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Abstract

The aim of this thesis is to investigate automatic graph layout in the context of domain-speci�c
modeling. Inherent in the nature of domain-speci�c modeling is the creation of new formalisms to
solve the current problem as well as the combined use of multiple formalisms. Unfortunately, graph
layout algorithms tend to be formalism-speci�c, thus limiting their applicability.
As a starting point, all major graph drawing techniques and many of their variants are summarized
from the literature. Thereafter, several of these graph drawing techniques are chosen and imple-
mented in AToM3, A Tool for Multi-formalism and Meta-Modeling.
A new means of specifying formalism-speci�c user-interface behaviour is then described. By fully
modeling the reactive behaviour of a formalism-speci�c modeling environment, including layout,
existing graph drawing algorithms can be re-used without modi�cation. The DCharts formalism is
modeled to demonstrate the e�ectiveness of this approach.

Le dessein de cette thèse est d'examiner le dessin de graphe automatique dans le contexte de mo-
delage domaine-spéci�que. Inhérent dans la nature du modelage domaine-spéci�que est la création
de nouveaux formalismes pour résoudre le problème actuel de même que l'usage combiné de for-
malismes multiples. Malheureusement, les algorithmes de dessin de graphe ont tendance à être
formalisme-spéci�ques, ainsi limitant leur validité d'application.
Comme un point de départ, tout les techniques majeurs pour le dessin de graphe et beaucoup de
leurs variantes sont résumées de la littérature. Par la suite, plusieurs de ces techniques de dessin de
graphe sont choisi et sont appliqué dans le logiciel AToM3.
Un nouveaux moyens de dé�nir le comportement d'interface utilisateur formalisme-spéci�que est
alors décrit. En modelant entièrement le comportement réactif d'un environnement de modelage
formalisme-spéci�que, y compris le dessin, les algorithmes de dessin de graphique existants peuvent
être remploient sans modi�cation. Le formalisme de DCharts est modelé pour démontrer l'e�cacité
de cette méthode.
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Introduction

In recent years a trend has emerged whereby systems of increasing complexity are being modeled.
This is due in no small part to the e�ectiveness of models in aiding the design and/or analysis of
complex systems such as those found in the software and physical domains. A good model abstracts
a complex system into manageable components or areas of concern. A complex system typically
has multiple areas of concern, each of which is best modeled in a given formalism. For example, a
model of a software system must deal with both static structures and dynamic behaviours. The class
diagram formalism is ideal for partitioning system components into classes and linking them with
associations. Class diagrams are however inadequate for expressing, for instance, the interaction of
a user with the system. Hence, a model of the interaction subsystem requires a di�erent formalism
such as statecharts. In brief, modeling with multiple formalisms allows developers to view their
complex systems from multiple viewpoints and to choose the best formalism for speci�c subsystems.

An ideal formalism for a given subsystem maximally constrains models to the speci�c problem
domain. A constrained model yields two key bene�ts to the modeler: it eliminates the possibility
that the modeler will erroneously create a model that is invalid in the problem domain and it
ensures the formalism will closely match the modelers mental model of the problem, thus bridging
the conceptual gap between problem domain and model. Thus, an ideal formalism for a speci�c
problem domain and for which appropriate model veri�cation and/or execution is available allows
a modeler to fully focus on the problem domain.

Visual formalisms provide an important additional means of bridging the conceptual gap between
problem domain and model. There are two key di�erences between visual and non-visual formalisms.
The obvious one is that the symbols of the non-visual formalism are replaced by graphical icons
and (typically) arrows denoting relationships. The second is that the visual arrangement (layout)
of these icons and arrows is very important. Indeed, a model with a good visual layout allows a
user to extract information at a glance whereas a poor layout is far more challenging to decipher.
As any modeler knows, manually drawing good layouts is very time-consuming. Moreover, when
a model is modi�ed, the changes often downgrade the existing good layout to a poor one. Hence
modelers need robust visual modeling tool support that can lighten their workload.

The main contribution of this thesis is a new framework for modeling the reactive and layout
behaviour of a visual modeling environment that supports multiple formalisms simultaneously. This
model-based framework contrasts sharply with the hard-coded and in�exible approaches found
in other visual modeling tools. The framework, its implementation, and an example formalism
illustrating its usefulness are described in chapter 3.

The framework requires access to automatic layout implementations in order to handle layout con-
siderations. Hence, various means of obtaining automatic layout were implemented. The design,
implementation details, complexity analysis, and performance of these layout techniques are de-
scribed in chapter 2.

The choice and implementation of the layout techniques could only be made with a thorough
knowledge of: graph theory, the elements of a good layout, and existing graph drawing techniques.
Hence, chapter 1 presents a rather exhaustive review of the graph drawing literature.



1
Graph Drawing

Introduction

In our approach to multi-formalism modeling, every model is in essence a graph. For each such
model, an in�nite number of visual layouts exist, resulting in anything from a meaningful (from the
modeler's point of view) drawing to one that is misleading and error-prone. Given that hand-crafting
layout is highly time-consuming, support for automatic layout is crucial in modern visual modeling
tools. Unfortunately, no single graph drawing technique exists, nor is likely to ever exist, that can
draw any given graph in the most meaningful fashion. Moreover, those graph drawing techniques
that come closest to creating ideal drawings do not scale very well with the number of vertices in a
graph. On the other hand, it should be noted that in the context of interactive, possibly domain-
speci�c visual modeling, most visual models are rather small. This, since it is easier to understand
a complex system rendered as multiple smaller models of domain-speci�c subsystems and taking
advantage of hierarchical (de-)composition than understanding one large monolithic model. In any
case, graph drawing algorithms applicable to graphs small and large are both reviewed in this
chapter.

The �rst part of this chapter, section 1.1, makes the link between real-world problems and graphs,
and the e�ects of model constraints on graphs.

A good layout can only be systematically achieved by understanding what makes it good. Hence,
section 1.2 delves into the measurable metrics (visual aesthetics) that indicate the quality of a
layout.

Ideally, every metric should be optimized to obtain an optimally meaningful drawing. Section
1.3 begins by explaining why this is not possible. Thereafter, a comprehensive overview of graph
drawing techniques from the literature is presented, including variant techniques and the speci�c
visual aesthetics optimized by each technique. The primary focus is on techniques applicable to
small graphs. However a number of techniques applicable to large graphs are also given.

1.1 Graph Basics

Graph drawing techniques operate directly on the structure of graphs. Therefore knowledge of
basic graph theory is a prerequisite to understanding graph drawing techniques. The glossary in
chapter 4 describes all the graph terminology used throughout this thesis with concise, mostly
natural language de�nitions. Readers familiar with graph theory terminology are encouraged to at
least quickly read the glossary, as it is written speci�cally from a graph drawing point of view. On
the other hand, for more mathematical de�nitions and a comprehensive overview of graph theory,
the following book is recommended [Die05]. In section 1.1.1, the link between problems in the
real-world, domain-speci�c modeling, and graphs is made. Closely related to the previous section,
section 1.1.2 discusses how di�erent formalisms constrain models to di�erent graph structures.



1.1 Graph Basics 4

Problem Formalism Graph type

Modeling vehicle tra�c systems. Roads are edges, intersections ver-

tices.

Tra�c Digraph

Modeling and simulation of large scale hierarchical systems. States

are vertices, edges are containments and transitions. (Discrete EVent

System)

DEVS Digraph, Compound

Includes modeling and simulating manufacturing and network prob-

lems. Vertices are event generators/recorders/etc. and edges are tran-

sitions. (General Purpose Simulation System)

GPSS Digraph

Modeling websites. Web pages are vertices, hyperlinks are edges (but

not hyperedges). (World Wide Web visualization)

WWW Digraph, large, sparse

Highly generic modeling. Entities are vertices, edges are relationships.

(Entity-Relationship diagram)

ER Hypergraph

Modeling of many software engineering problems. UML formalisms

include use-case, collaboration, sequence, deployment, and class dia-

grams. (Uni�ed Modeling Language)

UML Digraph, mixed-graph

Modeling of analysis, design, and reverse engineering aspects of soft-

ware.

DataFlow Digraph

Modeling of scheduling activities with dependencies. PERT Digraph, hierarchical

Modeling causal continuous time systems. (Causal Block diagrams) CBD Digraph

Modeling and simulation of reactive behaviour. Statechart Hypergraph, compound

Modeling and simulation of concurrent, asynchronous, distributed,

parallel, nondeterministic, and/or stochastic systems.

Petri-net Digraph

Table 1.1: Linking real-world problems to graph structures

1.1.1 Modeling problems as graphs

A vast number of problems in the real-world can be mapped to models of a given formalism. A
formalism de�nes constraints on the types of models that can be constructed. This is described in
greater detail in 1.1.2. The underlying structure of a model is simply a graph. The following table
provides examples of common problems, the formalisms that allow them to be modeled, and a brief
description of the resulting graph structure.

1.1.2 Model constraints

A formalism constrains the form of a model and hence of the resulting graph structure. Ideally, the
formalism will constrain the model maximally [VdL04]. Such constraints force the user to construct
only those models that are both syntactically and semantically1 correct models. Thus constraints
prevent a user from accidentally constructing an incorrect model, as well as provide some guarantee
as to the model's correctness.

Model constraints can take many forms. At the abstract level, the graph structure itself is con-
strained. Models will typically partition the vertex and edge sets. Given these sets, it is possible to
constrain whether or not an edge is possible between given vertex types. For example, in a Petri-net
diagram it would not make sense to allow edges between two places or two transition states. If an
edge is possible, then the types of edges can also be constrained. An example of this is a statechart,
where an edge between state A and B can be of two types, containment or transition. However, if
A is already contained by B, or vice versa, then the edge can only be a transition from A to B. For
each given type of edge, the maximum number allowed per vertex can be constrained, also called

1Semantics are more di�cult to check than syntax, thus a static analysis of this may be very limited
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edge cardinality. Finally, a model can constrain the maximum number of occurrences for a given
type of vertex.

Models have other properties that will a�ect the graph structure, as outlined in table 1.1. For exam-
ple, a PERT chart yields a highly hierarchical digraph, since edges are between activity vertices, and
each activity depends on the completion of some other activity. On the other hand, a class diagram
is an example of a mixed-graph. The mixed-graph classi�cation is due to the fact that inheritance
and directed class associations yield directed edges, but undirected associations yield undirected
edges. Moreover, class diagrams are not necessarily hierarchical, which is discussed in section 1.3.1.
Another special case can be found in Entity-Relationship diagrams, where a relationship can be
connected to any number of entities. Thus the relationships are hyper-edges.

Model constraints may also occur at the drawing level. In most models, vertices are not merely
points, but are instead meaningful icons with labels. Edges, however, are not necessarily drawn as
lines or arrows. In DEVS and statechart models, some edges denote that one vertex contains other
vertices inside of it. Thus a parent vertex must either be constrained to be large enough to contain
its children, the children forced close together, or both. Another possibility is that a certain vertex
type must be drawn in a certain region of the drawing. An example of this is an electrical system
model, where it is typically required that only a single ground exist and that it be drawn below all
other vertices.

1.2 Visual Aesthetics

Visual aesthetics are the measurable qualities of a drawing. The goal of graph drawing is to optimize
these visual aesthetics according to the needs of the domain-speci�c formalism. It is expected that
by meeting the visual aesthetic needs of a formalism that the resulting drawing of a model in
that formalism taps the full potential of the human visual system in understanding the model's
information. As a quick illustration of how this can be, consider two drawings of the same graph
and model: one is randomly drawn and the other is drawn such that vertices are visually close in
proportion to the length of the edge path between them. The randomly drawn graph reveals no
model information at all, certainly not with any guarantee. On the other hand, the second method
visualizes graph theoretic distances, thus revealing at a glance which model components are related.
This is so fundamental it is not even considered a visual aesthetic and all graph drawing techniques,
to a greater or lesser extent, visualize these graph theoretic distances.

Although visual aesthetics are highly domain-speci�c, some generalization can be made about their
relative importance. In [PCJ97], an experimental study of the importance of three visual aesthetics
is conducted. The study was conducted on graphs with no inherent meaning and subjects were
only asked graph theoretical questions, such as what the shortest path between two vertices was. It
showed that both edge crossings and edge bends are quite detrimental to human understanding of
a graph, in the sense that both increase the probability of incorrectly assessing the structure of a
graph. On the other hand, the study results showed symmetry had no measurable impact on human
cognition. A followup study, [WPCM02], reveals a visual aesthetic not previously considered by the
graph drawing community. This new aesthetic, continuity, is the measure of the angle formed by
the incoming and outgoing edges of a vertex. For the task of �nding a shortest path between two
vertices, continuity can become even more important than edge crossings. This demonstrates how
the ultimate goal of maximizing human cognition of graphs can sometimes di�er from optimizing
well known visual aesthetics.

In the following subsections, the most important visual aesthetics that are commonly optimized by
graph drawing techniques are summarized.
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1.2.1 Graph Area

A graph that can �t on one page, yet display all the information contained in similar graph that
requires two pages, is far superior since it eliminates the need to �ip back and forth between the
pages. In a print medium, this can be particularly detrimental to human cognition as it then
requires following references rather than simple lines. Similarly, a graph with an aspect ratio that
closes matches that of a display device, typically a 4:3 ratio, presents information to us much more
e�ciently than a very wide but short graph or a very tall but narrow graph. It is a well known fact
that humans have a preference for views with an aspect ratio corresponding to the Golden ratio
(approximately 1.618). For example, business cards have dimensions corresponding to this ratio,
and the 4:3 ratio of standard display devices is somewhat close, although 5:3 would be much closer.

1.2.2 Vertex Placement

When placing vertices, it is best to place them uniformly, avoid overlap, and emphasize symmetries.
The uniform distribution of vertices in a graph minimizes the area of the graph, a visual aesthetic
already mentioned. Vertices drawn in an overlapping fashion, a common occurrence when vertices
are not point-sized, hides information and thus severely reduces the readability of the drawing. A
vertex placement that emphasizes symmetries is more pleasing to the eye. For example, binary
trees are often drawn in a symmetrical fashion, with the children of a given node equally balanced
to the left and right of it. However an experimental study of symmetry has failed to show a
statistically signi�cant improvement in the human understanding of graphs drawn to emphasize
symmetry [PCJ97]. Note that the scope of this experiment was limited to syntactic tasks such
as determining the shortest path between two vertices rather than semantic tasks, tasks that are
application-speci�c and require interpreting the graph.

1.2.3 Edge Crossings

The visual crossing of edges is extremely detrimental to human understanding of graph information.
This is experimentally veri�ed in [PCJ97]. The angle formed by edge crossings has an important
impact on cognition as well. If the crossing edges form a right angle, then they are very easy
to distinguish. If instead they form a very small angle, which edge is which becomes ambiguous.
Indeed, in some cases increasing the crossing angles is preferable to minimizing the crossings. A
nice illustration of this can be found on page 30 of [BM01]. A �nal situation to avoid is where an
edge crosses a vertex, particularly when the vertex has a visual size greater than that of a point.

1.2.4 Edge Bends

Ideally, an edge should contain no bends at all, since a straight line is far easier to follow than
a snaking poly-line. Unfortunately, avoiding overlapping as well as crossing inevitably results in
bends, thus one can merely minimize them.

1.2.5 Direction of �ow

Whenever applicable, directed edges should move only in one given vertical and/or horizontal direc-
tion. For example the majority of the edges could �ow from the top to the bottom of the drawing,
or from the top-left to the bottom-right. The advantage to drawing a graph in such a fashion is
that it is highly revealing of the underling graph structure, particularly in the case of hierarchical
graphs. Indeed a hierarchical graph drawn in this fashion makes �nding source vertices and paths
to sink vertices immensely easier compared to drawings that do not respect direction of �ow.

A simple example of this is a tree drawn with the root at the top and the leaves below. In this case,
each edge �ows from a parent node to a child node below its parent, though the child may be either
to the left or the right of its parent.
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1.2.6 Edge Length

It is readily apparent that a long edge is far more di�cult to trace from origin to destination than a
similar short edge. Hence edge lengths should always be as short as possible. A similar aesthetic is
that the variation between edge lengths be minimal. However the minimization of this last aesthetic
yields does not appear to have much impact on the readability of a drawing. In [PMCC01], the
results are so mixed one might even suggest that maximizing edge length variation is useful.

1.2.7 Mental Map

The mental map visual aesthetic di�ers from the others in that it applies only to dynamic contexts.
Consider a user having just applied an automatic layout technique to a model in order to obtain
a drawing. Later the user then modi�es the model slightly, by adding an edge or a vertex for
example, and again applies automatic layout. The user is familiar with the �rst drawing, having
made a mental map of where vertices are located and in what order. Thus if the drawing of the
modi�ed model is vastly di�erent, the user will have to spend time building a mental map of the
entire model all over again. Satisfying this visual aesthetic in a meaningful fashion can be di�cult,
since it requires essentially not moving the vertices from their positions in the original drawing, thus
con�icting will most of the other visual aesthetics.

1.2.8 Vertex Connections

A large angle between two edges connected to the same vertex, particularly a point vertex, makes
them easy to distinguish. Conversely, a small angle between two edges can confuse the viewer when
one edge has an arrow head and the other does not. The drawing is ambiguous. This aesthetic is
known as angular resolution and merits careful consideration in the edge routing phases of a graph
drawing technique.

Most models use icons that are not point sized to represent a vertex. This makes the connection
problem even more di�cult. Naively connecting edges to the center of such a vertex results in
overlap. For rectangular and circular icons, it is possible to e�ciently �nd the intersection of an
edge and the boundary of the icon. Otherwise, connections are made to speci�c ports on the
outside of such an icon. Some drawing techniques require the use of edge ports. Moreover, some
orthogonal layouts even require the ability to dynamically change the location and number of ports
for a given vertex icon. Another concern is that with su�cient edges entering the ports of a vertex,
the arrowhead drawings will become unreadable. This can be avoided by grouping incoming and
outgoing edges into separate input and output ports.

1.3 Techniques for graph drawing

The goal of graph drawing techniques is to make the visualization of information as readily readable
as possible. Thus all graph drawing techniques seek to draw graphs in a fashion that optimizes some
subset of the visual aesthetics of the previous section. Although the aesthetics can be translated
into mathematical constraints, optimizing all the aesthetics is, in general, an impossibility [BM01].
One problem is that some of these constraints are contradictory with respect to each other. Some
examples: minimizing edge bends con�icts with minimize edge length since adding more bends
allows shorter edge lengths, avoiding overlap of vertices and edges con�icts directly with area min-
imization, and avoiding crossings between edges and vertices con�icts with both edge length and
area minimization.

A second problem is that solving even seemingly simple sub-problems for a single visual aesthetic
is often hard, in terms of theoretical complexity, resulting in prohibitively long computation times
for anything but small graphs. For example, �nding the minimum number of edge crossings in a



1.3 Techniques for graph drawing 8

k-layer graph has non-polynomial complexity as does the seemingly simpler sub-problem of a 2-layer
bipartite graph. This is shown in greater detail in section 1.3.1.

Thus there is no single graph drawing technique that will work for every graph. Each domain-
speci�c visual formalism will prioritize the visual aesthetics di�erently. The drawing technique will
then solve for these aesthetics in order of priority using heuristic algorithms, unless the graph is so
small an optimal solution is possible. Di�erent formalisms may have very di�erent graph structures.
For example, a UML class diagram can have both directed and undirected associations, yielding a
mixed graph containing both directed and undirected edges. Preserving the direction of �ow in such
a graph requires a di�erent approach than for digraphs, as is shown in [Eig03]. Formalisms may
also impose special rules about where and how certain types of vertices and edges may be drawn.
Thus one must �nd the correct graph drawing technique for a given formalism and then customize
it to handle formalism speci�c issues that arise. The following subsections summarize the major, as
well as many minor, approaches to automatic graph drawing techniques.

1.3.1 Layered

Layered graph drawing techniques partition vertices into layers and then draw the edges between
the layers. According to [BM01], the concept of a layered graph drawing technique �rst arose in
1977. In 1981, with the publication of Sugiyama's method [ST81], this approach to graph drawing
gained a great deal of attention and has since been implemented in many tools.

A layered graph is a digraph with some restrictions. First, the graph should have an overall direction
of �ow, because this technique will assume it exists regardless. For example, a tree dependency
graph �ows from what nothing depends on to what depends on many others. On the other hand,
a causal block diagram does not possess an oriented �ow, and hence does not bene�t so much from
this technique. A second restriction is that the input digraph be acyclic. In the layer assignment
section, preprocessing techniques to make cyclic graphs acyclic are discussed.

Not all graphs can easily be partitioned into layers. As a trivial example, consider the graph of a
list structure. Since we do not typically allow edges to be drawn between vertices of the same layer,
the resulting drawing is very tall but narrow, severely violating the aspect ratio visual aesthetic.
Similarly, a class diagram where inheritance arrows are used for determining layers, will result in a
very short but wide graph. This last observation assumes the class diagram designer respected the
good design rule of limiting inheritance to a depth of two and at most three.

This drawing technique deals with the following visual aesthetics, when implemented to the fullest
extent, given roughly in the order that they are optimized for: direction of �ow, area, mental map,
vertex overlap and uniform vertex distribution, long edge lengths, edge crossings, edge bends, and
symmetry. Surprisingly, given the general complexity of automatic layout, this technique deals
explicitly with almost all the visual aesthetic criteria. This broad coverage of aesthetic criteria,
combined with its moderate implementation di�culty, is no doubt why it is so widely implemented
in graph layout tools. Moreover improvements to the the many algorithms it uses continue to be
published to this day. The overall running time of most layered drawing techniques is not well
analyzed, since some of the heuristics employed are of the iterate until no further improvement
occurs type. Nonetheless, the time complexity can be assumed to be roughly quadratic.

The layered drawing technique is typically broken up into three major steps: layer assignment, cross-
ing reduction, and horizontal placement. Important extensions to this technique include satisfaction
of the mental map visual aesthetic and the ability to deal with compound graphs.

Layer assignment

The layer assignment phase of the layered drawing approach assigns each vertex in the input graph
to a layer. There are quite a few heuristic methods for accomplishing this task, each of which
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will work better or worse for certain aesthetic criteria, as well as overcoming the non-polynomial
complexity nature of both area minimization and edge length minimization. A method that uses
the existing positions of vertices to determine layering not only preserves the user's mental map,
but is simple to implement. Usually though, an initial drawing is not available or not very good,
thus an automatic layering needs to be generated from just the underlying structure of the graph.

Layering algorithms have some restrictions placed on them. A layering that satis�es these restric-
tions is known as a proper layered hierarchy. The �rst restriction is that edges are not permitted
between vertices belonging to the same layer. The second is that to preserve direction of �ow, ver-
tices of a given layer never have incoming edges from a layer that can be reached by outgoing edges.
In other words, the descendants of a layer do not �ow back into the parent layer. This restriction
implies the third, namely that the input graph must be acyclic. A �nal restriction is that if an
edge occurs between two layers then the two layers are adjacent. For example, one can think of
the layers as an ordered list, where adjacent layers are parents/children of each other. Edges that
do traverse more than one layer require special handling. This takes the form of dummy vertices,
representing the bends in the edge, that are assigned to each intervening layer the edge traverses.
These vertices are then treated like real vertices by later phases of the layered drawing algorithm,
with all the overhead this entails.

Cyclic graphs are common and one would like to draw them anyway. Thus a preprocessing step
must be applied to break cycles. This is done by reversing the directions of some of the edges, from
the point of view of the layered drawing algorithm. The edge is ultimately drawn in the correct
orientation. Clearly the minimum number of edges should be reversed for a drawing of high quality.
This problem, also known as the maximum acyclic subgraph problem, is NP-hard [Kar72]. A variety
of heuristic algorithms to solve this problem can be found in [BM01].

