is not as elegant as a syntax or pa@amar,
well. This means that if we now use drag or delete but it is actually faster and easier to creategeigly
operations, both the coupled and atomic DEVS vall b when compared with the creation of an efficientspar
acted upon. grammar.

Taking this example a little further, suppose wa/no
select just the atomic DEVS and then drag it oetsifi 4.2.3. Code generation
the coupled DEVS. As soon as we drop the atomic
DEVS, the "Drag-n-drop" message arrives, and since To complete the visual DEVS formalism, a means
the atomic DEVS has a parent, it is label 3 of iigb of exporting the information contained in the mottel
that is triggered. This causes a check to be made f a simulator is needed. This can be done either with
whether or not the atomic DEVS is still inside the graph grammars or in an entirely hard-coded fashion
coupled DEVS. Since it is not, the user is prom@ed  Fortunately, a hard-coded implementation by Ernesto
to whether or not they wish to hierarchically remov Posse was already available and could be adapted to
the atomic DEVS. If not, the coupled DEVS is re- this formalism [3]. This allows models in the visua
positioned and re-sized appropriately to contain it DEVS formalism to be converted to executable
Otherwise, the atomic DEVS is disconnected, and asimulation code using [4], which is ready to runsas
"Drag-n-drop" message is generated for the atomic
DEVS, allowing it to be immediately added to anothe 5, Discussion and Future Work
coupled DEVS. In both cases, the parent of the iatom
DEVS, the coupled DEVS, receives the message Thus a visual DEVS formalism, has been

“recursiveDrop” which is propagated to the rooepar  jmplemented in the meta-modeling tools GenGED and

This message causes layout to be performed, so thaf\ToMm?® to varying degrees of completeness. Despite

each hierarchical level properly contains its ateitd the strong layout and model checking support in
Although the example described is quite trivial, it GenGED, issues involving the user interface and the

should give the reader some intuition as to howt§Ent  |ack of code generation capability result in a Vieagic

Relationship diagrams and DCharts have been mergedind incomplete implementation of DEVS. In AT4M

to create a visual DEVS formalism with graphical the issues involved are rather the opposite, mutatk

layout handling. of a dedicated layout constraints and of a grammar
_ based model checker are overcome using its fléxibil
4.2.2. Model checking with regards to the addition of arbirtrary actionda

o constraint code. Of course this means that corestider
Some form of model checking is already performed time is required, about a week in fact, but thasti
thanks to the run-time enforcement of the cardiesli far cry from the amount of time that would have rbee

of each entity and relationship, shown in figure 2. required to build the tool from scratch.
However cardinalities are insufficient. For exampte



The interested reader can find the AToModels
used to build the DEVS formalism, along with ATOM
itself at: http://msdl.cs.mcqgill.ca/people/deni3he link
to DEVS is on the left in the navigation toolbar.

The current implementation is by no means finished

however. The layout mechanism is currently designed,qjin de/~

around the interactive user session and cannad fuil
layout from a randomized model automatically. For
example this occurs when you transform a model in
another formalism to DEVS. Also, by requiring theeu

of states and arrows inside an atomic DEVS, the Halifax,

infinite possibilities that are possible with a edd
output function are severely restricted, thus sstijog
the need for a special atomic DEVS that lets ther us
code such things explicitly. Another useful additiin
many situations, would be a visual notation for N
number of components connected together. Lasty, th
ability to completely hide some parts of the hiehézal
structure, while continuing to display and interadth

the rest, would greatly improve the usability ot th
visual formalism, especially when used on large
problems.
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containsStateV?2

Cardinalities:
- From atomicDevsV2: 1 to 1
- To stateDevsV2: 0 to N

atomicDevsV2

containsModel V2

Cardinalities:
- From containsModelV2: 0 to 1
- To containsPortV2: 0 to N
- To containsStateV2: 0 to N

Cardinalities:

(~ - From coupledDevsV2: 1 to 1

- To atomicDevsV2: 0 to N
- To coupledDevsV2: 0 to N

stateDevsV2

Cardinalities:
- From containsStateV2: 1 to 1
- To internalTransitionV2: 0 to N
- From internalTransitionV2: 0 to N
- To externalTransitionV2: 0 to N
- From externalTransitionV2: 0 to N

internal TransitionV?2

Cardinalities:
- From stateDevsV2: 1 to 1
- To stateDevsV2: 1 to 1

external TransitionV2

Cardinalities:
- From stateDevsV2: 1 to 1
- To stateDevsV2: 1 to 1

y

coupledDevsV2

containsPortV2

Cardinalities:
- From atomicDevsV2: 0 to 1
- To portDevsV2: 1 to N
- From coupledDevsV2: 0 to 1

Cardinalities:
- To containsModelV2: 0 to N
- From containsModelV2: 0 to 1
- To containsPortV2: 0 to N

portDevsV2

Cardinalities:
- From containsPortV2: 1 to 1
- To channelV2: 0 to 1
- From channelV2: 0 to N