A naive layering algorithm, longest-path, is easy to implement by simply assigning each vertex to
a layer according to its discovery order by a depth �rst search starting at the root vertex. Another
approach, Co�man-Graham, involves minimizing the width of each layer, so as to improve the area
visual aesthetic, by constraining each layer to a parametrized width. The pseudo-code for these
algorithms can be found in [BM01]. Sander describes a method that minimizes variations in edge
widths using a one-dimensional spring embedder in [San96c], although this only applies if edge
orientation is not important. Another method for minimizing area is given by [TNB04], with the
advantage that one does not need to manually set the maximum layer width. A powerful method
that minimizes edge lengths and bends by minimizing multi-layer edges is formulated as an integer
linear programming problem in [GKNV93]. Finally, an experimental comparison of three common
layering methods: longest-path, Co�man-Graham, and Ganser ILP, is presented in [HN02].

A new approach to layering is taken in [ESK04]. Instead of requiring a proper layered hierarchy,
long edges are represented with only two dummy vertices at both ends of the edge. This requires
some adjustments to the later phases of the layered drawing technique which is described in the
paper. The advantage of drastically reducing the number of dummy vertices cannot be understated.
Every phase of the layered drawing technique takes a performance hit for each additional dummy
vertex. The authors claim a running time of O((|V | + |E|)log|E|) and a memory requirement of
O(|V|+|E|), both of which are substantially better than previous approaches.

Crossing minimization

The crossing minimization phase of layered drawing reduces edge crossings. It turns out that it is
su�cient to re-order the vertices inside each layer without dealing with actual coordinates. The
most common approach to reduce crossings in the entire graph, the layer-by-layer sweep, deals with
only two layers at a time [BM01]. Using the ordered list of layers from the �rst phase, the layer-by-
layer sweep �xes the order of the �rst layer and re-orders the second layer. Then the second layer is
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�xed and the third re-ordered, until the last layer is reached, whereupon the direction of the sweep
is reversed. Since layer-by-layer sweep operates on a very local scope, only two layers at once, and
yet crossings can arise from global ordering of the layers, this technique requires many iterations
until the number of edge crossings ceases to reduce further.

This phase of the algorithm is typically the most computationally expensive and with good reason.
As mentioned earlier the bipartite crossing minimization sub-problem is NP-hard [EW94a, EW94b,
GJ83]. This is because the only way to �nd the minimum number of crossings between two layers
of vertices is to literally try every single possible ordering of vertices in both layers. Naturally,
most graphs have far more than two layers, thus this computationally hard problem must be solved
many times. The reader may wonder why one does not consider all layers simultaneously. Indeed,
experiments have shown that considering only two layers at once yields less than optimal solutions
for the entire graph [JLMO97]. The trouble of course is that if the two-layer problem is so di�cult,
the multi-layer problem is even more di�cult.

Many algorithms for reducing crossings in layered graphs, using the layer-by-layer sweep approach,
exist. A very comprehensive overview of them can be found in [BM01]. Only a sampling of the
more interesting ones are reproduced here. Note that a layer-by-layer sweep is typically terminated
once it is detected that crossings are no longer being minimized. A simple method, using crossing
numbers, is described in [BM01], and can be used to �nd a lower bound on the number of crossings.
A more powerful method that gives the exact number of crossings is given in [BJM02]. This method
is simple to implement and has O(|E|log|V|) complexity where |E| is the number of edges between
two layers, and |V| is the number of vertices on the smallest of the two layers.

The most naive algorithm involves permuting every vertex in every layer, thus guaranteeing an
optimal solution, albeit with a running time of O(n!). A more practical approach, also yielding
optimal solutions, is the branch-and-cut algorithm by [JM97]. Although this algorithm is also non-
polynomial in complexity, whenever the layers have at most 60 nodes, the branch-and-cut algorithm
runs as fast or faster than most heuristic methods. Also, this method can also be used in a heuristic
fashion by simply interrupting the solver after a given amount of time, thus yielding the best solution
found at that point, although using it in this fashion yields poorer results than far simpler heuristic
methods.

The most commonly used algorithms are the barycenter and mediancenter node weighting heuristics.
Both algorithms compute a metric for each node in the layer being re-ordered based on the order
of the neighbors in the �xed layer, and then re-order the nodes by sorting them according to that
metric. For barycenter, the metric computed for each node is simply the sum of the order of each
neighbor in the �xed layer divided by the node's degree. In this case, the degree of the node is the
number of edges it has in the neighboring �xed layer, not in the entire graph. If two nodes receive
the same metric, a random tie breaker is recommended in [Pat04]. A randomized sorting algorithm
is also used in [San94], except that Sander's implementation goes further and keeps the tie breaker
in memory to allow backtracking if crossings are not reduced. An additional strategy, mentioned
in [San95], is to use the mediancenter heuristic to break the ties. This coupled strategy is called
barymedian, as it uses barycenter �rst, and mediancenter as a fall-back. The reverse is also possible,
and is called medianbary.

For mediancenter, the only di�erence is that instead of averaging, one picks the order of the neigh-
boring vertex that is median. If there are no neighboring vertices, then the median is 0. If there
are an even number of neighboring vertices then two medians exist, and the leftmost one is chosen.
Both heuristics are intuitively appealing, they position vertices such that they are as close as pos-
sible to their neighbors and hence reduce the crossings. However, the barycenter method has the
advantage of yielding a drawing with no crossings at all whenever this is possible. On the other
hand, [San95] claims that if the average degree of the vertices in the graph is low, mediancenter is
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usually more appropriate. Furthermore, it is mentioned in [BM01] that mediancenter is guaranteed
to give a solution with no more than three times the optimal number of crossings.

Three more variants that improve the results of barycenter and mediancenter are described in
[BM01]. The average median heuristic modi�es the mediancenter heuristic by using the average of
both the leftmost and the rightmost medians whenever the degree of a vertex is even. Similarly,
the semi-median heuristic simply uses the barycenter heuristic if the vertex degree is even. The
third and highly re�ned variant of mediancenter is called the weighted median heuristic and was
developed by [GKNV93]. As in the previous variants, mediancenter is used for vertices of odd
degree. If the vertex degree is two, then barycenter is used. For all other even vertex degrees, an
interpolated value is used to bias the vertex toward the side where the neighboring vertices are more
densely packed. The formula is as follows:

wmed(u) = Π1(vj/2)•right+Π1(vj/2+1)•left

left+right

left = Π1(vj/2)−Π1(v1)

right = Π1(vj)−Π1(vj/2+1)

In the formula, the vertex u has j neighbors in the �xed layer. Thus, Π1(vj) gives the order of the
last neighbor in the �xed layer of vertex u.

The running time of barycenter, mediancenter, and their hybrid variants is O(n). The sorting
requirement increases this to at least O(n log n) in the worst case, where n is the number of vertices
in the re-ordered layer. However, since the layers are sorted repeatedly, the layers are typically very
close to the sorted order. Thus the sorting barely requires more than O(n) comparisons of vertices.
Ultimately, it is di�cult to analyze how many sweeps a graph requires. In particular, downward
and upward sweeps tend to undo each others e�orts, and thus for most graphs the sweeps could
go on forever without converging. Thus the total running time of the crossing reduction is usually
bounded by running the layer-by-layer sweeps for at most a constant number of iterations. In
practice, this not only yields good results, it is the fastest crossing reduction method.

In [LART86], it is observed that with barycenter at least, upward and downward sweeps of the
layers can yield very di�erent metrics. This causes vertices to oscillate between one sweep and the
next. To improve convergence, they recommend that a third pass be used where the metric is the
average of the upward and downward sweep metrics.

A more sophisticated approach to crossing minimization is given in [ML03]. Here an algorithm based
on the GRASP methodology is applied, which stands for greedy randomized adaptive search proce-
dure. This algorithm uses many di�erent strategies, including random vertex orderings, barycenter,
and permutations of neighboring vertices. Of course, as the word search indicates, this algorithm
has a higher running time than pure barycenter. No running time is given beyond experimental
results, however one can safely conclude the running time is non-linear. On the other hand, the
results of this algorithm are often optimal or very nearly so, as extensive comparisons with other
heuristic algorithms show.

A few algorithms exist for reducing crossings by considering more than two layers at a time. One
such method involves planarizing the graph and is given by [Mut97]. Essentially, the method
attempts to remove as few edges as possible from the graph until planarity is achieved, and then
re-inserts them into the �nal drawing. The edge re-insertion algorithm attempts to route edges to
minimize edge crossings, but crossings are inevitable nonetheless. In practice the resulting crossings
tend to yield larger angles between crossing edges than do other methods, thus making the graph
more readable. Another, much older method attributed to Tutte and described in [EL89], involves
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�xing the top and bottom layers, and then choosing the order of each node as the average of the
node's indegree and outdegree. This can be formulated as a system of linear equations, and the
solution is very similar to doing a layer-by-layer sweep with barycenter.

Horizontal placement

The horizontal placement phase assigns coordinates to each vertex. The name, horizontal placement,
is derived from the convention that most layered drawing are drawn in layers starting with a root
layer at the top and successive layers moving down. Thus the vertical coordinate assignment is easy
to determine from the layering assignment. One does need to keep an appropriate vertical separation
between layers to avoid vertex overlapping. Optionally, the vertical separation can be increased to
take into account the slope of nearly horizontal edges, making them more readable[GKNV93]. This
last situation occurs frequently with long, multi-layer traversing edges, that bend abruptly at their
start and/or end. Thus we primarily deal with horizontal coordinate assignment in this phase.

The primary objective of this phase is to minimize edge bends and increase symmetries. Since
changing the ordering provided by the second phase would add edge crossings, straightening the
edges results in at least some sacri�ce of the area aesthetic. A horizontal placement method es-
sentially assigns coordinates such that if any two vertices are neighbors then they have identical
coordinates, if such is possible. If more than one child vertex has the same parent, or a parent has
more than one child, the vertices are placed as close possible to the horizontal coordinate of the
parent or child, thus giving the drawing a symmetrical look. Edges that traverse multiple layers
and that were given dummy vertices in the �rst phase are assigned horizontal coordinates such that
the dummy vertices all share the same horizontal coordinate if possible. Typically a long edge will
bend at the top and/or bottom, whereas the short edges will not be permitted to bend at all.

A problem formulation that provides the exact solution for horizontal placement exists. It optimizes
for straight vertical edges and narrow layer widths. Since it involves solving a quadratic objective
function, an NP-hard problem, this method is of little use for problems of reasonable size. A
description of it can be found in [BM01, ST81]. An improved formulation of the problem, in
[GKNV93], consists of constructing an auxiliary graph. The horizontal placement problem is thus
transformed into a layer assignment problem, that is then solved using a network simplex method.
This method returns optimal solutions if given enough computation time. Since network simplex is
non-polynomial, the fact that approximations of the optimal solution are returned if the solver is
halted after a prede�ned time-limit proves quite useful.

There are also a variety of heuristic approaches to the horizontal placement problem. The �rst such
is the priority method �rst published by [ST81] and described in detail in [Ste01]. The method
is very similar to the barycenter and median heuristics already discussed in the crossing reduction
phase. First, each vertex is assigned a down-priority equivalent to its outdegree and an up-priority
equal to its indegree. If the vertex is a dummy, an edge bend, and its neighbor is also a dummy,
then it receives in�nite priority instead to ensure straight long edges. Then the algorithm loops over
upward and downward sweeps, until no vertices move. Each sweep uses the barycenter or median
methods to calculate the desired grid position of each node, which will be very near the position of
the node's children or parents. If the node is not in its desired grid position, it attempts to move
there. If another node occupies the desired position, it will attempt to push it into the next grid
position, a recursive process. The process succeeds only if each pusher node has greater priority
than each pushed node.

In [San94, San96c], Sander presents a two part method consisting of a pendulum and a rubber
band analogy from physics. The intuition behind the pendulum method is that each vertex is a
ball swinging on edge strings from a �xed layer of vertices. Since gravity imposes a horizontal
force to each vertex ball proportional to the angle of the edge string, this method balances out the
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horizontal positions of the vertices while implicitly respecting the vertex order from the crossing
reduction phase. Furthermore, a minimum separation distance is enforced between each ball, which
can be visualized as the result of a ball that is larger than the actual vertex. This minimum
separation distance becomes important in the rubber band method since each vertex will need some
space in which to move to the left or right. The idea behind the rubber band method is to straighten
out the edges, something the pendulum method ignores. This is done by treating each edge as a
rubber band, so that a vertex having one parent vertex and one child vertex will have force exerted
on it such that the di�erence between the child and parent positions is minimized, and thus yielding
a straight edge. A variation of this method appears in [San96b], whereupon long edges with dummy
vertices are forced into strictly vertical lines. The only exception is the top and bottom part of a
long edge, which are permitted to bend. This is called a Manhattan style layout.

In [BJL01], an alternative method for Manhattan style layout is presented. This involves two
essentials steps. The �rst step deals with the positioning of long edges composed of dummy vertices.
Without violating the crossing reduction ordering, a leftmost and rightmost positioning of the long
edges is calculated. The long edges are then �xed at the average of the two positions so as to
achieve balance. The second step then positions the rest of the vertices and is fairly complicated.
The original vertices are treated as sequences sandwiched between the already �xed dummy vertices.
The goal of the algorithm in this step is to minimize the length of the edges between the vertices
in the sequence currently being positioned and their neighbors in a previously positioned sequence.
This method has a total running time of O(m(logm)2), where m is the total number of edges in the
k-layer graph, including those edges between dummy vertices.

A last method, given by [BK02], is fairly simple and runs in linear time. This method computes
four di�erent alignments for the vertices according to the median position of their neighbors. The
four di�erent alignments are the result of an upward/downward traversal through the layered graph
and a leftmost/rightmost median con�ict resolution strategy. Each of the four alignments picks out
a di�erent subset of edges that will be straight. With this, we can de�ne blocks, which are simply
every vertex along a straight edge path. A horizontal compaction step is then applied, the backbone
of which is a longest path layering algorithm. Longest path layering simply assigns each block a
coordinate that is recursively de�ned to be the maximum coordinate of the preceding blocks plus
some minimum separation distance. The �nal step in this algorithm combines the biases of the four
di�erent alignments using the average of the left and right median coordinates of each vertex. This
method compares quite well with that of [BJL01], although it does appear to use more area.

Extensions

The layered drawing technique, as described thus far, ignores the mental map visual aesthetic as well
as compound graphs. A simple way to satisfy the mental map visual aesthetic, to some extent, is by
using a sketch based technique. The sketch based technique uses a very di�erent approach to layer
assignment than usual. It directly uses the coordinates of vertices in an already computed drawing
to compute the layering. This requires either extra processing to ensure a proper layered hierarchy,
or accepting the inevitable crossings that will result if edges are permitted between vertices of the
same layer.

Alternatively, one can use an incremental version of a layered drawing technique for the mental map
problem. Incrementality, as the name suggests, is about drawing a graph incrementally as insert
and delete operations modify the vertices and edges. A constraint based approach that accomplishes
this is described in [BP90]. A concise four step summary of a constraint based approach is given in
[And98]. Essentially, all vertices are constrained to their positions, save those that have been newly
modi�ed and their neighbors. The layout algorithm then attempts to create a new layout without
violating any of the constraints.
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To handle compound graphs, a layered drawing technique must �rst distinguish between adjacency
and inclusion edges. It is important to do so, since many domain-speci�c formalisms such as DEVS,
Statecharts, and control �ow diagrams cannot otherwise be drawn meaningfully with a layered
drawing technique. One of the �rst extensions to handle compound graphs is given in [SM91]. The
layer assignment phase is modi�ed to take hierarchy into account. Furthermore, edges between
compound components, that is between vertices at di�erent levels of the hierarchy, result in dummy
edges with compound dummy vertices. The result is similar to that of long edges traversing multiple
layers in the regular layered drawing technique. The crossing minimization phase is extended to
keep vertices in the same compound component close together, minimize crossings between edges of
vertices in di�erent compound components but on the same layer, and minimize crossings between
the edges of vertices on di�erent layers. This is done using a priority based barycenter heuristic.
Similarly, the horizontal placement phase is computed using a priority based barycenter heuristic,
with special attention given to avoid overlapping rectangle boundaries.

An alternative method for compound graphs is given in [San96a]. In this method, the layer assign-
ment phase has two di�erent layer types. The new layer type consists of dummy vertices representing
the top and bottom borders of a compound component, which will ultimately be drawn as the up-
per and bottom borders of a rectangle. This new layer type is very thin since only a rectangle
line is drawn through it, whereas the normal vertex layers are much thicker. The border vertices
are used to partition which compound component should go above, below, or on the same layer/s
as another compound component. Dummy vertices between compound components are routed ei-
ther outside compound components as in Sugiyama's method, or inside. The crossing minimization
phase uses a barycenter heuristic modi�ed so that on any given layer, vertices of a compound com-
ponent are grouped together. Moreover, vertices of two compound components on multiple layers
are not permitted to intertwine each other. These two modi�cations prevent boundary rectangles
from overlapping each other. In [For02], Sander's crossing minimization method is improved by
considering more than one layer at a time, thus avoiding unnecessary crossings. Note that this
improvement addresses crossings inherent to the grouping a compound graph requires, not the gen-
eral multi-layer crossing minimization problem. The �nal phase, horizontal placement, receives an
interesting modi�cation in the form of new dummy vertices along the left and right border of each
compound component. These new dummy vertices are then required to form straight lines, thus
yielding nicely spaced compound components with enough room to draw rectangular boundaries.

1.3.2 Force-directed

The force-directed class of graph drawing techniques are based on virtual physics models. The �rst
algorithm to use this technique is attributed to [Ead84], which evolved from an earlier technique
for VLSI layout called forced-directed placement [FR91]. The intuition behind this class of drawing
technique is that since physical objects, such as molecules, tend to settle into highly uniform and
balanced states, which are desirable visual aesthetics, then the simulation of vertices as molecules
will yield a good layout. The uniformity of the molecules occurs due to the various forces acting
upon them. Virtual forces are typically created wherever edges exist, although other possibilities
exist, and are not necessarily natural in origin. Indeed natural forces, such as acceleration, tend to
result in dynamic equilibria, whereas we desire a static equilibria. Continuing the physical system
analogy, the molecules keep moving so long as a net force exists, thus the system becomes balanced
only when the the sum of the energy imparted by the forces becomes minimal. With the proper
choice of forces, this allows for the creation of force-directed heuristics with an explicit termination
condition, that is, once the energy sum reaches some small threshold value.

Once a physical model is chosen a balanced con�guration is typically found by discrete simulation.
Many time steps are used to calculate the forces acting on each vertex and to update their posi-



1.3 Techniques for graph drawing 15

tions. Doing such, one encounters the possibility of reaching a local minimum state, a state such
that the forces are not minimal but that further iterations do not improve. When the simulation
terminates, vertices are assigned directly assigned the coordinates of the simulated objects, and
edges are typically drawn as straight line segments between them.

This class of algorithms works on both digraphs and regular graphs, and is most e�ective on sparse
graph structures. This latter is in part due to the lack of any explicit crossing reduction strategy,
thus a large number of edges are sure to yield an incomprehensible spiderweb. Area minimization
is possible with the creation of a force, such as gravity, however this class of algorithms does not,
in general, use space as e�ciently as other graph drawing techniques.

The most basic implementation of the force-directed approach is called a spring embedder. Es-
sentially, each vertex becomes a repulsive charge that repulses every other vertex, and each edge
becomes a spring that pulls the connected vertices together. Many formula can be used for gen-
erating the repulsive and attractive forces, but regardless of the one used, the e�ects are similar.
This is very straightforward to implement. However, we have not yet dealt with local minima nor
oscillatory and rotational behaviour. A vertex is considered to oscillate if in the current iteration
its movement vector is the opposite of the last iteration. Rotation is de�ned similarly, except the
current movement vector is roughly perpendicular to the vector of the last iteration, and this should
occur repeatedly in the same direction before being considered rotation.

The GEM [FLM94] force-directed heuristic handles local minima by adding random motion vectors
at each simulation iteration. This randomness is controlled by a local temperature associated with
each vertex. This temperature is decreased when oscillation and rotation are detected. Once the
sum of the vertices temperatures reaches a low threshold value, the algorithm terminates. Another
important aspect of this heuristic is that it uses barycenter gravity, that is, it creates an attractional
force to the average position of all the vertices, leading to compact layouts. The authors give the
estimated running time complexity as O(|V|3), since they need an average of O(|V|) simulation
iterations and the repulsive force calculations are O(|V|2), although they break it down di�erently.

In [San96c], two equations are given for computing repulsive and attractive forces respectively:

Frepulsive(v, w) = −λrepulsive
∆(v,w)

||∆(v,w)||2

Fattractive(v, w) = λattractive∆(v, w)||∆(v, w)||2

The distance vector between the two nodes v and w is given by ∆(v, w) and the Euclidean distance
by ||∆(v, w)||. Thus repulsion is inversely proportional to distance, whereas attraction is directly
proportional to a power of the distance. The lambdas allow parametrized control of each force's
in�uence.

Also shown is the idea of computing an extra amount of gravity per vertex, proportional to the
degree of a vertex. The following equations give the center position of all the vertices and the vertex
speci�c gravitational force respectively:

Bcenter = 1
n

n∑
i = 1

position(vi)

Fgravity(v) = λgravity(1 + degree(v))(Bcenter − position(v))

In this fashion, the seemingly more important vertices are more likely to be drawn near the center
of the drawing. Finally, an extension to springs for the case of digraphs is given. In this extension,
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the springs are supplemented with directed magnetic �elds. Various magnetic �elds are possible,
such as parallel, concentric, and orthogonal. The main advantage of these �elds is that they enforce
the direction of �ow visual aesthetic.

A contribution in the form of advanced preprocessing is made in [GGK00]. The idea here is to �nd
an initial placement of the vertices that is very close to the �nal con�guration, thereby signi�cantly
reducing the time spent in the time expensive simulation loop. This is achieved by �rst �nding a
maximal independent set �ltration with a size of three vertices. The second phase then places these
three vertices according to the length of the shortest path between each pair of vertices, their graph
distances. The third phase alternates between adding one vertex according to its graph distance to
one of those three initial vertices and re�nement using a force-directed model. Although overall time
complexity is not given, the system is able to handle graphs on the order of 16000 vertices in under
a minute. A di�erent preprocessing technique is shown in [MR02]. The authors speci�cally target
WWW visualization, which involves thousands of vertices and edges. Essentially, their preprocessor
allocates the vertices uniformly randomly over a very large area, and then over successive iterations
places nodes at the barycenter of their neighbors. This process stops once the edge lengths have
reached some reasonable value, at which point the area will be reduced to something reasonable. For
some graphs, the initial drawing yield by this preprocessor does not even require further re�nement
with the force-directed method.

In [FR91], they attack the problem of time complexity. Basically, calculating the repulsive force
between each vertex and every other vertex, also known as the n-body problem, is very expensive.
They decided that since the magnitude of repulsive forces vary inversely with distance, then vertices
that are far apart aught to have distant and thus negligible force contributions simply dropped. They
implement this by partitioning the vertices into a grid, and only considering repulsive contributions
from vertices within adjacent grid boxes. The running time complexity is given as O(|V| + |E|)
assuming that the number of simulation iterations required is a constant 50, which seems somewhat
doubtful. A more elaborate scheme for partitioning vertices, using graph clustering techniques, is
given in [QE01].

A very di�erent approach to the node overlap visual aesthetic is taken in [GN98]. Instead of
creating a repulsive force to prevent overlap, they instead use a three part strategy. First they
ignore overlapping by treating vertices as point objects and only calculate attractive forces along
edges. In the second part, they calculate the actual boundary for each vertex as well as some
additional room for edges. Then they compute a Voronoi diagram, move each vertex toward the
centroid of its Voronoi cell, and expand as necessary until none of the vertices overlap. The Voronoi
diagram approach is justi�ed by comparing it to the far more primitive approach of simply scaling
the graph, which results in a very area ine�cient drawing. However, other algorithms speci�cally
designed for dealing with node overlaps exist, such as that by [HL03]. This last algorithm is itself
a force-directed method that makes use of orthogonal repulsive forces between overlapping vertices.
Finally they route spline edges between each of the vertices, ensuring that no edge overlaps a vertex.

Finally, an experimental comparison of various force-directed strategies is given in [BHR96]. These
include the GEM and [FR91] algorithms, as well as a simulated annealing approach that is discussed
in section 1.3.5. The simulated annealing algorithm gave the best results although it required
considerably more time than any of the other approaches. GEM was considered to be among the
fastest in running time. Surprisingly, the algorithm from [FR91] was determined to be too slow for
more than 60 vertex graphs. This would suggest the authors of this study did not implement the
partitioning component of the algorithm.
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1.3.3 Orthogonal

The class of orthogonal graph layout techniques includes a wide variety of methods. The following
de�nition of orthogonal layout is detailed in [PT98]. Whereas force directed methods typically
only use straight lines, orthogonal layouts also use poly-line edges with bends. The poly-line edges
are drawn as continuous sequence of horizontal and vertical segments. In orthogonal drawings,
all vertices and edges are assigned integer coordinates. In other words, the drawing is done on
a rectilinear grid and edges correspond to grid paths. Orthogonal drawings are sometimes called
rectilinear drawings or Manhattan drawings. Finally, there is an important distinction between
pure orthogonal and quasi-orthogonal layout. The former has vertices of degree strictly less than or
equal to four, whereas the latter does not.

Orthogonal layout techniques are commonly broken down into three phases: topology, shape, and
metrics. No matter which approach is taken, orthogonal layout is particularly sensitive to the
input graph structure. The following input graph properties are usually required by orthogonal
layout: connected graph, biconnected graph, and maximum vertex degree four. The connected graph
property is dealt with by considering each connected subgraph separately or by arti�cially connecting
them with dummy edges. Since most orthogonalization algorithms require the construction of an
st-graph, the biconnected property is also required. This is satis�ed for general graphs by adding
dummy edges as well. These dummy edges add overhead to the algorithms and are detrimental to
several visual aesthetics. They are only removed when the graph is �nally drawn. The GIOTTO
algorithm, [TBB88], appears to be the only orthogonal algorithm for general graphs not requiring
bi-connectivity. Finally, the requirement that vertices have maximum degree four, is the result of
the fact that in 2D only four horizontal and vertical directions are possible. This limitation is often
avoided by splitting a high degree vertex into several connected vertices that form a rectangular
face. Unfortunately, the size of this rectangular face is unbounded. An approach that does deal
with high degree non-planar graphs gracefully is described in [FK97].

In general, orthogonal drawing techniques produce high quality layouts because they optimize for
many visual aesthetics. Depending on the speci�c implementation, they can optimize all or some
of the following aesthetics: vertex overlap, edge crossings, number of bends, edge lengths, and area
usage. Recently, the direction of �ow aesthetic was also added to this repertoire [EKS03].

Alternative orthogonal layout techniques which do not use the topology, shape, and metric approach
are known as draw-and-adjust [BBD00]. Comparisons between both the topology-shape-metric and
draw-and-adjust approaches can be found in [BGL95, BGL+97]. These comparisons were done on
three and four alternative approaches to orthogonal layout, respectively. The results show that in
terms of optimizing visual aesthetics the topology-shape-metric approach is superior, whereas the
draw-and-adjust approach has much better time complexity.

Topology

The topology phase of graph layout optimizes both the vertex overlap and the edge crossing visual
aesthetics. This is done by computing a planar embedding of the graph. The following explanation
of planar graphs and their embeddings is quoted from [EKS03]:

A graph is planar, if it has a drawing in the plane without edge crossings. Such a drawing
divides the plane into regions, called faces. A planar embedding is a combinatorial
description of the faces and contains for each face the sequence of edges contouring it.
A planar embedding implicitly de�nes a cyclic ordering of the edges around a vertex.

The �rst linear-time planarity testing algorithm is attributed to Hopcroft and Tarjan [HT74]. This
algorithm can be modi�ed so that it also yields a planar embedding when the input graph is planar.
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However, it has been described as complicated and subtle. Alternatively, a very recent and simple
planarization algorithm is given in [BCPDB04]. This algorithm, also has linear time complexity.
Moreover, an experimental comparison of running times with other planar embedding methods is
given. The results of the comparison indicate that computing planar embeddings for graphs with
hundreds of thousands of nodes, within seconds, is possible with several of these methods.

For non-planar graphs, the previous methods will halt upon discovering non-planarity. Thus edges
must be removed until the graph becomes planar. Then the removed edges are re-inserted and
the graph is augmented by adding dummy vertices wherever edge crossings occur. A description
of a linear time algorithm to re-insert the edges, in a crossing minimizing fashion, can be found
in [GMW01]. A di�erent linear time algorithm for edge insertion and routing is given in [Eig03].
This last algorithm is generalized to work on mixed graphs, that is graphs containing directed and
undirected edges.

These dummy vertices are treated as regular vertices by all phases of the algorithm, but are not
actually drawn. For non-planar graphs, minimizing the number of dummy vertices required to pla-
narize the graph results in edge crossing reduction. Dummy vertices can be minimized by removing
the fewest number of edges possible to make the graph planar. More formally, given a graph G =
(V, E), the objective of graph planarization is to �nd a minimum cardinality subset of edges E' ⊆
E such that the graph G' = (V, E \ E'), resulting from the removal of the edges in E' from G,
is planar. This problem is also known as the maximum planar subgraph problem and is NP-hard
[Cim95]. An algorithm to �nd the maximum planar subgraph, using branch and bound techniques,
is given in [JM96].

A closely related, and more computationally tractable problem, is to �nd the maximal planar
subgraph. This problem consists of �nding a subgraph G' of G such that adding any edge present
in G but not in G' results in a non-planar graph. An experimental comparison of the performance
of �ve maximal planar subgraph algorithms is presented in [Cim95]. The heuristic yielding the
highest quality in this experiment is the cycle-packing algorithm with O(|V ||E|2) time complexity.
An improved version of this algorithm, GRASP, is given in [RR97]. Although the worst case time
complexity is O(|E||V |6), this bound is not reached in practice for several reasons given in the
paper. Moreover, if speed is more important than quality, the maximum number of iterations can
be bounded. The authors freely provide a Fortran implementation of this algorithm. In [Dji95], a
linear time algorithm is given to solve this problem. However no quality comparisons are made with
respect to the optimal solution, nor other heuristic algorithms.

Planar embeddings are not unique. In fact, according to [BBD00], there exist a factorial number
of them. From an edge crossing point of view, every planar embedding is equivalent. However,
the minimum number of bend numbers will be in�uenced by the choice of embedding. Thus the
distinction between the topology and shape phases becomes blurred. In [DL98], an algorithm that
searches through planar embeddings to �nd an orthogonalization with the minimum number of
bends is presented. However, the running time of this algorithm is very poor, O(6n4n4logn), where
n4represents the number of vertices with degree 4. In [BBD00], a branch and bound algorithm
is given to �nd the optimal number of bends by considering many possible embeddings. This
algorithm is only applicable to small graphs. Finally, a linear time algorithm is given in [GM04].
Rather than search through the entire space of potential embeddings, the search is restricted to
only those embeddings with qualities that lend themselves to superior layouts.

Shape

The shape phase maps the planar embedding given in the topology phase onto a grid. This grid
embedding must have the same combinatorial description of faces as is present in the input planar
embedding. The result of this phase is an orthogonal representation. Hence this phase is also called
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orthogonalization. An orthogonal representation is completely dimensionless. The objective of this
phase is to construct the grid embedding while minimizing edge bends.

A relatively simple and linear time complexity approach to this problem is given in [TBB88]. The
method is called bend-stretch or fast orthogonalization. This involves constructing an st-graph
and then a visibility representation, which consists of vertices drawn with large widths and straight
vertical edges. An alternative method for constructing visibility representations without at st-graph
is given in [Boy05]. A fast expansion step then chooses an intersection of a vertex and an edge as the
position of a unit sized vertex and edges become both vertical and horizontal as a result. Finally,
bend-stretching transformations are applied, which are simple rules that match patterns in the
embedding of the previous step, in order to reduce the number of bends.

A di�erent and very elegant approach to generating an orthogonal representation is detailed in
[Tam87]. In the experimental comparisons of orthogonal layout algorithms, [BGL95, BGL+97],
this approach is known as GIOTTO. The approach consists of the transformation of the planar
representation into a network �ow problem. For example, the �ows correspond to the number of
bends in the grid embedding. The computation of the minimum cost �ow in the network yields the
desired orthogonal representation with the minimum number of bends. Recall that the minimum
bend number is minimum only for the input planar representation, of which many are possible.
The minimum cost network �ow problem is solved using an augmentation algorithm in as little as
O(n2logn) time, due to the speci�c nature of the problem. An improved version of this algorithm,
with O(n7/4

√
logn) time complexity, is given in [GT97].

The Kadinsky algorithm is very similar to the previous approach. They both use network �ow tech-
niques, with some important modi�cations, to �nd the minimum number of bends. The di�erence
lies in the fact that this approach speci�cally targets graphs with high degree vertices. The original
version treats all vertices as squares of equal size and allows multiple edges per side [FK96]. A
later version allows for vertices of high degree to expand in size proportional to their degree [FK97].
This results, at least for some graphs, in a better layout in terms of area usage, edge bends, and
edge crossings. A version of this algorithm that can handle vertices of a prescribed size is given in
[BDPP99]. This is quite possibly the only algorithm that explicitly deals with vertices of a speci�c
size, something that is particularly useful if the vertices are represented by non-scalable picture
icons. The running time for all these algorithms is bounded by the time required to solve the mini-
mum cost network �ow problem. In [Eig03], it is revealed that the original version uses an incorrect
algorithm. Thus not only will the algorithm fail to yield the minimum cost network �ow for some
input graphs, it may even fail to yield a feasible solution. A �x for the algorithm is given, however
it is not guaranteed to yield the optimal solution to the network �ow problem. The run time is
complexity is O(n7/4

√
logn).

The basic implementation of these shape phase methods treat all vertices as point objects, with a
single edge port in each cardinal direction. In [BNT86], it is shown how a vertex can be expanded
into a rectangular skeleton with many potential connection points. This is particularly advantageous
in multi-graphs where two vertices have multiple edges between them. By increasing the number of
connection ports on a single face of the vertex, all these edges can be drawn as straight lines, thus
producing a more compact layout with fewer bends.

Metric

The metric or compaction phase, takes as input a graph embedding and produces the �nal layout on
a rectilinear grid. In [BNT86], this phase is divided into two steps. The �rst involves the decomposi-
tion of each face in the embedding, by matching some basic patterns, into a rectangle. This requires
linear time. Thereafter, each rectangle segment is assigned an integer length, using integer linear
programming. Interestingly, horizontal and vertical compaction can be solved for independently.
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Moreover, the time complexity is polynomial due to the fact that the total unimodularity property
holds for the ILP input matrices.

An alternative second step is outlined in [TBB88]. Once again, horizontal and vertical compaction
is considered separately. In essence, a network �ow technique is applied, where each unit of �ow
corresponds to one unit of length and each node corresponds to a rectangle (face). Conservation of
�ow at each node forces opposite sides of a rectangle to have the same lengths, while minimization
of the �ow cost results in total edge lengths of minimum size. This method has a time complexity
of O(n2).

A variety of di�erent compaction algorithms are experimentally compared in [KKM01]. These
algorithms include longest-path compaction, network �ow, turn-regularity, and ILP. Note that the
�rst step of decomposition mentioned above is not used by all these algorithms.

Draw-and-adjust

There are two known draw-and-adjust algorithms for orthogonal layout. The �rst of these is the
column approach [BK98]. An s-t ordering is �rst computed, where s is the source and t is the
sink, using depth �rst search. Then the vertices are consecutively embedded in a grid. Initially two
mutually connected vertices are embedded on row 1, with their mutual connection routed along row
0. Each vertex then reserves three columns in the rows ≥2, through which they may route their
remaining edges. Additional columns are added to the embedding as needed. Also, the choice of
column to route edges is made such that bends are minimized. From the rows and columns of each
vertex and edge bend, �nal coordinates are easily derived. This approach works on any biconnected
graph and has time complexity O(|V| + |E|).

The second approach is the pairs algorithm [PT97, PT98]. This algorithm is similar to the �rst in
many respects, the major di�erence being the vertex pairing. An s-t ordering is used to classify each
vertex according to its indegree and outdegree. For example, a 1-2 vertex has one incoming edge
and two outgoing edges in the s-t ordering. The most important vertex classi�cations are 2-2, 1-2,
and 1-3 since the algorithm can always pair such vertices on a row or column. This is important
because two vertices that have been paired to the same row/column reduce the total number of
rows/columns and result in fewer edge bends and crossings. The time complexity of this approach
is O((|V| + |E|) log(|V| + |E|)). It accepts any biconnected graph where the maximum degree of a
vertex is four. Judging from the �typical� layouts of graphs shown in [BGL+97], this method is far
superior to the column approach in terms of image quality.

1.3.4 Linear Constraints

Linear constraints provide a declarative approach to layout, but cannot be used without a fairly
complex solver. The most common technique for solving linear constraints is Dantzig's simplex
algorithm from the 1940's. However, standard implementations of it are not satisfactory for layout
purposes [BBS01]. This is in part due to the fact that standard implementations solve one problem
and terminate. Layout tends to involve interaction with the user and thus requires a solver that can
rapidly solve very similar problems. A similar problem is one where a variable's value is modi�ed or
a variable/constraint is added or removed. For example, if the variable representing the horizontal
coordinate of an object is increased by one unit by a user, the solver should make use of the existing
solution with just the modi�cation of the changed variable. A second problem with constraints
for layout purposes is that they are often cyclical in nature, thus making a number of e�cient
solving techniques unusable. A third problem involves satisfying the mental-map aesthetic during
interactive editing of a graph layout. In other words, objects should only move if it is absolutely
necessary to satisfy the constraints. A �nal problem is that while modifying layout, the user may
create a con�ict whereby the constraints cannot be satis�ed by the new change. In this case the
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con�ict needs to be resolved without throwing an error. To overcome these problems, incremental
linear constraint solvers were developed, such as the Cassowary and QOCA solvers whose source
code is freely available [BBS01, BMSX97].

The primary use for linear constraints lies in the layout of windows for user-interfaces. Many aspects
of such are easily represented with linear equality and linear inequality constraints. Inequalities in
particular are useful for specifying: insideness, to-above-of, to-below-of, to-left-of, to-right-of, and
overlapping constraints. For example, one could give a set of linear constraints such as X =
coordinate , X ≤ objectA.x, and objectA.x + objectA.w ≤ objectB.x, where x is the leftmost
coordinate and w is the width, to specify that objectA is to the right of the window boundary X,
and the the right side of objectA is left of objectB. The resulting interactive layout behaviour is that
attempting move objectA past the window boundary on the left will cause objectA to be frozen at
the boundary, whereas moving object to the right of objectB will cause objectB to move right as
well.

Although linear constraint solving techniques were primarily developed for the layout of windows
in user-interfaces, they have also been applied to graph layout problems. In [CMP99], a Penguins
system is developed that uses linear constraints and the QOCA solver for computing the layout
of binary trees, state transition diagrams, and mathematical equations. The linear constraints
are generated using a grammatical speci�cation of the visual language in question. This means
that each graph type, or visual language, receives a speci�cally designed layout that is best suited
to it. Similarly, the GenGED tool uses visual grammars to specify diagram editors or formalisms
[Bar98]. The tool also makes it possible to visually add linear constraints to assemble icons that will
represent vertices, as well as to describe the layout that edges will impose between various vertices.
However, the linear constraints are solved using Parcon, which has very limited documentation
and is only available as a binary with limited platform support. Finally, the tool DiaGen uses a
textual grammatical speci�cation of the visual language, and optionally that of the layout constraints
[MK99]. DiaGen uses QOCA for solving linear constraints, however it does not necessarily use linear
constraints for all the visual languages. It does however use them for trees and NSD diagrams. For
details on the use of linear constraints in NSD diagrams, see [VM94], where the implementation is
done in a tool that is a precursor to DiaGen.

Disjunctive and non-linear constraints occur often in graph layout however. Consider a non-
overlapping constraint between vertices. This can only be achieved by disjunctive constraints speci-
fying that either vertex A is to the left of vertex B or vertex A is to the right of vertex B. Attempting
to do this with normal conjunctive constraints simply yields con�icting constraints. Thus one needs
a solver that can handle such constraints, such as Parcon, whose source is non-freely available, or
one needs to implement the modi�cations to the existing incremental linear constraint solvers, as is
proposed in [HMM02, MMSB01]. Disjunctive constraints have a potentially signi�cant impact on
running time, as they increase the number of constraints the solver must work on considerably.

Non-linear constraints are not so easily dealt with. A non-linear constraints has the form x ∗ y = z.
A simple example where this occurs, namely when trying to tightly �t a box around n-characters of
text of a certain width, is given in [VM94]. The simpli�cation of constraints in order to avoid non-
linearity inevitably results in a poorer layout. Thus for full �exibility, the use of di�erent solver is
required, one that can handle non-linear constraints, non-overlap, and even the Euclidean geometric
constraints of: perpendicularity, parallelism, and distance equality. Such a solver has been proposed
in [Hos01], unfortunately the results were less than satisfactory, in particular the running time was
quite poor even for very small graph sizes.
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1.3.5 Expensive Methods

This subsection discusses drawing techniques with very high computation costs. This does not mean
they are unworthy of discussion; for certain applications these techniques are ideal. For example,
consider the MSN Line Drive Maps, which convert road directions from point A to point B into a line
map such as one might draw with pen and paper for a friend who does not know your neighborhood
[AS01]. The map simpli�cation and labeling of roads is done entirely with a simulated annealing
process. In spite of this, the system is quite fast, although it does consider a very restricted graph
structure.

Simulated annealing

Simulated annealing is a �exible optimization method, suited for large-scale combinatorial opti-
mization problems, such as the traveling salesman problem, and problems concerning the design
and layout of VLSI [DH96]. The intuition behind this method is that in a physical system, cooling
a liquid slowly results in a totally ordered con�guration, a crystal formation. On the other hand,
cooling a system rapidly results in amorphous structures that have higher energy, representing an
undesirable local minima. Thus the major di�erence between simulated annealing and standard
iterative improvement methods is that simulated annealing deliberately allows the current and tem-
porary solution to worsen, with a probability proportional to the temperature. This seemingly
unreasonable characteristic allows the method to leave an undesirable local minima solution and
gives it a much better chance of �nding a globally optimum solution.

Applied to graph layout, simulated annealing works as follows. First an initial con�guration of the
vertices is chosen, such as by random coordinate assignment. Second, the con�guration is changed
according to some rule, again one possibility is to randomly permute the vertex coordinate. A global
evaluation function then determines if this new con�guration satis�es the visual aesthetics better
than the old. With probability α the better con�guration is chosen, and with probability 1 − α
the other con�guration is chosen, where 0 ≤ α ≤ 1 and α is chosen such that it decreases with
the temperature. This choice of con�guration is what allows the method to avoid getting stuck in
local minima solutions. Thirdly, the temperature is decreased after the second step repeated some
number of times. Finally, the algorithm terminates when no further progress is made or a time limit
is reached.

The global evaluation function in [DH96] explicitly optimizes for the following visual aesthetics:
uniform node distribution, area, edge lengths, edge crossings, and edge-vertex crossings. However,
some of these aesthetics are considered only for the last few �ne-tuning iterations. The authors claim
a running time of O(|V |2|E|), and point out that simulated annealing is in general an expensive
algorithm. Indeed an experimental comparison of various force-directed methods, including this
simulated annealing method, reveals it to be the slowest method by far [BHR96]. The performance
of simulated annealing can be drastically improved by using a preprocessing phase to create an
initial layout. Useful preprocessing methods include a force-directed method in [San96c] and a
planar or nearly planar embedding in [HS94].

Genetic algorithms

Genetic algorithms are very similar to the previously discussed simulated annealing algorithm. In
both cases, randomness is used to generate new con�gurations and a function is used to evaluate the
quality of the resulting layout. However, the intuition is quite di�erent, rather than crystallizing
liquids, this method simulates biological evolution. Essentially this comprises of searching for a
solution while using natural selection to weed out poor con�gurations.

A genetic algorithm for graph layout, according to [Mas92], has the following pseudo-code:
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1. An initial graph con�guration is chosen, possibly randomly.

2. The layout is allowed to evolve over a large number of iterations, also known as generations.
Evolution is simulated by crossovers and mutations. In natural genetics, a crossover occurs
when two genes are randomly selected, cut at two points, and then a portion of each gene is
exchanged at the cut points. The graph layout equivalent is performed by placing vertices
in a 2D grid, and randomly swapping whatever vertices happen to be in some portion of the
grid of one layout with that of another layout. Mutations, in natural genetics are random
changes in a letter of a gene sequence, and correspond to a shift in a vertex position in the
graph layout problem.

3. A �tness function determines if the crossovers and mutations have improved the visual aes-
thetics of the graph. Layout con�gurations with very poor �tness scores are dropped, whereas
promising layouts are bred to create new generations of graph layouts.

4. Termination occurs once the population of candidate layouts reaches a predetermined number.
The layout with the highest �tness score is returned.

Key issues with this technique lie with selecting a good �tness function and determining how many
generations are necessary. The latter problem can be resolved by simply halting the population
growth after some amount of time. The selection of a �tness function is not so easily resolved
however. A �tness function might consider the following visual aesthetics: the number of edges
directed upward, the number of edges shorter than a given constant, the number of crossing edges,
and the number of edges forming crossings with other edges at angles smaller than a given constant.
An alternative �tness function of much greater complexity is given in [KMS94]. In [Mas94], the
author claims that even given the �tness function, �nding good weights for each aspect of the
function is very di�cult, with small changes leading to unpredictable results. This issue is resolved
by creating a system that allows the user to provide good and bad layout examples, from which the
weights are automatically tuned, until each good example gets a score greater than the bad layout
example. The advantage of this system is that it is very intuitive to work with and allows the end
user to tune the layout algorithm for speci�c graph layout requirements.

The computational complexity of genetic algorithms is high. This is symptomatic of all search
based techniques, including the previously discussed simulated annealing. This algorithm should
be reserved for use only when interactivity is not required, such as VLSI design, or perhaps as a
post-process �ne-tuning phase.

Rule-based

A rule based approach to layout is proposed in [KMS94]. The intuition behind this technique is
that humans construct diagram by applying a �nite number of rules to incrementally build the
layout, thus an automatic method would encode these rules as heuristics. However this method
has serious shortcomings. The search based strategy of applying rules does not guarantee that a
valid layout will be found and may require excessive amounts of backtracking from a current invalid
layout to a previous valid layout. Layout aesthetics that are global in nature, such as edge crossings,
cannot be captured at all. Finally, rules optimizing di�erent aesthetics can con�ict. The authors
conclude that this technique is not worth pursuing further. A somewhat similar approach can be
found in [SYTI92]. The authors improve the system by making it possible to extract layout rules
from example layouts with the use of fuzzy logic techniques. Details of the implementation and the
running time of their algorithm are sketchy, however one can conclude the system is unsuitable for
interactive use.
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1.3.6 Other Techniques

This subsection describes graph drawing techniques that are less commonly used or that complement
other graph drawing techniques. The former category includes: 3D, circular, competitive learning,
multi-dimensional, and graph grammar based layout. The latter category includes large graph
visualization methods and techniques for edge routing.

3D layout

3D graph layout is motivated by the fact that there are limits to the amount of information a user
can perceive from a given 2D area. Moreover, most of the previously discussed layout algorithms
have trivial generalizations to the third dimension. In [Dwy01], the question of whether or not
3D is truly useful in graph layout is studied. The underlying algorithm used is force-directed.
Interestingly, the authors cite a study performed on human subjects that showed that even though
we perceive 3D drawings as 2D projections, they nonetheless allow for 3 times more information
than a regular 2D drawing. This indicates that good comprehension of a graphs structure is possible
for larger graphs when drawn in 3D versus 2D.

The results of the study on the e�ectiveness of 3D in [Dwy01] are not overwhelmingly strong
however. Moreover, a control group study using 2D drawings is not used for comparison. In
general, 3D techniques should be limited to situations where the vertices are point objects. This
makes it possible to understand the structure of complex graphs very easily. When the vertices are
large and contain important information in labels, visibility issues signi�cantly degrade the value of
this approach.