—

e channel V2
il

Cardinalities:
- From portDevsV2: 0 to N
- To portDevsV2: 0 to 1

Fig. 2., Entity Relationhip diagram specifying the DEVS formalism, cardinalities shown




——
containsStateV2

Actions:
> connect
< disconnect

!

stateDevsV2

Attributes:

- name :: String

- timeAdvance :: Constraint

- output :: Action

- initial :: Boolean
Constraints:

> checkValidity
Actions:

> initilize

> drop

< setParent

< addChildren

< killChildren

internalTransitionV2
Actions:
> connect
< disconnect
< checkValidity

atomicDevsV2

\ Attributes:

- name :: String

- isVisible :: Boolean
Actions:

> initilize

> select

> drop

< setParent

< addChildren

< addSubChildren

< killChildren

< killSubChildren

< doLayout

< checkValidity

externalTransitionV2
A

ttributes:

- name :: String

- condition :: Constraint
Actions:

> connect

< disconnect

< checkValidity

containsModel V2

Actions:

k > connect

< disconnect

coupledDevsV2

Attributes:

- name :: String

- isVisible :: Boolean
Actions:

)

containsPortV2

_—1Actions:

> connect
< disconnect

> initilize

> select

> drop

< setParent

< addChildren

< addSubChildren
< killChildren

/

< kill[SubChildren
< doLayout
< checkValidity

portDevsV2

Attributes:

- name :: String

- portType :: Enum
Actions:

> initilize

> drop

< setParent

< addChildren

< killChildren

channel V2

Actions:

> connect

< disconnect
[————— < checkValidity

Fig.3., Entity Relationhip diagram specifying the DEVS formalism; attributes, constraints, and actions shown




Relations(SetParams)

A

Containments

AV

connectContainment

tarting point
Each entity/relation
gets this statechart

DEVS_Element

7
connectedContainment

isContainModel

isContainState

On enter:
Obtains semantic
object reference

isContainPort

connectlransition

connectChannel

4

containsModelV2

:

containsStateV2

!

containsPortV2

Calls killChildren
and setParent(None)

disconnect

Calls killChildren

Destroyed

disconnect

Bring to foreground

Arrows
N,
4 y isinternal internalTransitionV2
connectedTransition
isExternal
_/_ externalTransitionV2
ArrowHi
N,
7 4
connectedChannel isChannel channelV2

and adds to selection

LrecursiveSelect(Arrows)

recursiveGroup(Arrows)

| Adds to non-visible selection

Fig. 4., DCharts model of DEVS reactive behaviour; top part for insidness relations and arrows shown



createComposite

Entities(SetParams)

CompositeEntities

isAtomic
initComposite

initLeaf isState

isPort

On enter:
Obtains reference to semantic object
Imports and binds useful methods

m\

L4
atomicDevsV2

CompositeHistory

coupledDevsV2

select(TellChildren)

recursiveSelect(TellChild
Drag-n-drop(HasParent
Drag-n-drop(NoParent)

recursiveDrop(TellParent)

recursiveGroup(TellChildr

LeafEntities

Checks for disconnect
If disconnect: 'drop’

stateDev

(1)

Brings to foreground

Adds to selection

For each child: 'recursiveSelect'
Highlights selection

4

Checks for possibility
of hierarchical connect
Calls doLayout

portDevsV2

Sends parent: 'recursiveDrop'

A

recursiveSelect(Transitio (

recursiveGroup(TellArrows (B)
Drag-n-drop(NoParent) (C)

LeafHistory

recursiveSelect(Channels) (D)
recursiveGroup(TellArrows (E)
Drag-n-drop(NoParent) (F)

(A)

@

Brings to foreground

Adds to selection

For each child: 'recursiveSelect'

3

Checks for possibility

of a hierarchical disconnect

If disconnect: ‘drop'

If not: calls doLayout

Sends parent: 'recursiveDrop'

(5)
Calls doLayout
Sends parent: 'recursiveDrop'

Brings to foreground
Adds to selection
For arrow in inbound connections:

Sends: 'recursiveSelect'

(D)

Brings to foreground

Adds to selection

For arrow in all connections:
Sends: 'recursiveSelect'

(6)
Adds to non-visible selection
For each child:

Sends 'recursiveGroup'

(B)

Adds to non-visible selection

For arrow in inbound connections:
Sends: 'recursiveGroup'

(E)

Adds to non-visible selection

For arrow in all connections:
Sends: 'recursiveGroup'

(©

Checks for hierarchical
connect possibility
inside an atomic DEVS

(F)

Checks for hierarchical

connect possibility

inside an atomic/coupled DEVS

Fig. 5., DCharts model of DEVS reactive behaviour; bottom part for entities shown