Circular

Circular layouts are a fast and fairly space e�cient way of representing rooted tree graph struc-
tures. They have been successfully applied to at least the following domains: network topologies,
multimedia documents databases, and virtual reality scene descriptions. Detailed pseudo-code for
circular layout algorithms are available in [MH98, YYL03]. The basic idea behind these algorithms
is to pick a root vertex, draw the neighbors of the root in a circle around it, and recursively treat
the neighbors of the root much like the root vertex. The method of [YYL03] achieves better area
e�ciency by directing neighboring vertices outward from the root vertex, allowing root and neighbor
to be drawn closer together. All these layout methods have linear time complexity.

Competitive learning

Competitive learning using neural networks is applied to graph layout for the �rst time in [Mey98].
The intuition for this technique comes from the fact that in biological systems the spatial or geomet-
rical arrangement of the cells is important. In other words, it is not just the strength of the neural
excitation that convey importance, but also the location. For example, when discussing mammalian
brains, the concept of topographic maps often arises, such as in the tonotopic map. The tonotopic
map from the ear to the auditory cortex works such that spatially close cells correspond to hearing
similar frequencies. Thus a layout algorithm based on neural networks provides us with vertices
positioned at their graph theoretic distances, as well as uniformly distributed within a speci�ed
area.

In [Mey98], a computationally friendly version of neural networks known as self-organizing maps is
used. However unlike in traditional neural network applications, the network is not being trained
to do some computation, instead the topology of the trained network is itself the desired solution.
The desired network topology is termed an inverted self-organizing map, or ISOM. Essentially, each
node in the network is modelled as a vector of weights, corresponding to a 2D grid embedding. The
weights are then updated using a stimulus comprising of a random vector. The weights of the node
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nearest to the stimulus are updated, as well as the adjacent nodes. This means each iteration of
the ISOM algorithm is restricted to a small subgraph and that the update procedure is itself not
computationally demanding. Although it is di�cult to bound the required number of iterations,
necessary for complexity analysis, this algorithm has been experimentally veri�ed to have nearly
linear time complexity [Mey98, ALPW04].

It is unfortunate that although ISOM is impressively fast, it often yields poor layout results when
used on its own. The primary di�culty lies in the fact that it does not explicitly optimize the node
overlap aesthetic, resulting in an unreadable layout for some graphs, particularly larger ones. There-
fore, ISOM must be hybridized to generate high quality layouts. In [ALPW04], ISOM is used as a
preprocess with a directed-force algorithm, yielding a signi�cant 40% time savings. A hybridization
of ISOM and simulated annealing or genetic algorithms would likely yield very interesting results,
however this does not appear to have been attempted as of yet.

Multi-dimensional

Amulti-dimensional graph layout method is proposed in [YKC02]. The intuition here is that vertices
should be drawn according to their actual graph distances, but in a highly scalable fashion using
algebraic multigrids. Similarly to the previously seen force-directed methods, they �nd an energy
function that yields the desired vertex positions when minimized. This energy function has the
property of being both simple and smooth. In order to minimize this energy, they implement a
very fast algorithm based on an algebraic multigrid technique. Essentially, this technique involves
creating a hierarchy of graphs from the original one, with succeeding levels being increasingly coarse.
A coarser level will merge vertices with a small graph distance into a single vertex. In [YKC02], the
di�erence in the number of nodes between levels is approximately a factor of two. This proceeds
until the graph is quite small, comprised of approximately 100 vertices. At this point they work
backward to the original graph by progressively re�ning the solution. They do this by computing
the eigenprojection of the coarsest level, and use the results in the next coarsest level, until the an
eigenprojection is computed for the original graph.

The beauty of this approach is the sheer speed. It can handle 105 vertices in a few seconds and106

vertices in tens of seconds. This is two orders of magnitude faster than any known algorithm as of
at least the year 2000. The clustering of vertices is very similar to the neural network approach.
Moreover, this technique easily scales to projections in 3D and can provide alternative projections of
the same graph. For example, it is possible to emphasize clustering in one graph layout projection
while emphasizing grid structure in another. Unfortunately, it does not deal with the vertex overlap
visual aesthetic at all. However this is not important if one only seeks the overall structure of a
graph. If it is important, such as when a user seeks to zoom a portion of the graph, alternative
layout methods must be applied. Since the overall graph structure has already been computed, a
force-directed method requires far less time to improve the layout of the zoomed subgraph.

Graph grammars

Graph grammars are composed of rules and each rule has a left and right hand side. Each side of a
rule is graph. A graph re-writing algorithm matches the left hand side of a rule with a host graph.
In this case, the host graph is the one requiring a layout. If the re-writing algorithm �nds a match
for the left hand side of the rule then the right hand side of the rule is applied. The application of
the right hand rule side results in a new layout con�guration for the corresponding subgraph in the
host graph. Layout for an entire graph is achieved by combining the layouts of subgraphs according
to the parse tree of the grammar. The graph layout rules may also be speci�ed in a visual fashion,
such as in [ZZO01].

Thus graph grammar based layout has the advantage of being intuitive to specify as a series of
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visual rules. Moreover a graph grammar speci�cation of a visual language can be augmented to also
handle layout, as in [ZZO01], thus simplifying the development of domain-speci�c visual formalisms.
According to [Mey98], fast parsing algorithms with polynomial time complexity, are available for
context-free layout graph grammars. However, they impose severe limitations on the graph struc-
tures that can be handled. For example: grid, planar, and all not strictly hierarchical graphs are
excluded from use by such parsing algorithms.

Edge routing

Edge routing post-processes can improve the readability of a layout enormously. Many of the
previously discussed layout techniques use simple straight-lines to connect vertices. In [LE98], a
high-level approach to the edge routing problem is discussed. The �rst step consists of ensuring
that su�cient space exists between vertices to allow for the edge routing. They restate the details
of the force-scan algorithm, which is itself far superior to simply scaling a graph layout. Alternative
methods already mentioned are the Voronoi diagram based method by [GN98], and the force-
transfer algorithm of [HL03] which is reputed to be the most e�cient. The second step works to
optimize the following visual aesthetics: number of edge crossings, number of edge bends, and edge
length. Naturally, these are con�icting criteria, thus they must be prioritized. Therefore, they
apply a shortest-path edge routing algorithm, and then create a dummy vertex for each bend in
the resulting edge. Finally, they re-apply the �rst step of the algorithm, except that rather than
dealing with node overlaps, it is now the overlaps caused by the dummy vertices of the edges that
are dealt with.

Graph browsing

Browsing a graph structure can, in and of itself, require special graph drawing techniques. Consider
any large graph. A detailed view of its vertices, edges, and associated labels is only possible for a
very small portion of it. There do exist some simple linear methods for dealing with this. One is
to shrink the size of the drawing shown in the main window of the graph viewing tool, and expand
the size of selected nodes in a secondary window. The inverse and perhaps more common technique
is to provide a small overview window, where the entire graph is shrunk. The overview shows the
structure of the graph without any details and the user need only click on the overview to bring up
a detailed view in the main window.

Fisheye views of a graph show both a detailed view of the area the user is focusing on and the
rest of the graph structure, in the same window. This is done by distorting the picture in a non-
uniform fashion. An overview of �sheye view techniques is given in [San96c]. Sander characterizes
�sheye techniques as distorting, �ltering, and logical. The distorting �sheyes magnify a focus area
and distort the rest. Some even use multiple focus areas, such as in [GKN04]. Filtering �sheye
views �lter out information from distant parts of a graph structure. In other words, they remove
vertices and edges, proportional to their distance from the focus area or areas, while attempting
to maintain the overall structure of the graph. This makes the distorting �sheye view much more
readable. Another �sheye technique is the logical �sheye, where instead of using the coordinates of
an existing layout, a new layout is computed according to graph distances from the focus node. The
advantage of this is that it is highly revealing of the graph structure. Moreover, the computation of
a new layout after distortion is faster since it is done after �ltering away distant vertices and edges.
It also uses space more e�ciently. Unfortunately, the recalculation of layout with each change of
focus is very bad for a user's mental-map. This is due to the fact that a drastically di�erent layout
may be shown for only a slight change in focus.
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Graph Drawing Technique Implementations

The usefulness of visual modeling is dependent on how elements of a model are visually arranged.
Hence, any tool supporting visual modeling should provide some mechanisms to reduce the burden
of drawing models with good layouts. One such tool is AToM3, into which all automatic layout
techniques in this thesis are implemented. This tool is described in section 2.1.

Prior to the implementation of graph drawing techniques in AToM3, an attempt was made to
leverage the capabilities of existing graph drawing tools. This was done by exporting models as
bare-bones graph descriptions, and for one drawing tool in particular (yED), re-importing the
graph after layout was performed. As section 2.2 explains, the attempt proved largely unsuccessful
in meeting model layout needs.

A number of graph drawing techniques were then chosen and implemented in the AToM3 tool.
Since the Python programming language is most suitable for rapid prototyping and AToM3 is
itself coded in it, all implementation was done in this language. However, to avoid the creation
of drawing technique implementations that are useable only in AToM3, as well as provide the
possibility of easily plugging in other algorithms potentially written in a more e�cient programming
language, an abstraction layer was designed. As described in section 2.3, all layout algorithms were
completely isolated from the internal data structures of the AToM3 tool and forced to work through
the abstraction layer's own graph drawing optimized data-structure.

The most complex automatic layout algorithm implemented is the layered drawing technique. As
previously described in section 1.3, it optimizes quite a few visual aesthetics and is applicable to a
wide range of graph structures with good results. The design, extensive pseudo-code, complexity
analysis, and case-studies are shown in section 1.3.1.

The spring-embedder layout algorithm, which uses multiple physical model simulations, is less
complicated and faster than the layered layout engine. A key bene�t to this layout is its iterative
nature, thus making modi�cations to a model and then re-applying the spring-embedder to it usually
results in only minor layout changes. Pseudo-code, complexity analysis, and a case-study can all be
found in section 2.5.

The force-transfer layout algorithm, uses a simple physical simulation to eliminate overlapping graph
vertices. This algorithm can be combined with random layout in some situations for a complete
layout solution. More generally, it is a useful and minimally intrusive layout aid when automatically
applied during model creation/modi�cation. It is used in exactly this fashion in chapter 3. Section
2.6 describes the design, pseudo-code, complexity, and a case-study of this algorithm.

The simplest algorithms implemented are tree-like and circle. Both of these are very fast, although
correspondingly modest in layout quality. As the name may suggest, the tree-like algorithm is quite
e�ective at drawing tree structures, although otherwise weak. The circle layout is not generally
interesting in its own right, however it proves to be highly e�ective as a pre-processor for spring-
embedder layout. Section 2.7 provides the pseudo-code, analysis, and case-studies for both of these
algorithms.
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Thus far, �ve di�erent graph drawing techniques have been implemented and analyzed. To deter-
mine their actual time-performance as well as validate the computation complexity analysis', each
algorithm is benchmarked on a series of randomly generated graphs in section 2.8. This section also
discusses how performance may be improved, in particular, by simply re-implemented the algorithms
in a higher-e�ciency language.

Finally, a di�erent approach to automatic layout is taken in the form of linear constraints. Linear
constraint based layout has the advantage of being straightforward to customize by formalism
developers to meet formalism-speci�c layout requirements. Unfortunately this layout approach has
limited expressivity and does not hybridize (easily) with other layout techniques. The design and a
discussion of how linear constraints can be woven into the modeling process, with the use of a new
Pac-Man formalism as an example, is described in section 2.9.

2.1 AToM3

AToM3 is an acronym for A Tool for Multi-formalism Meta-Modeling [dLV02a]. It is described
in a broader context in section 3.1.1. The following, shorter version, describes only what the tool
actually does and motivates the need for automatic layout algorithms.

AToM3 is used for for modeling, meta-modeling, and transforming models with graph grammars.
Moreover, it can be extended to handle the simulation and/or generation of code from models.
Models are not merely drawings, they are constrained by domain-speci�c rules encoded into a for-
malism speci�cation. The formalism is automatically generated from a meta-model, which is simply
a model that generates the speci�cation for the creation of a speci�c kind of model. Formalisms are
speci�ed as meta-models in AToM3 since it is faster and less error prone than manually hard-coding
all the rules. For example, an Entity-Relationship model can specify a Class Diagram model which
can in turn specify virtually any other kind of model, such as Statecharts. In this last example,
both the Entity-Relationship and Class Diagram models are considered meta-models. To avoid
confusion, Entity-Relationship is not termed a meta-meta-model.

The multi-formalism aspect of AToM3 refers to the ability of AToM3 to transform a model in one
formalism to another formalism using visual graph grammars1. Graph grammar rules are themselves
models, typically containing elements of both the source formalism and the target formalism of the
transformation, as well as a generic �glue� formalism. An interesting example of this is of a model
in the domain-speci�c Tra�c formalism being transformed to the Petri-net formalism and then
transformed again to a reachability graph to determine if deadlock is inevitable. Note that once the
graph grammars are created, any tra�c model can be automatically transformed.

At the modeling level, AToM3 is very similar to other tools of this sort. Each formalism provides
buttons for drawing entities on a canvas. The entities have visual icons de�ned in the formalism.
These icons can contain any number of textual attributes, such as names and tokens, and can be
changed dynamically by a simulator. Since a formalism is just a meta-model, creating a meta-
model means setting an attribute that is the icon to be. A special drawing editor, resembling a
paint program, exists for this purpose. Indeed the only di�erence with a regular paint program is
that it also includes dynamic textual attributes and connection ports, to which edges are connected
to. Modeling links between entities on the canvas is done by simply clicking on the two entities.
Usually tools force you to place a link on the canvas and then hook it up. Oftentimes, only one
possible type of link is possible between the types of the entities, such as an arrow, and AToM3

automatically chooses the correct type of link to establish. Otherwise, the user is asked to choose
among only those link types possible between the two entities.

1AToM3 is not limited to transforming one formalism to another. A model in N-formalisms may be transformed
to one in M-formalisms, so long as N and M are positive non-zero integers.
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AToM3 has a variety of formalisms already implemented in it. The distribution of AToM3 found at
moncs.cs.mcgill.ca/people/denis/, currently contains the following formalisms: Entity-Relationship,
Class Diagrams, DCharts (similar to statecharts), Deterministic Finite state Automata, Non-Deterministic
Finite state Automata, DEVS, GPSS, Petri-nets (and two variants thereof), Causal Block Diagrams,
and Sequence Diagrams.

During the course of this thesis, a number of features were added to AToM3 to make modeling easier.
These include a grid, making alignment of model entities easy by snapping them in place. Also,
visible links between entities, such as arrows, were made more user friendly. They automatically
choose the connection port on the model entity the link to that is closest to the arrow. Moreover, the
arrows can be automatically be drawn as either a straight line or an arbitrarily curved spline between
two entities. Another improvement lies with the visual graph grammars. Since a typical grammar
consists of many rules, each with a model for the left and right hand sides, the advantage of easy
documentation is lost to the needle in a haystack e�ect. Hence an automatic LATEXdocumentation
generator for graph grammars was added. Finally, it is possible to scale or stretch the coordinates of
all the entities in a model at once. Unfortunately, all these additions still leave the burden of layout
on the shoulders of the modeler. Even if one does not consider the layout needs of a model created
from scratch by a human modeler, the models generated by transformation from one formalism to
another have no layout information at all. Hence the need for automatic drawing techniques for
graphs that can deal with these models.

Summarizing AToM3, it is a tool that provides a fairly standard modeling interface. Di�erentiating
AToM3 from other tools are its meta-modeling and model-transforming capabilities. The former
makes it easy to create new formalisms, formalisms that restrict the modeling process to valid
rather than arbitrary models. The latter allows for domain-speci�c modeling without sacri�cing the
simulation or analytical capabilities of more generic formalisms. AToM3 is also highly extensible,
making the addition of a button to a formalism that does a graph traversal of a model to either
simulate it or generate code from it very easy.

2.2 Graph exports and imports

Since several free existing graph layout tools exist, the ability to export graphs from AToM3 was
added. This means that model entities become simple point vertices, except for the GML for-
mat, which allows speci�cation of height and width. The vertices are permitted just one string
label, versus the multiple attributes possible in AToM3 icons. Links between model entities are
simply exported as an identi�er to the end point entities of a link and an arbitrary label. Hence
the transformation from model to simple graph structure loses a considerable amount of infor-
mation. However once exported to GML, GXL, or DOT format the graph layout tools yED,
JGraphPad, or GraphViz, respectively, can be used. These tools are available freely available
at: www.yworks.com/en/products_yed_about.htm, freshmeat.net/projects/jgraphpad/, and
www.graphviz.org/. Provided the labels are descriptive enough, the resulting layout can make
understanding properties of the model the graph represents quite obvious.

A simple export to obtain automatic layout is far too limiting however. Therefore, a mechanism to
export to GML, wait for a layout engine to modify the GML �le, and then re-import the GML �le
was implemented. This too is problematic however. On the one hand, it is quite a tedious process
for the user to follow, especially since yED requires manual user input through a graphical interface.
On the other, the notion of ports in di�erent tools is di�erent, hence coordinates for straight arrows
in one tool are quite crooked in another. Hence simply o�-loading graph layout to other freely
available tools is an inadequate measure.
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Figure 2.1: Abstraction layer class diagram

2.3 Abstraction layer design

An abstraction layer was built between the AToM3 tool and the automatic layout methods. It
was deliberately constructed so that automatic layout implementations are denied all access to
attributes and methods found in the AToM3 tool. This has two important bene�ts. One, it reduces
the implementation complexity of the automatic layout methods considerably. Two, it enables the
automatic layout methods to be used as a portable graph layout library. In particular, the next
generation version of AToM3 will re-use this library.

The abstraction layer itself communicates with both AToM3 and the automatic layout methods.
At the most basic level, it extracts the position and size of vertices, and the coordinates of edges
from AToM3. The automatic layout method is run, and the new positions, sizes, and coordinates
are sent back to the original AToM3 entities. A few other possibilities exist. One is that a layout
might request that edges be drawn straight or curved, with no coordinate information provided.
Another possibility is that a layout might allow the user to pick a certain vertex, such as to select
a root when more than one are possible. These requests are relayed to AToM3 which has the low
level functionality to deal with them.

The class diagram structure of the abstraction layer is shown in �gure 2.1, with class details in �gures
2.2 and 2.3. The complexity of the class diagram is due mainly to the presence of hyper-edges in
AToM3. Since dealing with hyper-edges in each layout method is far too time-consuming, the
abstraction layer automatically converts hyper-edges into virtual directed edges. Thus instantiating
AbstractGraph creates DirectedEdge, Node, and HyperEdge objects from the objects that were on
the AToM3 canvas. The HyperEdge objects, which connect three or more vertices, are then broken
down into HyperEdgeComponent and HyperNode objects. The HyperNode is the center point of the
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HyperEdgeComponent

#direction: Integer

#segmentID: Integer

+isHyper(): Boolean

+applyCoordSizeChange()

+setControlPoints(controlPoints:List)

+applyControlPoints()

+getDirectionIDtuple(): Tuple

+getLinkOptimization(): Tuple

DirectedEdge

+isDirected(): Boolean

+applyCoordSizeChange()

+setControlPoints(controlPoints:List)

+applyControlPoints()

AbstractEdge

#linkOptimizationTuple: Tuple

#doApplyControlPoints: Boolean

#controlPoints: List

+setLinkOptimization(useSplines:Boolean,
                     arrowCurveInt:Integer)

+applyControlPoints()

+isDirected(): Boolean

+isHyper(): Boolean

#reverseCoordList(segCoords:List): List

Node

+isNode(): Boolean

+applyCoordSizeChange()

HyperNode

+isHyperNode(): Boolean

+applyCoordSizeChange()

AbstractNode

+isNode(): Boolean

+isHyperNode(): Boolean

+chooseNode(possibleChoiceList:List)

HyperEdge

-edgeComponent2ControlPointsMap: Dictionary

-getCenterCoordinate()

-applyHyperlinkOptimizer(center:Tuple)

+setControlPoints(hyperEdgeComponent:HyperEdgeComponent,
                  controlPoints:List)

+optimizeLinkComponent(hyperEdgeComponent:HyperEdgeComponent)

+applyCoordSizeChange()

Figure 2.2: Abstraction layer class diagram details
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AbstractObject

#semanticObject: ASGNode

#obj: VisualObject

#pos: Tuple

#newPos: Tuple

#size: Tuple

#newSize: Tuple

+applyCoordSizeChange()

+setNewCoords(coords:Tuple)

+getNewCoords(): Tuple

+setNewSize(size:Tuple)

+getNewSize(): Tuple

+getSize(): Tuple

+getPos(): Tuple

AbstractGraph

-atom3i: ATOM3

-buildAbstractGraphEntireCanvas(atom3i:ATOM3)

-buildAbstractGraphSelectOnly(selectionList:List)

-buildDirectedEdge(node:ASGNode)

-buildHyperEdge(node:ASGNode)

+getMaxUpperLeftCoordinate(): Tuple

+promoteDirectedEdge(doAllEdges:Boolean=False)

+updateAToM3()

Figure 2.3: Abstraction layer class diagram details

hyper-edge, and the HyperEdgeComponent are the directed edges going from the center point to the
other vertices. For the automatic layout algorithm, there is no di�erence between a DirectedEdge
and a HyperEdgeComponent, or between a Node and a HyperNode. Note that in this framework, it
is possible for a layout method to process hyper-edges in some special fashion, by directly accessing
HyperEdge objects and thus ignore the virtual directed edges.

The meaning of selected methods in the above class diagrams follows:

updateAToM3() In the AbstractGraph, this calls the applyCoordSize() methods of each vertex
and applyControlPoints() for each edge.

applyCoordSize() Sets the coordinate and size of the corresponding AToM3 entity.

applyControlPoints() Sets the control points of an edge in the corresponding AToM3 relationship.

promoteDirectedEdge() Converts each AToM3 relationship into a vertex and two edges. By
default this method only converts relationships having a center icon.

chooseNode() Requests that a node, from a given list, be chosen by the user. This is handled by
AToM3 and the result is returned to the abstraction layer and hence to the layout algorithm.

getMaxUpperLeftCoordinate() Simply returns the top left coordinate of all the vertices in the
abstract graph.

buildAbstractGraphEntireCanvas() Constructs an abstract graph by extracting all the entities
and relationships found in the AToM3 canvas.

AToM3 graph representation

The internal representation of graphs in AToM3 is discussed here for comparison with the abstraction
layer. Each model in AToM3 has an associated ASG, abstract syntax graph, object. This object has
a dictionary (hash table) with keys for every type of model entity and link in the model. The values
of this dictionary are list structures containing every instance of model entity or link occurring in
the graph. Both the links and entity objects have attributes indicating whom they are connected
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too. Hence to �nd if entity Ea is directly connected to entity Eb, one �nds the links connected to
Ea and then check if those links connect to Eb. Note that a link may connect to only one vertex, a
self-loop, or to more than two vertices, a hyper-edge.

Abstracted graph representation

The graph representation provided by the abstraction layer provides two separate lists, one of
vertices and one of directed edges. The model entity/link type information is discarded as irrelevant
to layout. Each edge is directed and assigned a single source and target vertex. The source and
target vertex are permitted to be the same. Optionally, each vertex is assigned a list of source and
target vertices. Using this option, given vertex Va we can determine if Vb is directly connected to
it by simply searching the source and target lists of Va.

Note that for e�ciency reasons, an edge matrix such as the one below is often used to indicate if
vertices are connected. This representation makes it possible to �nd the directed edge from Va to
Vb by simply plugging in the indices for each vertex into the matrix. However, since virtually all
graphs arising in practice will have low edge density, this representation is quite wasteful of memory,
particularly for large graphs. Furthermore, Python has no built-in support for matrices at this time.

Va Vb

Va 0 1

Vb 0 0

2.4 Layered

The layered graph drawing technique partitions vertices into layers and then �nds good positions
for the vertices within those layers. Edges are then drawn in between the vertices. Edges traversing
multiple layers are broken down into smaller components, yielding more complex edges with bends
in the �nal drawing. This technique is excellent for visualizing graphs with a hierarchical structure.
Graphs that are not truly hierarchical, such as those containing cycles, can sometimes be visualized
e�ectively as well with this technique. Thus it is important that a mechanism for dealing with
cycles be implemented.

2.4.1 Design

The implementation of a layered drawing technique does not really require much state information.
However the NodeWrapper class is quite convenient and abstracts the di�erence between a regular
vertex, which is in fact an instance of AbstractObject, and a dummy vertex used to represent a
portion of a multi-layer traversing edge. The remaining �classes� in the class diagram of �gure 2.4
refer to �les containing methods and modules containing multiple �les. The modules group the
core code related to the three phases of layer assignment, crossing minimization, and horizontal
positioning. The HierarchicalLayout �class�, handles the initialization of the NodeWrappers from
the AbstractGraph input, coordinates the activities of the modules, and handles the �nal assignment
of coordinates to the vertices and edges.

2.4.2 Pseudo-code

The layered drawing technique is somewhat complex to implement, as the hierarchical layout class-
diagram in �gure 2.4 might suggest. This subsection describes the core algorithms inside each of
the three modules. There are two exceptions however. The CrossingCounter, an e�cient algorithm
for counting all the crossings in a layered graph, is very well described in [BJM02] and needs not
be reproduced here. Also, due to its elementary nature, the algorithm responsible for determining
the �nal positions of vertices and edges in various orientations is omitted.
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Uses

NodeWrapper

+width: Integer

+outDegree: Integer

+inDegree: Integer

+barycenterValue: Integer = 0

+order: Integer = -1

+position: Integer = -1

+priority: Integer = 0

-layer: Integer

+getChildren()

+getLayer(): List

+setLayer(layer:List)

HierarchicalLayout

+doHierarchicalLayout()

-assignNodePositions()

-routeEdges()

AbstractGraph

CrossingModule

CrossingCounter

BarycenterHeuristic

AdjacentExchange

LayeringModule

MinimumWidthLayering

LongestPathLayering

GreedyCycleRemoval

MakeLayeringProper

BFSLayering

AbstractObject

Represents

Input

Uses
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1

*

PositioningModule

PriorityBarycenter

parents

*

children

*

Figure 2.4: Class diagram for the layered drawing technique implementation

Layer assignment

Layer assignment begins with the greedy cycle removal algorithm 1. The topological sort simply
orders the vertices according to depth �rst search discovery order. The symbol Π(v) stands for
the topological ordering of the vertex v. The e�ect of the topological sort is that each edge will
be directed from Π(v1) towards Π(v|V |), with the exception of cyclical edges. Hence the algorithm
visits each vertex in topological order and if the child vertex has an order less than its parent, it
is involved in a cycle. All edges thus found to participate in a cycle are reversed. Reversed edges
are given a special �ag so they can be drawn in their original direction in the �nal stage of layered
drawing method. This algorithm is quite naive and provides no performance guarantees. Better
methods can be found in [BM01].

Algorithm 1 Greedy cycle removal

Input: A graph G=(V,E)
Output: An acyclic and topologically sorted graph G
1: V ← topological sort of V
2: for all v in V do
3: for all child in v.getChildren() do
4: if Π(child) < Π(v) then
5: reverse edge between v and child
6: end if
7: end for
8: end for

Three di�erent layering algorithms were implemented: BFS layering, longest-path layering, and
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minimum width layering. The �rst two algorithms yield optimal height but unbounded width.
Hence on certain graphs the output is unreadable. The minimum width layering is excellent at
yielding drawings with good aspect ratios. Unfortunately, it also tends to create longer edges that
traverse multiple layers, which in extreme cases can be too long to make any sense of.

The �rst strategy, BFS layering, is very simple. Since the graph is acyclic, �nding the root vertices
is trivial. These roots are then labeled as layer 1. Then the breadth �rst search algorithm is applied
to the root vertices and all the immediately discovered vertices are labeled layer 2. This proceeds
recursively from the previously discovered vertices, until no more vertices remain. This layering
method will place vertices at their graph theoretical distances from their root vertices. Hence if
drawn from top to bottom, vertices near the top have a short path from the roots, and vertices near
the bottom have long paths from the roots.

The second strategy, longest-path layering 2, is somewhat similar to BFS layering. It starts by
layering the leaf (sink) vertices at layer 1. Vertices are added to successive layers if all their children
are in layers below them. The resulting layering tends to be bottom heavy, in the sense that most
vertices will be near layer 1. Note that the order of the layering, from leaf to root, is the exact
opposite from the BFS layering algorithm. The pseudo-code given is reproduced from [TNB04].

The longest-path algorithm works as follows. Two initially empty vertex sets, U and Z, are used to
store all the vertices assigned to any layer and any layer except the current layer respectively. The
algorithm loops until all vertices have been assigned to a layer, hence when |U| = |V|. A selector
attempts to choose a vertex v such that v is not already assigned to any layer and N+

G (v) ⊆ Z.
The latter condition requires that all the successors of the vertex v lie in the set Z, which contains
all vertices assigned in layers below the current layer. If such a vertex exists, it is assigned to the
current layer and added to the set U. If no such vertex exists, the current layer is incremented, and
the set Z is updated to include U.

Algorithm 2 Longest-path layering

Input: A directed acyclic graph G=(V,E)
Output: An ordered list of layers each containing a list of vertices
1: U ← φ {Vertices assigned to any layer}
2: Z ← φ {Vertices assigned to previous layers}
3: currentLayer ← 1
4: while |U| 6= |V| do
5: select a vertex v ε V \ U with N+

G (v) ⊆ Z
6: if a vertex v is selected then
7: assign v to the layer number currentLayer
8: U ← U ∪ {v}
9: else
10: currentLayer ← currentLayer + 1
11: Z ← Z ∪ U
12: end if
13: end while

The last layering algorithm implemented, minimum width layering 3, is based on the longest-path

layering algorithm 2. This algorithm is described in [TNB04]. Unlike the previous two algorithms,
this one actively limits the width, or number of vertices, in each layer. For graphs containing
unconnected vertices, it was discovered that an additional preprocessing step is necessary. This step
simply collects all the unconnected vertices and places them in the �rst layer/s or last layer/s. If
this step is not performed, vertices with zero degree can be drawn on any layer and in any position
on that layer. This not only makes such vertices hard to �nd, it also increases the workload on the
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horizontal positioning phase when straightening long edges.

The initialization phase of minimum width layering is identical to that of longest-path, save that
widthCurrent and widthUp variables are added. These are responsible for storing the width of the
current layer and the estimated width of layers above the current layer respectively. An attempt
is then made to select a vertex and add it to the current layer as in longest-path. However, rather
than choosing the �rst vertex that belongs to V \ U with N+

G(v) ⊆ Z, the vertex with the maximum
out-degree is chosen. If a vertex is chosen, then widthCurrent and widthUp are updated. In the
pseudo-code and the actual implementation, dummyWidth refers to the width of a dummy vertex
in an edge traversing multiple layers, and is constant for the entire graph. If the dummyWidth was
variable, it would not be di�cult to incorporate the information herein.

Algorithm 3 Minimum width layering

Input: A directed acyclic graph G=(V,E)
Output: An ordered list of layers each containing a list of vertices
1: U ← φ {Vertices assigned to any layer}
2: Z ← φ {Vertices assigned to previous layers}
3: currentLayer ← 1
4: widthCurrent ← 0
5: widthUp ← 0
6: while |U| 6= |V| do
7: for all vertices v ε V \ U with N+

G (v) ⊆ Z do
8: select the vertex v having the maximum out-degree
9: end for
10: if a vertex v is selected then
11: assign v to the layer number currentLayer
12: U ← U ∪ {v}
13: widthCurrent ← widthCurrent - dummyWidth * v.outDegree + v.width
14: widthUp ← widthUp + dummyWidth * v.inDegree
15: end if
16: if minWidthCondition(v) then
17: currentLayer ← currentLayer + 1
18: Z ← Z ∪ U
19: widthCurrent ← widthUp
20: widthUp ← 0
21: end if
22: end while

The �nal part of minimum width layering is triggered by a complex condition, the minWidthStop-

Condition, shown seperately as algorithm 4. This condition is satis�ed by one of three things. The
�rst is as in longest-path layering and is satis�ed if no vertex was selected. The second condition
captures the intuition that if the width of the current layer is greater than some constant, we should
stop adding vertices to the current layer. If the vertex has out-degree ≥1, then adding the vertex to
the layer either decreases or does not change the width size, since long edges with dummy vertices
are eliminated. The last condition is concerned with limiting the size of the layer above the current
layer. Unlike widthCurrent which is directly compared to UBW, widthUp is compared to UBW
* c. This is because we only estimate the size of the layer above in widthUp and need to give
ourselves some leeway in choosing the cuto� point for adding vertices to the current layer. Both
UBW and c are hard-coded constants rather than parameters. In [TNB04], an extensive parameter
study suggests that 1 ≤UBW ≤4 and 1 ≤c ≤2.
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Algorithm 4 minWidthStopCondition

Input: A vertex v
Output: Boolean value
1: if no vertex v selected then
2: return True
3: else if widthCurrent ≥ UBW and v.outDegree < 1 then
4: return True
5: else if widthUp ≥ UBW * c then
6: return True
7: end if
8: return False

The �nal layering step, proper layering 5, deals with long edges. Long edges are any edge that
traverses more than a single layer. A proper layered hierarchy cannot have such edges. In particular,
such edges would cause many crossings in the �nal drawing. Hence this algorithm replaces each
long edge with a series of dummy vertices and connective edges that traverse only a single layer. In
the �nal drawing, these dummy vertices are represented as edge bends.

Algorithm 5 Proper layering

Input: A layering of a DAG, L
Output: A proper layering of a DAG
1: for currentLayer in 1...|L|-1 do
2: for all vertices v in LcurrentLayer do
3: for all child vertices of v do
4: if abs(child.getLayer() - currentLayer) > 1 then
5: for all layers between v and child do
6: add a dummy vertex and single layer traversing edges
7: end for
8: end if
9: end for
10: end for
11: end for

Crossing Minimization

The second phase of layered layout is crossing reduction. A variety of techniques to reduce crossings
are described in section 1.3.1. Actual implementations were made of a variation of the layer-by-layer
sweep 6, and two di�erent heuristics to re-order vertices within the layer-by-layer sweep framework.
These heuristics are the barycenter heuristic 7, and the adjacent exchange heuristic 8. In the
literature, layer-by-layer sweep is described with little detail, yet it is very important for both the
quality and running time of crossing reduction phase. The actual implementation of layer-by-layer
sweep has gone through many re-writes, before reaching the form shown in algorithm 6. It resembles
most closely the algorithm described in [Pat04].

The initialization phase sets roundsWithoutProgress to zero and bestCrossings to the current num-
ber of crossings inherent in the current order of the vertices in the graph layering. The former
variable tracks how many consecutive rounds, iterations of the outermost loop, occur without re-
ductions in the number of crossings. The latter variable is, naturally, used to determine if the round
has reduced crossings or not.
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The downward and upward sweeps are symmetric. Note that the downward sweep does not re-order
the last layer, and the upward sweep does not re-order the �rst layer. The pseudo-code suggests that
any heuristic can be used in the key step of the sweep. However since the stopping condition of the
loop requires that no further re-ordering occurs, only a deterministic and converging heuristic may
be used. Barycenter, mediancenter, and most variations thereof meet this requirement. Indeed,
barycenter will require at most O(|L|), where |L| is the number of layers in the layering, sweep
iterations to converge.

However, permutation heuristics or even a barycenter that uses a random tie breaking strategy
do not converge, and hence are not compatible as is with the layer-by-layer sweep algorithm 6.
Recall that multiple vertices can receive the same barycenter value, in which case the heuristic
has no notion of the best ordering to assign to them, hence the usefulness of random tie breaking.
Unfortunately, randomness inside the sweep loops means we need a more complicated termination
condition, such as counting the number of crossings to determine if a reduction occurred. This
then creates a need for saving promising vertex orderings and backtracking, increasing both the
complexity of the algorithm, and potentially the running time.

The layer-by-layer sweep uses a rather lengthy convergence test. Naturally, it stores the current
best ordering of the vertices, as compared to the best number of crossings seen thus far. This is
necessary because successive rounds can have more crossings than the best found, a particularly
common occurrence if random vertex orderings are used. The algorithm halts on one of three
possible conditions. The simplest of these is a hard limit on the number of rounds or iterations
of the outermost loop. It can be experimentally veri�ed that the �rst few iterations signi�cantly
reduce crossings, whereas succeeding iterations su�er from the law of diminishing returns, hence
justifying the use of this limit. It is also quite useful in analyzing the run-time of the algorithm.
The second termination condition is triggered if the algorithm has not reduced the crossings for
a certain number of consecutive rounds. This reduces the run-time considerably without reducing
the �nal quality by identifying �hopeless� cases. The �nal termination condition is the trivial case
where no crossings remain in the layered graph. Note that although barycenter is guaranteed to
yield zero crossings if this is possible, that only applies for bipartite graphs.

A �nal consideration is randomness. Although the pseudo-code of layer-by-layer sweep, as is, does
not allow for random heuristics, one can nonetheless randomize the order of the vertices outside
the sweeps. Hence when the layer-by-layer sweep detects that no reduction is being made in the
number of crossings, the order of each vertex is randomized. This form of randomization almost
always allows the algorithm to further reduce crossings, although it can easily double or even triple
the time needed for the crossing minimization phase. Recall that the �rst few regular iterations of
layer-by-layer sweep eliminate most of the crossings, thus the use of randomization should only be
used when quality is of the highest importance or the graph size is very small.

The randomization must be used with some care. The e�ect of a randomization on a graph with two
layers requires only one round of sweeping, both downward and upward, to fully converge. However
adding more layers, in conjunction with randomization, will not immediately converge. Hence it is
recommended to increase the number of rounds without progress that do not trigger a randomization
proportionally to the number of layers. The rational for making this proportional to the number of
layers rather than the size of the graph comes from the fact that the sweeps require O(|L|) time to
converge. Furthermore, the downward and upward sweeps tend to undo each other's work and can
thus be expected to require more time to converge when the number of layers increases. Increasing
the number of vertices, on the other hand, does not incur this penalty.

The pseudo-code for the barycenter heuristic 7, used by the layer-by-layer sweep, is reproduced here
for convenience. The notation NfixedLayer(v) refers to the neighbors of the vertex v in the layer
�xedLayer. The algorithm is very simple, for each vertex in the moveableLayer a barycenter value
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Algorithm 6 Layer-by-layer sweep

Input: A proper layering of a DAG, L
Output: A global ordering of vertices within layers that reduces crossings
1: roundsWithoutProgress ← 0
2: bestCrossings ← countAllCrossings(L)
3: repeat
4: repeat {Downward sweep}
5: for all currentLayer in 1. . .|L|-1 do
6: moveableLayer, �xedLayer ← LcurrentLayer, LcurrentLayer+1

7: Apply heuristic to re-order vertices inside moveableLayer with respect to �xedLayer
8: end for
9: until The heuristic no longer changes the order of any vertex
10: repeat {Upward sweep}
11: for all currentLayer in |L|. . .2 do
12: moveableLayer, �xedLayer ← LcurrentLayer, LcurrentLayer−1

13: Apply heuristic to re-order vertices inside moveableLayer with respect to �xedLayer
14: end for
15: until The heuristic no longer changes the order of any vertex
16: currentCrossings ← countAllCrossings(L) {Convergence testing}
17: if currentCrossings = 0 then
18: return L
19: else if currentCrossings < bestCrossings then
20: bestCrossings, bestOrdering = currentCrossings, L
21: roundsWithoutProgress ← 0
22: else
23: roundsWithoutProgress ← roundsWithoutProgress + 1
24: if roundsWithoutProgress ≥ maximum rounds without progress then
25: return bestOrdering
26: else if max(1, |L|) rounds since last randomization then
27: Randomize the order of each vertex in each layer of L
28: end if
29: end if
30: until Maximum number of rounds is reached
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is computed as the average of the orders of that vertex's neighbors. If the vertex has no neighbors,
the barycenter is given the value of the order the vertex occupies in moveableLayer. Finally, the
vertices of moveableLayer are re-ordered using a sorting algorithm. If the heuristic is being used
with the layer-by-layer sweep algorithm 6, then the sorting algorithm must be stable. A stable
sorting algorithm will not change the order of two vertices having the same barycenter value. In
other words, a non-stable sorting algorithm inherently randomizes the order of vertices with the
same barycenter value. Also worth noting, is that this heuristic is run repeatedly by the layer-by-
layer sweeper, so the vertices are either already sorted or very nearly sorted in all but the initial
run and runs following an order randomization.

Algorithm 7 Barycenter heuristic

Input: A moveableLayer and a �xedLayer
Output: A potentially re-ordered moveableLayer, returns True if progress is made
1: for all v ε moveableLayer do
2: if |NfixedLayer(v)| = 0 then v.baryCenterValue ← order of v in moveableLayer; continue
3: v.baryCenterValue ← 0
4: for all n ε NfixedLayer(v) do
5: v.baryCenterValue ← v.baryCenterValue + order of n in �xedLayer
6: end for
7: v.baryCenterValue ← v.baryCenterV alue

|NfixedLayer(v)|
8: end for
9: Sort moveableLayer according to baryCenterValue
10: If sort changes order, return True, else return False

Like the barycenter heuristic, the adjacent exchange heuristic algorithm 8, sorts the vertices in the
movable layer. The heuristic is essentially the bubblesort algorithm applied to crossing numbers.
Crossing numbers can give a tight lower bound on the number of crossings in a graph, but cannot
be used to exactly compute the number of crossings. However, when two vertices are exchanged,
the number of crossings is reduced exactly by the crossing number of the �rst vertex minus the
crossing number of the second. Although this sounds great, removing a crossing on one layer of a
graph usually creates a crossing on another layer, hence the need for the layer-by-layer sweeping.

The crossing numbers are computed as a matrix. The diagonal of the matrix is always zero. A
non-zero value would indicate that somehow two or more edges starting at the same vertex were
crossing with each other. Assuming for simplicity that edges start at the center of a vertex, this is
impossible. A crossing Cu,v is de�ned as occurring when a vertex Vu has order less than a vertex
Vv in the movable layer and in the �xed layer, the neighbors of Vu have order greater than the
neighbors of Vv. The inverse crossing, Cv,u is de�ned as occurring symmetrically to Cu,v. Instead
of the neighbors of Vu having order greater than the neighbors of Vv, it is just the opposite for the
inverse crossing number.

Horizontal positioning

A priority based barycenter method is implemented to determine the �nal horizontal positions of the
vertices, and is described in [ST81]. This method is fast and has a very similar implementation to
that of the crossing reduction phase. Unfortunately, it is very di�cult, if not impossible, to improve
the quality of the �nal drawing beyond some point with this technique. Ideally, one would like the
long edges to be straight, but priority-barycenter tends to yield long edges that look like spaghettis.
This particularly annoying considering that most horizontal positioning methods can guarantee at
most two bends at the extreme ends of the long edge. Also, the method is implemented to work
on an integer grid. Final coordinates are computed as a post-process by considering the size of the
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Algorithm 8 Adjacent exchange heuristic

Input: A moveableLayer M and a �xedLayer F
Output: A potentially re-ordered moveableLayer, returns True if progress is made
1: C ← Initilize crossing number matrix, size |M|×|M|, to zero
2: for all i in 1. . .|M| - 1 do
3: for all j in i + 1. . .|M| do
4: for all neighborA of Mi and neighborB of Mj do
5: if neighborA.order > neighborB.order then
6: Ci,j ← Ci,j + 1
7: else if neighborA.order < neighborB.order then
8: Cj,i ← Cj,i + 1
9: end if
10: end for
11: end for
12: end for
13: repeat
14: for all j in 0. . .|M| - 1 do
15: if Cj,j+1 > Cj+1,j then
16: Exchange vertex Mj with Mj+1

17: end if
18: end for
19: until No exchanges occur
20: If at least one exchange, return True, else return False

Algorithm 9 Priority-barycenter heuristic

Input: A moveableLayer M, and a �xedLayer F
Output: Sets the grid positions of vertices in M towards their barycenters
1: Apply the Barycenter heuristic to M and F, but do not sort
2: isMakingProgress ← False
3: for all i in 1. . .|M| do
4: if Mi.baryCenterValue > Mi.position then
5: isMakingProgress ← pushMove(M, i, +1)
6: else if Mi.baryCenterValue < Mi.position then
7: isMakingProgress ← pushMove(M, i, -1)
8: end if
9: end for
10: return isMakingProgress
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largest vertex on a layer and setting the grid spacing accordingly. A more space e�cient method
could take advantage of the fact that long edges need far less space than vertices.

The initialization step consists of computing starting horizontal positions and vertex priorities. The
initial horizontal positions of the vertices is simply the order numbers obtained in the crossing
reduction phase. Applying creative strategies to the initial positions, such as varying the spacing
between vertices, does not improve the quality of the �nal drawing. Indeed, it can have a negative
impact on the area e�ciency of the drawing. The priority of a regular vertex is simply the degree of
the vertex. For the dummy vertices, of which long edges are composed, the priority is set to in�nity.
This gives the long edges the maximum chance of being straight.

The next step is simply the layer-by-layer sweep 6, previously shown. However, the barycenter

heuristic 7 is replaced with the Priority-barycenter heuristic 9. This new heuristic uses the old
barycenter heuristic as a sub-algorithm, although the sorting phase is very di�erent. Clearly, the
usual concept of sorting at this stage would simply increase the crossings which the crossing min-
imization phase put so much e�ort into reducing. Instead, the vertices are moved toward their
barycenter values, if not already there, using the recursive pushMove algorithm 10.

Algorithm 10 pushMove

Input: A moveableLayer M, an index iε{1. . .|M|}, and direction dε{-1,+1}
Output: ...
1: canMove ← False
2: if (d < 0 and i = 1) or (d > 0 and i = |M|) then {Margin case}
3: canMove ← True
4: else if Mi.position + d 6= Mi+d.position then {Free spot case}
5: canMove ← True
6: else if Mi.priority > Mi+d.priority then {Recursive push case}
7: canMove ← pushMove(M, i + d, d)
8: end if
9: if canMove then
10: Mi.position ← Mi.position + d
11: return True
12: end if
13: return False

The pushMove algorithm attempts to move a vertex one grid unit in a given direction. The direction
is set by the Priority-barycenter heuristic, it is the direction the vertex must move in order to reach
its barycenter value. If the vertex is at the extreme ends of the layer it resides on then it is free
to move further towards those ends. Note that a vertex can acquire a negative grid position which
will need correction by a post-process. Alternatively, the position the vertex moves to has no vertex
in it, in which case it is free to move there. Finally, the vertex attempts to move into a position
with a blocking vertex in it. If the vertex has greater priority than the blocking vertex, a recursive
call attempts to move the blocking vertex. If all the recursive calls succeed, then all the vertices
involved move by one unit.

Layer-by-layer sweep must also be modi�ed in its convergence testing. There is no metric equivalent
to counting crossings to terminate this sweep early. However, since the barycenter method is
deterministic, the downward and upward sweeps will completely cancel each other out at some
point. Hence convergence can be de�ned as the positions of the vertices before layer-by-layer sweep
being equal to the positions afterwards. On some inputs, this convergence test is insu�cient since
the position of each vertex can be shifted by one unit to the left or right every iteration. A simple
additional test can deal with this. For each layer M, if either M1.position > 1 or M|M |.position <
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|M | occur, then all the vertices must have shifted left or right. This additional test is correct since
the pushMove algorithm, given an initial positioning between 1 and |M|, can only push vertices
outside the range 1 to |M|. Finally, a hard limit on the maximum number of rounds is used, as in
the original version of layer-by-layer sweep. This test is probably quite redundant since convergence
typically occurs in less than a handful of rounds.

2.4.3 Analysis

The analysis of the overall run-time complexity of a layered drawing technique is generally not
given. This is due, in particular, to the di�culty of analyzing the running time of the crossing
minimization phase. Indeed, the second phase is considered the greatest performance bottleneck to
this drawing technique. It is unfortunate that edge crossings have a large impact on the quality of
the �nal drawing when crossing minimization is already an NP-hard problem with just two layers of
vertices. The problem is made even worse by the requirement of proper layering, which introduces
a large number of dummy vertices where multi-layer traversing edges occur. Hence in the following
analysis, whenever crossing minimization and horizontal placement consider vertices and edges, they
include those vertices and edges introduced by the proper layering. Signi�cant improvements to the
running time can thus be made by following the approach of [ESK04], where no more than two
dummy vertices are generated per multi-layer edge.

Layer Assignment

Layer assignment requires an acyclic directed graph, hence the �rst step is to convert cyclic graphs
to an acyclic form if necessary. The greedy cycle removal algorithm uses a topological sort and then
visits each vertex and edge just once. This yields a run-time of O(|V|+|E|).

The �rst layer assignment strategy uses breadth-�rst search to determine the layering. This well
known algorithm uses O(|V|+|E|) time. The second strategy, longest-path-layering, has a linear time
according to [BM01]. This requires careful use of the properties of a topological ordering. However
the current implementation does not do this. Instead, the �select a vertex� step uses a loop over all
unassigned vertices. This results in quadratic time complexity. The third strategy, minimum-width-
layering, is a re�nement of the longest-path-layering strategy. According to its authors, [TNB04],
the run-time is �polynomial�. In the worst case, the additional stop-condition will cause a new
layer to be generated after every vertex is assigned, hence running the outer loop one more time
than the longest-path layering algorithm. Hence if longest-path-layering is linear then minimum-
width-layering is quadratic. Therefore the current implementation of minimum-width-layering has
worst-case cubic time complexity.

The �nal layer assignment step, proper layering, ensures edges cross only one layer. This requires
visiting every vertex and edge once. Hence this algorithm is O(|V|+|E|).

Crossing minimization

The crossing minimization phase consists of a layer-by-layer sweep and a barycenter heuristic. The
outer loop of layer-by-layer sweep is bounded by a constant c. The inner loops consist of downward
and upward sweeps. A single sweep requires |L| iterations to re-order all the layers, where |L| is
the number of layers generated by the layer assignment phase. Moreover, the downward/upward
sweeps require at most |L| iterations before they converge. Thus the sequence of downward and
upward sweeps require O(c * 2 * |L|2) time.

A single sweep runs the barycenter heuristic on a single layer Li. The barycenter heuristic must
visit each vertex in Li and each edge between Li and Li+1 (or Li−1 for upward sweeps). Barycenter
then sorts each vertex in Li. Hence barycenter requires O(|V| log |V| + |E|), where V and E are the
vertices and edges of layer Li respectively. Thus the entire algorithm is O(c * |L|2 * (|VLMax| log
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|VLMax| + |ELMax|)) where VLMax and ELMax are the maximum number of vertices and edges found
on any layer. This indicates that the implementation of the layer-by-layer sweep and barycenter
algorithms are highly sensitive to the height of the layering.

Alternatively, a single sweep runs the adjacent exchange heuristic on a single layer Li. In the liter-
ature, adjacent exchange is considered a O(|Li|

2) algorithm. Indeed the sorting portion of adjacent
exchange is equivalent to bubblesort and does indeed have a O(|Li|

2) running time. However, bar-
ring the existence of a very clever crossing number update scheme, the crossing numbers must be
recomputed for every single sweep. This requires visiting every vertex in the layer, comparing it
with every other vertex of greater order, and visiting all the edges of each vertex pair. Therefore,
if V are the vertices of layer Li and E the edges between Li and Li+1(or Li−1 for upward sweeps),
then adjacent exchange is really O(1

2 |V |
2|E|).

Horizontal positioning

The horizontal positioning phase also uses layer-by-layer sweep. Once again the outer loop is
bounded by a constant c and the sequence of downward and upward sweeps yield a total of O(c * 2
* |L|2) time complexity. The priority-barycenter heuristic uses the regular barycenter heuristic as a
subroutine but without the sorting. Simply calculating the barycenter values for a layer Li requires
O(|V| + |E|) time, where V and E are the vertices and edges of layer Li respectively.

Once the barycenter values are computed, priority-barycenter then loops over all the vertices of the
a layer Li, and makes |Li| calls to the pushMove algorithm. In the worst-case for pushMove, a vertex
on the extreme left would succeed in pushing all the vertices in the layer to the right. This yields
|Li| time complexity for pushMove, where Li is the layer pushMove received as input. Therefore
priority-barycenter requires O(|Li|

2) time to consider each vertex in the layer and move it to its
barycenter with pushMove. Hence this last step dominates the run-time for priority-barycenter.

Combining the outer and inner loops, the running time of horizontal positioning is O(c * |L|2 *
(|VLMax|

2)). Once again, VLMax represents the maximum number of vertices found on any layer,
and |L| the total number of layers. This time complexity is misleading however. Consider that the
previous crossing minimization phase has already ordered the vertices by their barycenter values.
It stands to reason that each vertex is fairly close to where it �wants� to be and will not require
anywhere near the worst case number of pushes in the pushMove algorithm. Also, this algorithm
tends to converge much faster than the crossing minimization one, particularly when the latter uses
randomization rounds, so the constant c is much smaller.

Overall running-time

The layer assignment phase varies between O(|V| + |E|) and cubic time complexity depending on
the layering strategy. If we make the assumption that the number of layers and the size of a layer
are roughly half the number of vertices in a graph then the time complexity of the last two phases
can be simpli�ed. Thus crossing minimization requires O(|V|3log |V| + |V|2|E|) time and horizontal
positioning requires O(|V|4) time. Hence the overall time complexity for this algorithm is quartic.

2.4.4 Case-study

The layered drawing technique gives excellent results on a wide range of formalisms. Some examples
of models drawn with this implementation of layered layout are shown in �gures 2.5, 2.6, and 2.7.
In the �rst �gure, which shows a model in the Causal Block Diagram formalism, a nice e�ect of the
layered layout is that constants are grouped on the left, whereas the plotting visualization is on the
far right. This occurs in every model in that formalism. The second �gure is of a telephone model
in the GPSS formalism and is drawn from top to bottom rather than from left to right. The last
model, a reachability graph, was generated with a graph grammar transformation from a Petri Net.
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Figure 2.7: Model generated from a Petri Net in the Reachability Graph formalism
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It puts particular strain on this drawing technique, because there is no net direction of �ow (Note
that some Petri Net reachability graphs do have such a �ow). Recall from section 1.3.1 that the
layered drawing technique assumes that there exists a direction of �ow. In any case, the generated
model, in the Reachability Graph formalism, reveals all possible states that the original Petri Net
could reach. In this particular model, it can be seen in the center-right that transition PEN reaches
a state from which no other states can be reached.

2.5 Spring-embedder

The spring-embedder is a form of force-directed layout. Edges are simulated as springs and vertices
as rings to which the springs are attached to. These are the attractive forces. In this implementation,
electrical repulsion charges as well as gravitational forces are added. The repulsion forces, generated
by each vertex, prevent vertices from overlapping. The gravitational force drastically increases the
area e�ciency of the �nal drawing.

The main advantage of this graph drawing algorithm is that it is simple to implement. Moreover, it
is customizable for di�erent tasks by adding or removing forces. The running time is quadratic with
the number of vertices since calculation of repulsive charges is done between every pair of vertices.
The simulation of forces is run for a �xed number of iterations, by default 100 iterations. This has
proven to be su�cient in tests, particularly when the graph is �rst preprocessed. The circle layout
algorithm, in section 2.7, serves as a linear time preprocessing phase.

2.5.1 Pseudo-code

The pseudo-code for the simulation loop of the spring-embedder is given in algorithm 11. A pre-
processing step of either circle layout or even a random layout algorithm is recommended. Doing
so can improve the convergence speed and quality of the �nal drawing. The initialization step then
consists of acquiring the center coordinates of the vertices, setting 2D force vectors to zero, and
setting the repulsion charges. The repulsion charges are set to the diagonal length of each vertex.
The motivation for doing so is that the charges will be at least strong enough that any other vertex
entering the bounding circle of the vertex is strongly repulsed, thus eliminating vertex overlaps.
The simulation step repeatedly calculates the forces acting upon the vertices. Once all the forces
are calculated, the positions of the vertices are modi�ed, and another simulation run begins. The
algorithm terminates after 100 iterations, which is typically enough, or if a convergence threshold
is triggered.

The convergence test simply checks if the maximum force acting on a vertex is below a parametrized
threshold. A value of 10.0 was experimentally found to work well for graphs with 4, 30, and 126
vertices. Forgiveness rounds are used to ensure that a given simulation run that made little progress
in terms of maximum force does not trigger convergence too early. Thus if two forgiveness rounds
are used, the maximum force must be less than the threshold force for two consecutive rounds for
convergence detection. The convergence test considerably improves running time, particularly if the
input graph is already drawn similarly to the �nal result, such as when the circle preprocessing step
is used. The only disadvantage, particularly noticeable with a handful of vertices, is that symmetries
are not fully realized. This is due to the fact that the repulsion forces between relatively distant
vertices are quite slight and take many simulation runs to add up su�ciently to realize perfectly
symmetrical shapes. An example of this is a vertex with three vertices connected to it, where
the desired shape of three equidistant vertices around the center vertex does not occur with the
convergence test.

The repulsion algorithm 12, is responsible for both avoiding vertex overlaps and revealing sym-
metries. Overlaps are avoided by simply generating large repulsive forces whenever two vertices
overlap. The symmetries are the result of the repulsive charge extending well beyond a vertex,
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Algorithm 11 Spring-Embedder

Input: A graph G=(V,E)
Output: An embedding of G
1: for all v in V do {Initilize}
2: v.forceVector ← 0
3: v.pos ← center coordinate of v
4: v.charge ← chargeStrength * diagonal length of v
5: end for
6: for all i such that 0 ≤ i ≤ 100 do {Simulation}
7: Repulsion(V)
8: Attractive(E)
9: Gravity(V)
10: for all v in V do {Update}
11: v.pos ← v.pos + v.forceVector
12: v.forceVector ← 0
13: end for
14: Test for convergence
15: end for

albeit weakly, thus causing vertices to space out nicely. Note that the given pseudo-code is very
naive, it calculates the vertex pair (va, vb) separately from the pair (vb, va), rather than doing
both at once. This is for simplicity of presentation, please see the Force Transfer algorithm 15, for
a more e�cient method that takes advantage of the fact that the force from vato vb is simply the
negative of the force from vb to va.

The �rst step in calculating repulsion forces is to �nd the Manhattan and Euclidean distances
between the pair of vertices. If the Euclidean distance is greater than some threshold, the impact
of the force is very slight and can be ignored for the sake of e�ciency. For maximum e�ciency,
one would partition the vertices beforehand to determine which have impact on which others. This
was not implemented however, since the speed of the algorithm was satisfactory for the given test
graphs.

The �nal repulsion step consists of calculating a scalar force proportional to the charges of the
vertices and inversely proportional to the square of the distance separating the vertices. Recall that
the repulsive charge of each vertex is proportional to its size. This scalar force is then multiplied
by the 2D Manhattan distance vector, yielding an increment to the 2D force vector. In the case
where the Euclidean distance between the pair of vertices is really small, less than 0.1, then the
scalar force is calculated as just value of the charge. The motivation for this lies in the fact that
the repulsion charge divided by a very small value yields a very large value, potentially creating a
force large enough to launch a vertex into orbit.

The attractive algorithm 13, treats edges as physical springs. The �rst step consists of �nding
the Manhattan and Euclidean distances between the pair of vertices connected to the edge. If the
Euclidean distance between the two vertices is near zero, then arti�cially setting the distance to a
minimum value avoids precision and divide by zero issues. A minimum distance of 0.1 works well.

The �nal step in the algorithm calculates the spring force using the physical equation for springs.
The spring constant determines how violently the spring expands/contracts when not at its ideal
length. Too low a value results in a sluggish spring that does not try very hard to achieve its
ideal length. Too high a value results in a spring that oscillates above and below its ideal length.
Fortunately, a value of 0.1 for the spring constant seems to work across a wide range of graphs.
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Algorithm 12 Repulsion

Input: A set of vertices V
Output: Update force vectors for V
1: for all va in V do
2: for all vb in V do
3: if va 6= vb then
4: calculate Manhattan distance vector and Euclidean distance between va and vb

5: if abs(Euclidean distance) > threshold then
6: charge = va.charge + vb.charge
7: if abs(Euclidean distance) > 0.1 then
8: force = charge

(Euclidean distance)2

9: v.forceVector ← v.forceVector + (Manhattan distance vector) * force
10: else
11: v.forceVector ← v.forceVector + sign(Manhattan distance vector) * charge
12: end if
13: end if
14: end if
15: end for
16: end for

The ideal length is user de�nable graph wide parameter. A default value of 100 pixels is used. A
more sophisticated strategy might vary the ideal length according to the total degree of the vertices
connected to the edge. The intuition is that high degree vertices are densely packed together, so
increasing the ideal length will give them more room to avoid overlapping. Finally, the computed
spring force is multiplied by the 2D Manhattan distance vector and added to the force vector of one
vertex and subtracted from the other.

Algorithm 13 Attractive

Input: A set of edges E
Output: Updated force vectors for vertices linked to E
1: for all e in E do
2: vs ← e.getSource()
3: vt ← e.getTarget()
4: if vs 6= vt then {Avoid loop edge}
5: calculate Manhattan distance vector and Euclidean distance between vs and vt

6: if Euclidean distance < minDistance then
7: Euclidean distance ← minDistance * sign(Euclidean distance)
8: Manhattan distance vector ← minDistance * sign(Manhattan distance vector)
9: end if
10: force ← springConstant * (Euclidean distance)−idealSpringLength

Euclidean distance
11: vs.forceVector ← vs.forceVector + (Manhattan distance vector) * force
12: vt.forceVector ← vt.forceVector - (Manhattan distance vector) * force
13: end if
14: end for

The gravity algorithm 14, attempts to increase the area usage e�ciency. It does not really simulate
gravity. True gravity would require each vertex to have mass and accelerate the vertices towards
some strong gravitational �eld source. Instead, a pseudo-gravity imparts upon each vertex a velocity
towards the gravitational �eld source. Masses are ignored, which is equivalent to considering each
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vertex to have a unit mass. The gravitational �eld source is determined to be the barycenter of
all the vertices. The intuition for this is that the barycenter will be the densest part of the graph
drawing, hence vertices should attempt to get as close to this point as possible.

The force vector imparted on each vertex is calculated as the unit vector between the vertex and
the barycenter and the strength of the gravity �eld. If the strength of the gravity �eld is negative,
the resulting drawing will be quite spread out, but not area e�cient. A value of 10, which by
some coincidence is close to the value of gravity on the surface of Earth, works well, at least for
small sparse graphs. The trade-o� with high gravities is that though they make good use of area,
they increase the number of edge crossings, making the drawing less readable. Since the gravity is
circular in nature for two dimensions, it also yields drawings with a circular perimeter, rather than
a rectangular drawing that is better suited for a viewing device.

Algorithm 14 Gravity

Input: A set of vertices V
Output: Updated force vectors for V

1: barycenter ←

∑
vεV

v.pos

|V |
2: for all v in V do
3: calculate unit vector between v.pos and barycenter
4: v.forceVector ← v.forceVector + unit vector * gravityStrength
5: end for

2.5.2 Analysis

The simulation loop for spring layout terminates in at most a constant 100 iterations. For small
graphs with vertices and edges on the order of 100, the layout usually converges before this maximum
is reached. It is not clear from the literature whether the required number of iterations is constant
or not. In [FR91], the authors lament this lack and then go on to say that their own e�orts to
pin the number of iterations as a function of the graph size failed. Hence they too used a constant
number of iterations, in their case just 50. Indeed, the use of a �xed number of simulation iterations
can be justi�ed since in those rare situations where a greater number of iterations are needed, the
algorithm can be run a second time using the previous result as a starting point.

The repulsion algorithm dominates the time complexity for each simulation iteration. It requires
O(|V|2) time since each vertex repulses every other vertex. Using a partitioning scheme, this can
be reduced to O(|V| log |V|) at best, [QE01]. The attractive and gravity algorithms use only O(|E|)
and O(|V|) time respectively. Hence the overall time complexity for this implementation is O(|V|2).

2.5.3 Case-study

The spring-embedder drawing technique is not applicable to as many formalisms as is the layered.
The key issues with this layout are the lack of crossing minimization and the unstructured appear-
ance of the �nal drawing. Formalisms that generally work well with this type of layout include
Finite State Automatons and Petri Nets. A transmitter model in the Petri Net formalism drawn
with the spring-embedder is shown in �gure 2.8.

2.6 Force-transfer

The force-transfer drawing technique is another example of the force directed approach. It consists of
a simulation whereby each vertex exerts forces on overlapping neighboring vertices. The simulation
terminates once the forces have pushed all vertices apart such that no overlap remains. This
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technique is useful either as a post-process to another layout technique that does not adequately
address overlap issues or on its own.

2.6.1 Design

The design for the force-transfer algorithm is shown in �gure 2.9. This design is very basic, consisting
of ForceTransfer which does the force simulation and Object. Object is a wrapper around the
AbstractObject. Object doesn't necessarily represent just vertices, it can also represent hyper-edge
centers or even edge bends. It extends the functionality of AbstractObject by allowing querying for
center coordinates rather than top-left vertex coordinates and by tracking the forces acting on the
object.

2.6.2 Pseudo-code

The force transfer algorithm 15 consists of an initialization and simulation phases. The initialization
phase sets forces the forces acting on each vertex to zero and the position of the vertex to its center
coordinate. The simulation loop then iterates over every pair of vertices. The simulation of the
vertex pair (va, vb) is equivalent to that of the pair (vb, va), hence only one vertex pair is used per
simulation run. Once all the forces have been calculated between the vertices, the positions of the
vertices are updated accordingly.

Simulation ends when convergence is detected, that is when no vertex overlaps remain. However,
the simulation is also terminated by a �xed number of iterations, to avoid running the force transfer
algorithm for a very long time on certain inputs. For example, a hundred vertex input graph where
the vertices are embedded such that they all have the same coordinate, would not converge rapidly.
In such cases, a better strategy is to apply a di�erent layout method �rst. The layout method need
not be sophisticated, even a completely random layout technique can give good results.

The core of the force transfer algorithm is calculateForce 16. The �rst step consists of elementary
calculations of Manhattan and Euclidean distances and the unit vector distance between the pair
of input vertices. With these, a scalar force magnitude is computed. The force magnitude must lie
between zero and negative one to have any impact on the positions of vertices. Thus if it is outside
this range, the vertices involved are not overlapping.

The force is only applied horizontally or vertically and not both at once. The direction of the force
is determined by the greatest separating distance between the vertices. The motivation for this is
to move the vertices apart as little as possible such that they no longer overlap. This reduces the
chance that a vertex will force another vertex away only to create a new overlap. Moreover, by
moving vertically or horizontally only, area e�ciency is increased. This is particularly noticeable
when compared to a naive alternative to force transfer, scaling.
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Algorithm 15 Force Transfer

Input: A graph G=(V,E)
Output: An embedding of G
1: for all v in V do {Initilize}
2: v.forceVector ← 0
3: v.pos ← center coordinate of v
4: end for
5: for all i such that 0 ≤ i ≤ 50 do {Simulation loop}
6: isMoving ← False
7: i ← 0
8: j ← 0
9: while i < |V| do
10: while j < |V| do
11: if i 6= j and calculateForce(vi, vj) then
12: isMoving ← True
13: end if
14: j ← j + 1
15: end while
16: i ← i + 1
17: j ← i
18: end while
19: if not isMoving then {Convergence test}
20: break
21: end if
22: for all v in V do {Update}
23: v.pos ← v.pos + v.forceVector
24: v.forceVector ← 0
25: end for
26: end for

Algorithm 16 calculateForce

Input: A pair of vertices, va and vb

Output: Updated force vectors for va and vbV
1: calculate Manhattan distance vector and Euclidean distance between va and vb

2: ux, uy ← calculate the unit vector between va and vb

3: dx ← u−1
x ∗ (va.width+vb.width

2.0 + minSeperation)
4: dy ← u−1

y ∗ (va.height+vb.height
2.0 + minSeperation)

5: forceMagnitude ← seperationForce * (Euclidean distance - min(abs(dx), abs(dy)))
6: if forceMagnitude < -1 then
7: if abs(ux) > abs(uy) then
8: va.forceVector.x ← va.forceVector.x + (ux * forceMagnitude)
9: vb.forceVector.x ← vb.forceVector.x - (ux * forceMagnitude)
10: else
11: va.forceVector.y ← va.forceVector.y + (uy * forceMagnitude)
12: vb.forceVector.y ← vb.forceVector.y - (uy * forceMagnitude)
13: end if
14: return True
15: end if
16: return False
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Figure 2.10: Sample model in the DEVS formalism

2.6.3 Analysis

The force-transfer algorithm 15, has few loops. The �rst and last are trivially bounded by O(|V|)
and O(50 * |V|) respectively. The innermost loop, which calls the calculateForce algorithm 16, is
bounded by O(50 * |V|2). Since the calculateForce algorithm does not itself have any loops, overall
time complexity is simply O(|V|2).

2.6.4 Case-study

This algorithm was originally conceived of to ��x� layouts by other drawing techniques that ne-
glected to consider the size of the vertices. However it proves useful when automatically activated
whenever a user interactively modi�es a model, such as in a class diagram formalism, hence avoiding
overlap. Moreover, force-transfer was integrated into a hierarchical DEVS formalism, thus providing
overlap avoidance at each hierarchical level. Indeed, as �gure 2.10 shows, force-transfer can even
be used when no previous layout exists. This typically occurs when a DEVS model is automati-
cally generated. The layout in the �gure was produced by a method that successively applied a
combination of random, force-transfer, and simple arrow layouts to each level of the hierarchy.

2.7 Tree-like and circle

The tree-like and circle layout algorithms are both fairly simple to implement. The tree-like layout
gives good results on graph structures that really are trees. For graph structures that are not trees,
that is structures with cycles in them, the layout is often unreadable. This is due to the fact that
the algorithm breaks cycles as a preprocessing step. Thus when the edges removed to break the
cycles are re-inserted as straight edges between vertices in the drawing phase, they often cross many
other edges and overlap vertices.

The circle layout algorithm is particularly ine�cient in area usage and thus is best used on subgraphs
or small graphs. Alternatively, it makes an excellent preprocessing step for a force directed method
such as a spring-embedder. As in the tree-like algorithm, large numbers of edge crossings and
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edge-vertex overlaps are possible. Since this layout method is not really meant for use on its own,
no edge routing techniques were implemented to eliminate the edge-vertex overlaps and reduce the
edge crossings.

2.7.1 Pseudo-code

The �rst step in tree-like layout is to �nd all the root vertices in the graph. The children of each
root vertex is assigned coordinates before the root vertex itself. This recursive process allows each
root vertex to be positioned precisely centered above all its children.

Algorithm 17 Tree-like

Input: A graph G=(V,E)
Output: An embedding of G
1: R ← �ndRootVertices(V)
2: maxHeight ← maximum height of all root vertices
3: xpos, ypos ← 0
4: for all r in R do
5: w ← 0
6: for all v in r.getChildren() do
7: w ← layoutNode(v, xpos + w, ypos + yoffset + maxHeight) + xoffset

8: end for
9: r.pos.x ← xpos +

w
2 - r.width

2
10: r.pos.y ← ypos

11: end for

In pure tree layout, only vertices with no parents are roots. In tree-like layout, roots can also be
the result of breaking up a cycle. Hence algorithm �ndRootVertices 18 �nds all true roots with
no parents �rst, and marks all their children as visited using breadth �rst search. Note that the
children marker routine, pseudo-code not shown, also sets the children returned by the getChildren()
method. Any vertices not thus marked must be in a cycle. Such cycles are broken by picking one of
the vertices to be a root and then marking the rest of the vertices from this root using breadth �rst
search. Root vertex picking is done either manually by the user with a mouse click on the canvas
or automatically. The automatic technique sorts vertices by decreasing out-degree. It then greedily
selects vertices until all the vertices have been marked.

The �nal step of tree-like layout is shown in algorithm layoutNode 19. This is very similar to the
root node layout. Vertices with no children are assigned coordinates immediately since they have
no dependencies. Vertices with children �rst make a recursive call that assigns coordinates to the
children, and only then are assigned coordinates themselves. This allows for parent vertices to
always be centered and above their children.

The entire pseudo-code for circle layout is given in algorithm circle 20. As a preprocessing step,
all vertices are sorted topologically. This sorting is constructed using depth �rst search in linear
time. This step is important since it forces edges along the perimeter of the circle. By comparison,
a random vertex sort or vertices sorted by degree, both result in a large number of confusing edge
crossings near the center of the circle.

The �rst step after preprocessing is calculating the perimeter of the circle2. The perimeter should
be large enough to �t all the vertices in the graph. Therefore, assuming vertices have rectangular
bounding boxes, calculating the diagonal distance of a vertex is equivalent to its bounding circle
diameter. Since space must be left for edges to be drawn between vertices, an extra amount of

2The perimeter of a circle is usually called its circumference
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Algorithm 18 �ndRootVertices

Input: A set of vertices V
Output: A set of root vertices R
1: R ← {}
2: for all v in V do
3: if v.indegree = 0 then
4: R ← v
5: markAllChildrenBFS(v)
6: end if
7: end for
8: cycleVertices ← {}
9: for all v in V do
10: if not v.marked then
11: cycleVertices ← v
12: end if
13: end for
14: while cycleVertices not empty do
15: R ← chooseRootVertex(cycleVertices)
16: end while

Algorithm 19 layoutNode

Input: A vertex v, xpos coordinate, ypos coordinate
Output: New position for v
1: if not v.hasChildren() then

2: v.pos.x ← xpos +
v.width+xoffset

2 - v.width
2

3: v.pos.y ← ypos

4: return v.width
5: else
6: w ← 0
7: h ← v.height + yO�set
8: for all vchild in v.getChildren() do
9: w ← layoutNode(vchild, xpos + w, ypos + h) + xoffset

10: end for
11: v.pos.x ← xpos +

w
2 - v.width

2
12: v.pos.y ← ypos

13: return w - xoffset

14: end if
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space, o�set, is added to this bounding circle diameter. Adding this up for every vertex gives the
perimeter distance of the circle drawing.

The �nal step is to calculate an interval fraction between 0 and 1. This interval, when multiplied
by 2Π, becomes the radian angle used to calculate the vertex positions on the circle. Initially, the
interval is based on the last vertex. This ensures the �rst and last vertices do not overlap. Successive
intervals are then calculated according to the current and previous vertices. Thus no overlaps occur
over the entire circumference of the circle.

Algorithm 20 Circle

Input: A graph G=(V,E)
Output: An embedding of G
1: obtain a topological sort of V
2: perimeter ← 0.0
3: for all v in V do {Perimeter}
4: v.boundingCircleDiameter ←

√
v.width2 + v.height2 + o�set

5: perimeter ← perimeter + v.boundingCircleDiameter
6: end for
7: diameter ← perimeter

Π

8: interval ← v|V |−1.boundingCircleDiameter

2.0∗perimeter {0 ≤ interval ≤ 1}
9: for i = 1,...,|V|-1 do {Assign coordinates}
10: x ← diameter * (1 - sin(interval * 2Π))
11: y ← diameter * (1 - cos(interval * 2Π))
12: vi.pos ← x, y
13: interval ← interval + vi.boundingCircleDiameter+vi+1.boundingCircleDiameter

2.0∗perimeter
14: end for

2.7.2 Analysis

The tree-like algorithm 17 iterates over the root vertices, a subset of R of V. The layoutNode

algorithm 19 is called |R| times. Recursive calls are made |V|-|R| times to layout children and
ultimately the leaf vertices. Finally, the �ndRootVertices algorithm 18 iterates over all the vertices
in the �rst loop. If the vertex has no parents, a depth �rst search marker is run on the vertex.
The total amount of depth �rst searching done is bounded by |V|. The second loop is also clearly
bounded by |V|. Finally the chooseRootVertex() method, automatic version, uses a greedy strategy
that is linear in the number of vertices. Hence the overall run-time of Tree-like layout is linear.

For the circle algorithm 20, the topological sort is done in linear time using depth �rst search. The
perimeter calculation and coordinate assignment loops clearly run |V| times. Therefore circle layout
is also a linear time algorithm.

2.7.3 Case-study

The applicability of the tree-like drawing technique is limited to models of trees or graphs that are
very nearly trees. On the other hand, circle layout is useful in any formalism, during interactive
editing, when applied to a subset of the vertices that form cycle. Otherwise, circle layout is simply
the preprocessing step for the spring-embedder. Figure 2.11, shows the same dependency model in
the Generic formalism drawn with tree-like and circle layout.
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Figure 2.11: Dependency model in Generic formalism
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2.8 Experimental time performance

The time performance of all the drawing method implementations, save that of linear constraints,
are shown in �gure 2.12. Note that on the left, the vertical axis represents log time to e�ectively
capture the wide variations in time performance, whereas time is incremented normally on the right
to make linear behaviour more obvious. The tests were performed on randomly generated connected
graphs ranging in size from small to large. The graph size is equal to the number of vertices and
to one and a half times the number of edges. The graphs were constructed thus on the assumption
that a model created by a user would not have many more edges since they would quickly clutter
the graph and make it di�cult to understand the underlying problem. Conversely, a graph with
fewer edges is easier to compute a layout for.

The times shown in the graph represent only the real-time elapsed while the layout algorithm was
executing. In more detail, time was measured only while the layout algorithm was working on the
abstract graph representation. Thus time required to generate the abstraction or redraw the canvas
is not included. To avoid misrepresenting the running-time with a random graph that just happens
to be particularly good or bad for a given algorithm, �ve random graphs were generated for each
size. Therefore, the running-times shown in �gure 2.12 are actually the median time of the �ve
trials. All tests were conducted on a 3.2 GHz P4 processor with hyper-threading enabled, thus CPU
utilization by the layout algorithms was at most �fty percent.

The results for circle and tree-like layout are gratifying. They indicate that even for large graphs,
only a fraction of a second is necessary to compute the entire layout. This is particularly useful in
the case of circle layout, since it is highly recommended as a preprocessing phase for the spring-
embedder.

It is far more di�cult to judge the performance of the force-transfer algorithm. This algorithm
is highly dependent on the initial layout. In the experiments, the initial layout was arbitrarily
constructed as a straight-line of vertices oriented to the south-east. Each successive vertex in the
line overlapped its predecessor by approximately ninety percent. As expected, the algorithm yielded
quadratic asymptotic behaviour. Thus the most important improvement to this algorithm algorithm
would be to augment it to avoid computing the forces between each pair of vertices by eliminating
distant vertices from consideration.

The spring-embedder results are quite surprising in that they are linear. Yet the algorithm is clearly
quadratic. The explanation for this lies in the preprocessing step of circle layout. Without this step,
the time results are indeed a quadratic curve. Hence the use of the preprocessing step is justi�ed
for three reasons: circle layout is fast, it improves the �nal drawing quality, and it improves the
time performance of spring layout. This algorithm would greatly bene�t from a re-implementation
in a non-interpreted language. This might well make the algorithm fast enough that the delay is
nearly imperceptible to the user throughout the range of medium sized graphs.

Finally, the results for the layered drawing technique, hierarchical layout, are puzzling. Initially, the
time-usage indicates very poor asymptotic behaviour, as one might expect from an algorithm with
a worst-case time complexity of O(|V|4). Yet between graph sizes of 150 to 250, the asymptotic
behaviour is strictly linear. It is not clear at this time why this might be and deserves closer
investigation. One important factor is the Python language. Indeed, with a graph size of 300, �fty
seconds were required to compute the breadth-�rst search layering, but with 350 vertices no result
was forthcoming after ten minutes. Hence this drawing technique would de�nitely bene�t from a
re-implementation in a more appropriate language.
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Figure 2.13: QOCA server class diagram

2.9 Linear Constraints

Linear constraints provide a declarative approach to layout. On the one hand, this allows developers
with no special background in layout algorithms to craft speci�c layout behaviours. On the other,
layout constraints are rather in�exible, limited in what the layout aesthetics they can satisfy, and
very di�cult to hybridize with other drawing techniques.

Implementing a constraint solver is a very large undertaking in its own right. Hence the readily
available QOCA constraint solving toolkit was integrated into AToM3. The following subsection
describes the integration of the toolkit. Thereafter, experiences with the use of linear constraints
in AToM3 are presented in subsection 2.9.2.

2.9.1 Design

The integration of the QOCA constraint solving toolkit into AToM3 is composed of a server and
client module. The server module, written in Java, directly interfaces with the QOCA solver. In
brief, the server module send commands to the QOCA library on behalf of the client and returns
results when applicable.

The server is started by executing the QocaServerMain class. Depending on the command-line
arguments, either a GUI is shown to the user or a pipe based or TCP/IP based server is started.
The GUI is equivalent to using command-line arguments. The pipe based server, QocaPipeServer,
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reads standard input (stdin) and uses the ConstraintParser to convert the textual commands into
method calls. If the method call is a solve, then it writes out the change variables and their values
to standard output (stdout). The TCP/IP server, QocaTcpServer is similar to the pipe version,
except that it is multi-threaded to handle as many clients as necessary. Unit-tests verifying the
correct function of both server types were performed.

The client portion is written in Python to smoothly interface with AToM3. The AbstractQocaClient
ensures that both the pipe and TCP/IP clients support the same low-level functionality, including:
connect, read, write, and disconnect. An internal representation of the solver, QocaSolver, is used
to keep track of the variables and constraints. It also generates/parses textual commands that are
written/read by the low-level client. The ConstraintBaseClass provides six high-level constraints,
such as a one dimensional o�set constraints. This is accomplished by creating all the necessary
low-level constraints, composed of QocaLinearConstraint and QocaVariable instances. The High-
LevelConstraints class further specializes the ConstraintBaseClass, by allowing for the creation of
of over �fty high-level constraints including insideness and overlap. Hence linear constraints need
not be explicitly created, instead a method call to the appropriate high-level constraint is often
all that is necessary. As with the server, each component of the client was thoroughly unit-tested
independently of the AToM3 application.

2.9.2 Linear constraints and AToM3

To verify the e�ectiveness of linear constraints in the AToM3 tool, a toy formalism was created.
This formalism, as �gure 2.15 reveals, is inspired by PacMan. The formalism has 5 di�erent
nodes/vertices: the scoreboard, square grid blocks, PacMan, ghost, and food. Relationships are
de�ned between blocks and PacMan, ghost, and food, between blocks and other blocks, and be-
tween scoreboards and a block. For each relationship, there is at least one high-level constraint
generated.
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0Your score

Figure 2.15: Example model in the PacMan formalism

The simplest of the constraints is that between a block and the PacMan, ghost, or food upon it.
This constraint forces the two entities to be centered with respect to each other. The constraint
between blocks and other blocks is one of four possibilities: to the left of, to the right of, to the top
of, and to the bottom of. Finally, the scoreboard is constrained within at least a few pixels above
the top-center block, at most several dozen pixels above it. It is similarly constrained horizontally.

A simulation graph grammar was also constructed. It provides a working demonstration of a graph
transformation with correct layout behaviour in the host graph. For example, when a rule in the
graph grammar alters PacMan's relation to the block he currently sits on to another block, PacMan's
icon actually moves to the center of that other block.

Beyond the world of PacMan, linear constraints could be very useful for assembling icons. For
example, in a UML class diagram, a class is composed of three boxes, one for each of: class name,
attributes, and methods. Linear constraints would be e�ective in keeping those boxes aligned and
appropriately scaled. Unfortunately, at this time the integration of linear constraints with AToM3

has not reached that component dealing with visual icons.



3
Formalism-Speci�c UI and Layout

A key component of visual modeling, the visual modeling environment, has been neglected in the
literature to date. Yet the construction of new domain-speci�c formalisms and multi-formalism
environments are important for modeling today's complex systems. The status quo of hard-coding
the environment is inadequate due to the in�exibility and bug-prone nature of this approach. Hence
a new framework for explicitly modeling the reactive behaviour of the visual modeling environment,
including formalism-speci�c behaviours and layout considerations, is developed.

At a high level of abstraction, the new framework works as follows. First, a model of generic
user-interface reactive behaviour is constructed. The code generated from this model is generally
applicable to most formalisms (i.e., it is formalism independent). Thereafter, each formalism pro-
vides additional models that re�ne the generic UI behaviours with more speci�c behaviours. Using
visual cues (bounding boxes), the correct formalism-speci�c or generic behaviour is chosen even in
the presence of multiple simultaneous formalisms. Finally, the formalism-speci�c behaviours them-
selves include automatic graph layout method invocations in speci�c sequences and appropriate
times.

Section 3.1 provides the motivation and background for this approach. Section 3.2, describes the ar-
chitecture of this approach. This includes a generic user-interface behaviour model, in the statechart
formalism, that can be further re�ned by formalisms. Section 3.3 then presents a case-study for
this approach, in the form of the DCharts formalism. DCharts is an existing formalism, developed
in Thomas Feng's M.Sc. thesis [Fen04]. Finally, section 3.2 describes all the DCharts formalism-
speci�c user-interface behavioural models. Ultimately, these models are used to precisely determine
when, how, and to what the automatic layout methods described in chapter 2 are applied.

3.1 Motivation and background

This section provides motivation for using multiple formalisms. Indeed, multiple formalisms create
user-interface behaviour demands that are hard to satisfy with traditional approaches. At the
same time, the concepts of meta-modeling and domain-speci�c formalisms are summarized below.
Finally, the existing concepts that the proposed solution to formalism-speci�c UI reactive behaviour
combines are described. These concepts are: nested and zooming user-interfaces, nested events in
graphical user-interface libraries, and scoping in programming languages. Descriptions of them and
exactly how they relate to formalism-speci�c UI behaviour can be found in subsections 3.1.2, 3.1.3,
and 3.1.4 respectively.

3.1.1 Domains, Formalisms, and Meta-models

In recent years, various software applications were developed to support modeling of complex sys-
tems, particularly in the software and physical systems domains. Modeling is essential to analyse
and design such complex systems. A model provides abstraction, which can dramatically increase
the understanding of the represented system. Often, a problem can be modeled with multiple
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formalisms, depending on the viewpoint taken or on the aspect of interest. For instance, in the
software domain, the structure of an application is better viewed as a UML class diagram whereas
the dynamics of object interaction are better modeled as a UML sequence diagram.

Having the possibility to view the solution of a problem from di�erent angles, some more abstract
than others, helps the developers understand, modify and possibly re-use problem solutions. More-
over, speci�c formalisms are better suited to model speci�c systems.

Modeling a problem with multiple formalisms is good, but it is not enough to use only existing
formalisms. It should be possible to design formalisms which are maximally constrained to model
and solve problems in a speci�c domain. Such an approach has several advantages. First of all, the
modeler has a speci�c mental model of the problem, and the closer the formalism is to this model,
the easier model development will be (from a cognitive point of view). Also, if the formalism is very
close to the domain, the human modeller is constrained to construct only models in that domain
and is hence less likely to make errors. More importantly, the modeler can abstract away from how

the model is executed and veri�ed by the computer and focus on the domain-speci�c problem at
hand.

Domain-speci�c modeling does not only bring abstraction, but also veri�cation and execution. If a
system is represented in a formalism with known formal properties, one can automatically infer the
system behaviour, at least up to a certain point. For example, in [VdL04], a simple road system
was modeled in a domain-speci�c formalism, which was transformed into Petri Nets. Since Petri
Nets have known formal semantics, the transformation speci�es the behaviour of the tra�c system
formalism. Then, from the Petri Nets model, a reachability graph was generated to assert the
non-occurrence of deadlocks in the tra�c system.

AToM3, A Tool for Multi-formalism and Meta-Modeling, was developed in the Modeling, Design
and Simulation Lab (MSDL) of McGill University by Juan de Lara and Hans Vangheluwe [dLV02a].
This tool enables domain-speci�c multi-formalism modeling by means of meta-modeling and graph
transformation. Complete software applications for creating models in a domain-speci�c formalism
are synthesized from meta-model speci�cations.

The AToM3 tool was proven to be very powerful, allowing the meta-modeling of known formalisms
such as DEVS [PB03], Statecharts [BV03, Fen03], UML Class Diagrams and Activity Diagrams
[dLV05], Finite State Automata [VdL02], Petri Nets [dLV02b], GPSS [dLV02d], Process Interac-
tion Networks [dLV04], Hybrid Systems [LJVdLM04, dLGV04, dLVAM03], Causal Block Diagrams
[PdLV02, dLVA04] (a subset of Simulink), Data�ow Diagrams [dLV02c] and many others. More
importantly, many new domain-speci�c formalisms were constructed using the tool, such as the
Tra�c formalism [JdLM04].

The philosophy of AToM3 is to model everything explicitly. Hence, all four aspects of a formalism are
explicitly modeled in AToM3. The �rst aspect is the abstract syntax of a formalism. For example,
abstract syntax is what speci�es that a UML class diagram formalism is composed of classes and
relationships in the form of associations and inheritance. The second aspect is the concrete, possibly
visual, syntax. For example, a UML class diagram is represented by a rectangular box. These
�rst two aspects are both static in nature. Thus, they are meta-modeled using either the Entity

Relationship or Class Diagram formalism.

The last two aspects of a formalism, the semantics and the reactive behaviour of the visual modeling
environment, are dynamic in nature. In AToM3, graph transformations are often used to explicitly
model the operational or denotational semantics of a formalism.

The most crucial aspect of a formalism in the context of this thesis, is the reactive behaviour of its
modeling environment. The reactive behaviour speci�es how a given sequence of input events, such
as from the mouse and keyboard, in�uence the state and future behaviour of the modeling environ-
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ment. For example, simultaneously pressing shift, control, and c in a UML class diagram formalism
might create a new class. In most existing visual modeling tools, this is dealt with by having a
single hard-coded behaviour. It is thus possible to manually construct a user-interface with the
appropriate reactive behaviour without too much di�culty. However, in applications that support
multiple formalisms the complexity increases, particularly if the di�erent formalisms are dissimilar.
Even worse, from the application developer's point of view, is support for multiple formalisms at
once in a single diagram. As shall be shown in subsequent sections, the use of formalism-speci�c
behaviour statechart models instead of hard-coding can greatly improve the situation.

3.1.2 Nested and zooming user-interfaces

A nested graphical user-interface is one where widgets, reactive visual components such as buttons
and windows, are recursively nested. A very familiar example of a nested GUI is that of a menu
system. Menu commands are placed inside broad categories, such as File and Edit, and potentially
re�ned further by hierarchical sub-menus. In the case of menus however, the displayed widgets are
restricted to a simple text label.

A zooming user-interface is one where the density of the information shown to the user can be scaled.
A nice example of this from real-life is reading a newspaper. When searching for an interesting article
one pushes the newspaper away, zooming out to get an overall view. After �nding an interesting
article, one pulls the newspaper in closer to read it more easily.

These two concepts of nested and zooming user-interfaces are combined in [PM99]. The system
makes it possible to use general widgets, including directly user-modi�able canvas widgets, in a
zooming, nested hierarchy. Hence, at the highest hierarchical level, the widgets provide controls
that are few and very coarse in e�ect. These high level widgets do have the advantage that they
require very little area on the screen. Successive levels of the hierarchical widgets, provide more
and �ner controls. They appear in the same general area as their higher level parents, but they use
up more screen space, so fewer of them can be seen at once. Thus this system is very advantageous
in that it can present very large and layered control problems to the user in a cohesive and readily
navigable visual interface.

Both of these concepts prove quite useful in formalism-speci�c visual user-interfaces. Simply replace
GUI widgets with formalism entities that are hierarchical in nature.

3.1.3 Nested events in GUI libraries

A graphical user-interface library provides widgets for interacting with a user. In order to avoid
making incorrect generalizations, the following is true at least for the Tk/Tcl GUI library [Ous94].
Widgets range from windows and canvases to simple buttons and labels. Widgets are hierarchically
organized and the highest level is called the root, which is simply an instance of the GUI library.
Moreover, it is possible to bind method invocations to some triggering event to each widget.

Interesting behaviour occurs when both a parent and child widget, according to the widget hierarchy,
bind to the same trigger event. In this case, the child widget is considered the most tightly binding
and receives the event �rst. Thereafter the parent receives it as well. Sometimes this is not the
desired behaviour at all. For example, when one presses tab in a text widget, one means to actually
insert a tab, not insert a TAB and then change focus to the next widget. Thus, Tk/Tcl allows a
widget to exclusively handle an event, halting it from propagating higher in the hierarchy of widgets.
A description of exactly how this is done can be found at www.pythonware.com/library/tkinter/
introduction/events-and-bindings.htm.

Both the idea of binding events at multiple hierarchical levels and explicitly handling events prove
useful in formalism-speci�c user-interfaces. Again, GUI widgets are replaced by their hierarchical
formalism entity counterparts.
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3.1.4 Variable scoping in programming languages

Most high-level programming languages provide means of specifying the scope of a variable. The
scope of a variable is usually denoted using a pair of braces. Furthermore scopes are inherently
hierarchical. The scope of a variable is used by the compiler to bind it to its declaration. If the
compiler �nds an occurrence of the variable in a given scope, it searches that scope �rst for its
declaration. If it fails to �nd it, it searches successively higher levels in the scope hierarchy until
reaching the global variable space.

The link to formalism-speci�c user-interfaces in this case requires using the bounding boxes of visual
formalism entities as scope delimiters. The variable becomes an event and the building process the
main event loop which passes the event to each hierarchical scope level in succession.

3.2 Formalism-speci�c UI

This section describes the architecture of our new approach to modeling the reactive behaviour of
formalism-speci�c user-interfaces. The goal is not to create an entirely new speci�cation of user-
interface behaviour for each formalism, but rather to modify it to suit special requirements. Hence, it
makes sense to have a single, generic, application-wide speci�cation of the user-interface behaviour.
This is described in the following subsection. The formalism-speci�c modi�cations to this generic
speci�cation are then made through the entities of the formalism. That is, for each entity of the
formalism that has speci�c user-interface requirements, a small UI speci�cation is created. This
entity may be quite arti�cial, such as an entity created for the sole purpose of enclosing the usual
formalism entities. This is described in subsection 3.2.2. Finally, since some events a�ect formalism
entities but don't occur within the enclosure of an entity with a UI speci�cation, pre/post UI
observers are used to bridge the gap, and are described in subsection 3.2.3.

3.2.1 Generic UI behaviour

The generic user-interface behaviour for the entire AToM3 application is modeled using statecharts
[Har87]. This model is shown in �gure 3.1. The advantage of modeling the UI behaviour cannot
be understated. The model may look complex, but it is easy to trace what happens given a certain
sequence of events. If the user-interface were hard-coded however, it would be far more di�cult,
even with just a small subset of the hundreds of events this model handles. Moreover, a small
change in the behaviour speci�cation may require drastic modi�cation of code, but only a minimal
change in the statechart model.

The generic UI behaviour statechart works as follows. When instantiated, the �Initial� state in the
top-left is active. It is then initialized with a �Start� event that places it in the �Active Event Loop�
composite state. Within this composite state, the �Main� state is the default, so this is the one that
becomes active. Notice how many of the events can be directly handled from this �Main� state.
Although only a few arrows are shown doing this, there are in fact many arrows super-imposed upon
one another to reduce visual clutter, and the labels were then drawn above and below the arrows.

The more complex event sequences dominate the right side of the model. Most of these sequences
are similar, so only two of them shall be described. These are the event sequences necessary for
selecting entities and for creating a new arrow interactively.

An additive selection consists of holding down a key and a mouse button, moving the mouse around,
and then releasing the mouse button. While the selection is in progress, it would not make sense to
do something else, such as delete everything on the canvas. Indeed, this is impossible in the model,
since the very �rst action, the key-button combination, puts us in the state �Add To Selection�.
Only two events are now accepted: mouse movement and the mouse button release. Hence there
can be no confusion as to the user-interface's behaviour in this situation.
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Figure 3.1: Generic user-interface behaviour statechart
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Creation of a new arrow occurs when the user holds down the control key while pressing the left
mouse button to generate the �Create New Arrow� event. The �New Arrow� composite state and
the composite's internal default state �Snap Points�, then become active. The user can now generate
four events: �Motion�, �Drop Point�, "Rollback", and �Toggle Snap�. The �rst event simply triggers
code to redraw the arrow being created whenever the user moves the mouse. The second event
temporarily enters the �Drop Point� state. Entering this state triggers code to either complete the
arrow, if an entity is currently under the mouse cursor, or to add a control point to the arrow. If the
arrow was completed then either the �<Arrow Created>� or �Reset� event is generated, depending
on whether the target entity was valid, and the active state becomes �Main� again. Alternatively,
if a control point was added, then the event �Done� is generated. This returns �Snap Points� to the
active state.

The third event, �Rollback�, allows the user to remove previous control points until the new arrow
itself is removed. The latter situation also results in the generation of the �Reset� event and a
return to the �Main� state. Finally, the �Toggle Snap� event simply allows the user to switch
between dropping control points on grid points or at arbitrary locations. Hence the action code in
the transitions of the state �No Snap� mirror those of the transitions in �Snap Points�, except that
di�erent parameters are used.

3.2.2 Formalism-speci�c behaviour

The purpose of formalism-speci�c reactive behaviour models is to modify only those portions of the
generic user-interface behaviour that require special handling. There are two good reasons for not
simply copying the generic UI behaviour in its entirety and then modifying it for a speci�c formalism.
One reason is that it would be needlessly di�cult to �gure out, by looking at the behaviour model,
what the formalism-speci�c requirements were. A second reason lies in the fact that the generic UI
behaviour may evolve over time. Assuming a likely scenario where the evolutions are quite minor
and that the formalism-speci�c behaviour is in fact very speci�c, then the formalism can bene�t
from evolutions to the generic UI behaviour without modi�cation itself.

Implementing formalism-speci�c behaviour requires determining where (i.e. within which scope)
events actually occur. This is easy, since an application's main event loop receives all user input
events, including keyboard input, with mouse coordinates attached. Using this, the basic idea is
that if those coordinates lie within the scope of a formalism, then that event should be sent to that
formalism. However, two questions quickly arise: what is the scope of a formalism and what if an
entity within a formalism would bene�t from de�ning its own UI behaviour?

The answer to these questions lies in using the entities of a formalism itself to de�ne the scope of UI
behaviour. For example, a class is an entity of a UML class diagram formalism. Continuing with this
example, a formalism-wide scope could be de�ned by adding an extra entity that contained all the
classes in the formalism. Recall that the formalism-speci�c behaviour approach is a combination of
hierarchically nested graphical user-interfaces, the nested event propagation found in graphical user
interface libraries, and the scoping behaviour of variables common to most programming languages.
To see how this can be, �rst replace the widgets, such as buttons, of a nested GUI with formalism
entities. Then replace the event propagation through the widget classes of a GUI library with event
propagation through the nested formalism entities. Finally, replace the scope of a variable typically
de�ned by a pair of matching braces in programming languages with the visual bounding box of a
formalism entity. Hence, instead of a simple button widget receiving a mouse-click, any input event
can be captured by a formalism entity's scope and then propagated across multiple entities, unless
of course that entity's scope was local.

Hence, formalism-speci�c behaviour requires the addition of an �arti�cial� entity whose sole purpose
it to de�ne the scope of the formalism. This arti�cial entity hierarchically and visually contains
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Figure 3.2: Hierarchical scopes Figure 3.3: Nested event propagation

all the other entities of a formalism. The hierarchical aspect refers to the fact that the arti�cial
entity is the parent of all the other children entities. If the formalism has hierarchical entities itself,
then these entities are automatically considered as participating in the scoped behaviour hierarchy.
Alternately, more arti�cial entities can always be used if further re�nements to the visual modeling
behaviour were deemed useful.

Using an internal data-structure representing hierarchy, it is now a simple matter to send nested
events to only those entities that the event enters the scope of. To illustrate this, refer to �gure
3.2 and consider an event, �fubar� occurring inside the box �Scope F�. Since the event �fubar�
occurred within the bounding box of �Scope F�, the entity represented by �Scope F� receives the
event �fubar�. The event is then propagated along the nested hierarchy according to �gure 3.3.
Therefore the behaviour statecharts associated with the entities �Scope C�, �Scope B�, and �Scope
A� each receive the event in succession. Note that �Scope A� is actually the application itself and
events sent to it go to the generic UI behaviour statechart. Moreover, �Scope B� is a container entity
for an entire formalism, say formalism X, one of potentially many concurrently active formalisms.
The remaining scopes are all entities of this formalism X that happen to be hierarchical in nature.
Scoped entities are neither required to have an associated behaviour statechart, nor to deal with
every event they receive if they do have one.

A scoped entity receiving an event can of course handle the event by taking some action. It is also
necessary, however, that it be able to stop the event from propagating to higher levels of the nested
hierarchy depicted in 3.3. This idea of preventing events from propagating up the nested hierarchy
is similar to that seen in many graphical user interface libraries such as Tcl/Tk. For example,
imagine the generic UI statechart allowed one to move all selected entities by 1 pixel to the right
with each right-arrow key-press. If the scoped entity then tries to map the right-arrow key-press
event to display a dialog box it would hardly make sense to both display the dialog box and to move
everything to the right. Therefore the behaviour statechart of an entity can set a �ag on the event
itself to indicate to the main event loop whether or not to keep propagating an event. Note that
the event is an object and that this particular mechanism is safe in a multi-threaded event loop.

Another consideration is that a complex event sequence may be initiated in a given scope level
but subsequent input events required to complete the sequence occur outside of the scope level.
This e�ectively �freezes� whatever the user was doing until they return the mouse cursor back to
the appropriate scope level. This may be the desired behaviour in some cases. In others though,
such as if we wish to input an event sequence to create arrows, it is not the desired behaviour.
This is clear since arrows may start in one scope, but in the process of drawing control points
before reaching the target of the arrow, it is easy to leave that original scope. Therefore it becomes
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necessary to introduce the concept of �locks�. A behaviour statechart associated with a given entity
can simply lock the event loop, e�ectively transferring all events to itself. The locking entity is also
responsible for releasing the lock. Note that this locking behaviour is analogous to that of modal
windows/dialogs sometimes encountered in user-interfaces. The most common use of a modal dialog
is to force a user to respond to a question before they can resume operating an application. This
guarantees the application will not enter an ambiguous state.

Finally, it is possible for an event to occur outside of a scoped entity that nonetheless a�ects it. For
example, one could select some entities on the canvas. Later one hits the delete key. The coordinates
of the delete event can occur anywhere, yet the event very dramatically a�ects the selected entities.
This is dealt with in the next subsection.

3.2.3 Pre/post UI observers

Pre/post user-interface observer statecharts are necessary to catch �external� events with internal
e�ects. In other words, some events can occur at any coordinate on the canvas and yet have an
impact far away from that location. For example, one could put the mouse cursor outside the
application window, and press the delete key. The e�ect is to delete all the previously selected
entities, but since the event coordinates are outside of any entity, no scoped behaviour is possible
for the delete event.

To overcome this di�culty, a pre UI statechart an observes event before the generic UI behaviour
statechart acts on it. Similarly, the post UI statechart observes the event after the generic UI
behaviour statechart. This observation is su�cient to enable propagating an event, such as delete,
directly to the behaviour statecharts of all a�ected entities. Note that if an event is handled by
an entity's behaviour statechart or a statechart lock is in e�ect, neither the generic UI behaviour
statechart nor the pre/post statechart receive the event. Also pre/post statecharts are �observers�,
since they cannot �handle� events as can the formalism-speci�c behaviour statecharts. If they could
�handle� events, then con�icts would quickly arise in a multi-formalism environment. In subsection
3.4.3, observer statecharts are further illustrated by means of an example.

3.2.4 Behavioural conformity

The proposed system for modeling the reactive behaviour of formalism-speci�c visual modeling
environments, raises the issue of behavioural conformity. Structural conformity is easy to de�ne; if
a class B inherits from a class A, then B must have all of A's features. Behavioural conformity is
much more di�cult. Thus although B inherits from A, nothing prevents B form behaving completely
di�erently from A. As David Harel and Eran Gery explain in [HG97], even statechart behaviour
models cannot guarantee that the behaviour of B is not radically di�erent from A's. Nor does B
starting with A's statechart solve the problem.

This issue, with respect to the proposed system, means that if B is the outer scope, A is an inner
scope, then B should either re�ne or add to C's behaviour. For example, suppose B decides to
change C's behaviour for the right-arrow key from moving entities right by one pixel to displaying
a dialog box. This would be confusing and unexpected to the user. If instead the right-arrow key is
modi�ed to moving things by 20 pixels at a time or if a completely new key input is used, there is
no problem. Unfortunately, we are not aware of any methods for ensuring behavioural conformity
at this time, so it is up to formalism developers to maintain it.

3.3 Case-study: DCharts formalism

To demonstrate the usefulness of explicitly modeling UI behaviour, including layout, a visual mod-
eling environment for the DCharts formalism was re-created. DCharts, a formalism created by
Thomas Feng [Fen04], is a combination of DEVS (Discrete EVent Systems speci�cation) and UML
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statecharts. Both DEVS and UML statecharts can be mapped to DCharts, so in terms of expressive
power DCharts is at least as powerful as these two. The DCharts formalism is described in greater
detail in the following subsection.

A new visual DCharts formalism is warranted due to a number of de�ciencies in Thomas Feng's
AToM3 implementation. Note that none of these �de�ciencies� prevented the use of the existing
DCharts formalism to model, simulate, and generate code for all the statecharts used in this thesis.
Nonetheless, the most serious of these de�ciencies is the fact that critical information, such as triggers
and actions, are not shown in the model outside of the editing dialogs. For a formalism whose
importance lies in being quickly understood and serving as documentation, this is an important
point. On the other hand, too much information can be worse than too little if it cannot be
conveniently �t on a monitor or printed page. Thus, the new formalism must be able to hide
and show information as the user demands (i.e. support zooming). However, allowing users to
dynamically modify the displayed information will alter icon sizes, thus increasing the need for
automatic layout.

A second serious de�ciency in the original implementation is the lack of automatic layout. Because
statecharts have a hierarchical structure general purpose layout methods cannot be directly applied
to them. In other words, unless a layout method is constructed for the purpose of dealing with
compound graphs, graphs with hierarchical containment, the layout method will be of no use.
Without automatic layout support there is a signi�cant risk that modelers will avoid adding to
an existing statechart model simply because the task of doing the layout manually is so time-
consuming. An even worse situation occurs when a domain-speci�c1 model is transformed, via a
visually speci�ed graph grammar, into the DCharts formalism. In this case, the generated DCharts
model carries no graphical information, such as coordinates and size of states, thus the result is
essentially a random layout.

A third problem in the old DCharts formalism is that it allows users to construct statecharts that are
illegal at the abstract syntax level (i.e. that do not adhere to the meta-model). This is particularly
devastating for novice modelers. For example, one can have a default history state �oating around,
unconnected to anything.

A fourth problem lies in the fact that a number of elements of the non-visual DCharts formalism
were never actually implemented in the visual formalism. This includes the �nal state, sub-model
importation, transition priorities, a Statemate statechart compatibility mode switch, and the ability
to set code for macros, an initializer, interacter, and a �nalizer.

A �nal, if trivial motivation for a new formalism lies with multiple arrows starting and ending
on the same state. This is particularly evident in the generic UI behaviour model, where a large
number of arrows were super-imposed one on top of the other to save space. Not only is this very
time-consuming for the modeler, it takes a signi�cant amount of time to compute and draw splines,
thus increasing load times (spline computation and drawing might be less of an issue in an e�cient
implementation; alas AToM3, which uses Tkinter for graphics, is not so e�cient). A better approach
is to simply draw just one spline with the capability of representing any number of arrows.

Thus, the primary goals of the new DCharts formalism are to display as much information as
possible, handle time-consuming layout for the user, and prevent (or warn) the user from creating
illegal syntactic constructs. The best way of accomplishing all this is with modeling.

1A domain-speci�c model is a model in a formalism that closely resembles the original problem. Modeling tra�c
in a �Tra�c� formalism is a pertinent example, whereas modeling tra�c in a general DEVS formalism is not.
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Figure 3.4: Example model in the FSA formalism (layered layout used)

3.3.1 DCharts formalism overview

The DCharts formalism is a combination of DEVS (Discrete EVent Systems speci�cation) and UML
statecharts. The author of the formalism is Thomas Feng and the best source of information is his
Master's thesis [Fen04]. DCharts share the same abstract syntax as UML statecharts, thus if the
concrete syntax is chosen to match, the two formalisms are visually identical. It is in fact trivial to
map an entire UML statechart onto a corresponding DCharts model, although the reverse may not
be possible. In any case, the following description will be limited to UML statecharts since this is
necessary and su�cient to understand the new visual DCharts formalism.

De�ning UML statecharts requires �rst describing the �nite state automata (FSA) formalism it
extends. A �nite state automaton is very simple, as �gure 3.4 shows. It consists of states and
transitions between states. One state is the initial state and this is the �rst �active� state. Each
transition has a trigger, which is a symbol. If a symbol is provided to the FSA and the active state
has a transition that has that symbol as a trigger, the target state of the transition then becomes
the active state. If no such transition exists, then the FSA halts, since it does not recognize the
language, the set of input symbols, that were fed to it. The FSA also includes at least one ��nal�
state. If a transition sets the active state to be one of the �nal states and the input is at an end,
then the FSA has accepted the input sequence of symbols.

Although the FSA formalism is powerful enough to de�ne regular expressions, it is woefully inad-
equate to express conditional transitions, actions, hierarchy, and concurrency. Fortunately, David
Harel extended FSA to deal with these in [Har87]. Conditional transitions are simply transitions
that will �re on an event only if both the trigger is matched and the conditional statement evaluates
to true. Actions are events or code that is executed whenever a transition �res, a state is entered,
or a state is exited. Hierarchy is achieved by adding composite states that can contain other states,
including more composite states. The inside of a composite state is a FSA in its own right, with its
own default state (the equivalent of an initial FSA state). Since transitions can exit and return to
a given hierarchical level, it becomes necessary to add history states as well. These history states
restore the active state within the composite state when a transition returns to the composite state.
Hence history allows overriding the default state. Finally, concurrency is added using orthogonal
partitions of a composite state. Each orthogonal partition is a simultaneously executing FSA, each
with an active state.

3.3.2 DCharts meta-model

The new DCharts formalism, shown in �gure 3.5, was modeled in a class diagram formalism within
AToM3. This formalism is similar to UML class diagrams, in that it has classes with attributes,
associations with multiplicities, and inheritance. The main di�erence lies in the fact that the
AToM3 version allows you to immediately generate a formalism-speci�c editor, with a generic visual
modeling environment, from the class diagram.

The perfectly rectangular boxes in the class diagram become the nodes/vertices in the generated
formalism. Each of them gets a name attribute that appears on or near the visual icon in the
generated formalism. The nodes and the meaning of their attributes are as follows:
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Figure 3.5: DCharts Meta-model in the Class Diagram formalism (layered and manual layout)
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• DC_DChart is a representation of the entire model. All other entities will be contained by this
entity, since it is responsible for providing basic UI handling. It has a boolean that can enable
or disable all layout. Disabling layout might be useful for micro-managing the layout by hand
for perfect presentation material. The following three attributes are complex. They allow
the user to set the layout statechart for DC_DChart, DC_Composite, and DC_Orthogonal
respectively. The setting part is implemented as a button that pops up a new instance of
AToM3 that allows creating or editing the layout statechart. When done, the user presses the
�OK� button and the statechart is compiled into executable code. When the user �nally exits
the entire edit dialog, used to modify the layout attribute, the newly compiled statechart code
actually replaces the layout statecharts of all the associated entities already on the canvas
and of entities created thereafter. In other words, it is possible for a user to modify layout
behaviour at run-time by editing a model. Of course within that model, the user could write
a multi-thousand line layout algorithm within an action code �eld. More typically, the user
would switch between available algorithms, the sub-algorithms used by a given algorithm,
and the parameters fed to these algorithms. The next attribute is the globalAttributes, which
allows global DCharts model attributes to be set. These attributes within an attribute are:
macros, Statemate algorithm compatibility, initializer, �nalizer, and interactor. The remaining
attributes of the DC_DChart are simple controls on the visual appearance of the entities in
the DCharts formalism. The �rst three control �tting icons to a block of text while the
remaining ones control colors, line thicknesses, and stippling.

• DC_Basic corresponds to a simple state that does not hierarchically contain others. It has
the usual statechart attributes: a boolean default or �nal state indicator, and action code
�elds triggered by entering and leaving the state. It also has a boolean useSimpleIcon switch
to allow the user to zoom the amount of information displayed. In other words, the user can
switch from showing the name and action code �elds inside a box that �ts these or to simply
showing a small round icon and just the name. Finally, the hidden attribute is simply a text
�eld automatically constructed from the name and action code and is what is displayed in the
non-simple icon.

• DC_Composite is nearly identical to DC_Basic. A major structural di�erence is that it can
contain other states. DC_Composite has two additional attributes that DC_Basic does not
have: a boolean hideContents and a string import_DES_model. Both these attributes achieve
the same e�ect of zooming, but in di�erent ways. Enabling hideContents simply forces all the
entities contained by the composite state to be invisible. The icon of the composite state is
altered to show this. Also, transitions to and from the hidden entities simply appear from the
center of the composite state. On the other hand, giving import_DES_model a valid �lename
means that entering this state results in a new statechart taking control. This allows for true
hierarchical decomposition. Finally, the useSimpleIcon attribute only toggles the display of
action code in a DC_Composite, rather than also changing the icon to a di�erent shape.

• DC_History is the history state, a device to remember the active state in a hierarchical
context. It has a star attribute to indicate whether that history is shallow or deep. A deep
history �remembers� the active state of all hierarchical composite states inside the composite
state with the deep history state. The other attributes are simply there for the sake of code
re-use (i.e. code used for DC_Basic and DC_Composite to swap icons).

• DC_Orthogonal is an orthogonal block that allows for concurrently active states. It's really
just a partitioning of a DC_Composite so doesn't need any attributes.

• DC_StickyNote is simply a device to annotate the model with even more information. It
consists of a text �eld and has the visual appearance of a UML note. A visual arrow can be
drawn from it to any other entity.
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• DC_Port is used to represent a DCharts networking port. It has two boolean attributes,
in_port and out_port. An in_port can receive events from the network, whereas the out_port
sends them to the network. These events have the syntax �<port-name>.<event-string>�.

• DC_Server is used to represent a DCharts server. It has the attributes id and name_string
that are used to �nd the server. Usually you can just set both of these to the name of the
DES �le generated from a DCharts model. Refer to Thomas Feng's Master's thesis for details
on these [Fen04].

The entities whose icons have a hexagonal shape at the top are generated as relationships/edges.
They come in two types, which are set via edit dialogs. The �rst type is the invisible hierarchi-
cal relationship. The following entities are of this type: DC_ChartContains, DC_Contains, and
DC_Orthogonality. AToM3 was extended to internally keep track of such hierarchical relation-
ships, so �nding parents and children is easy. The second type of relationship is the visible arrows,
which possess attributes just like the nodes did. The visual relationships and the meaning of their
attributes are as follows:

• DC_Hyperedge, is really a simple directed transition between states. Only in the meta-
model is it a hyper-edge. It consists of common statechart attributes such as a trigger, guard
(condition), and action code. It also has DCharts speci�c attributes: priority, broadcast code
and broadcast_to �eld. In an e�ort to save modeler time, the multiple_transitions attribute
allows the user to make one DC_Hyperedge instance behave like any number of them. In
other words, it replicates the trigger, guard, action code, broadcast, and broadcast_to �elds
as many times as the user needs. The con�gureIcon attribute has a visual representation as
the text label associated with the transition. In the edit dialog, it also allows the user to
choose exactly which �elds should be part of the text label. For example the user can choose
to display just the trigger, or any combination of all the �elds previously described. Moreover,
if multiple_transitions is used, each transition's information is concatenated in the label.

• DC_ServerPort represents a connection between a server and a port. It has the sole attribute
connection, that is used to specify the port of the server to which the client is connected.

3.4 Formalism-speci�c UI modeling

Although the class diagram in �gure 3.5 is su�cient to generate a working formalism, more modeling
is needed to achieve our goals outlined at the start of section 3.3. This requires altering the buttons
model of the generated formalism, observing events with the use of pre and post statecharts, acting
on events with DCharts formalism and entity-speci�c statecharts, and handling layout for each
hierarchical DCharts entity (again with a statechart).

In the following subsections, the labels on the states and transitions of the UI behaviour statecharts
use a custom notation to make them more expressive. A star, x*, indicates that action code is
present. A plus, x+, indicates that a di�erent statechart handles the action. Parenthesis, <x>,
indicate that the trigger event is generated by another statechart, such as the pre/post UI observers
or another UI behaviour statechart. Regular brackets, (x), indicate the event was generated by the
initialization routine for the entity when it is �rst instantiated. Square brackets2 [x] indicate that
the event was generated by the statechart itself, usually within the action code of a state.

2An established notation for statecharts de�nes square brackets to indication a condition, however this con�ict
cannot be resolved in time for the initial submission of this thesis.
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DChartActions
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<History Button>
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<Orthogonal Button>

<Create>*

<Create>*

Figure 3.6: Button behaviour statechart

3.4.1 Buttons model

The buttons model is a trivial model, in the aptly named Buttons formalism. The buttons in this
model correspond directly with the buttons that appear in the AToM3 application's formalism tool-
bar. Buttons models are automatically generated from a meta-model, such as a class diagram, to
create all the entities speci�ed in the meta-model. For the new DCharts formalism, two routine
additions to the automatically generated buttons model are required. These consist of adding two
buttons that trigger statechart simulation and code generation.

A more exotic change to the buttons model is also needed. The DC_DChart entity creation button
is modi�ed to instantiate 5 di�erent statecharts. A statechart for controlling buttons behaviour, a
pre and a post statechart, a DC_DChart speci�c behaviour statechart, and �nally a DC_DChart
speci�c layout statechart. These will be discussed further in the following subsections. The number
of di�erent statecharts may seem excessive, but DC_DChart is not an ordinary entity. Its purpose
is to provide a formalism-speci�c override to the generic UI behaviour.

The other entity creating buttons, such as for creating a DC_Basic state, are also modi�ed. Instead
of the buttons creating the entity in question on the canvas, they directly send an event to the
DC_DChart's button statechart. Thus, the DC_DChart is made fully responsible for the creation
of all other entities. Due to this approach, it is impossible to create a new entity outside of the
visual container the DC_DChart forms.

3.4.2 Button Behaviour model

The button behaviour model is quite simple and is shown in �gure 3.6. When the button to create
entity X is pushed, the events "<Reset>" and �<X Button>� are sent to this statechart. If not
already there, the statechart moves to an Idle state upon receipt of the �rst event. The second
event then moves it to a state whereby entity X can get instantiated. It then waits for an event
requesting the creation of that entity. The �<Create>� event is generated by the DC_DChart
speci�c behaviour statechart when it intercepts and handles the �Model Action� event. See section
3.4.4 for more details.
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Active Event LoopInitial

Main

DeleteRequest*

EntityDeleteRequest*

Clear Canvas*

Start*

Figure 3.7: Pre UI observer statechart

Active Event LoopInitial

Main

New Selection

Add To Selection*

Drag Nodes

Finish Selection*

Additive Selection

Clear Canvas*

EntityDeleteRequest*

DeleteRequest*

Finish Drag*

Paste

Fresh Selection

Finish Selection*

Additive Selection

Drag Overlap

Start Drag

Edit2*
Edit*

Fresh Selection

Start*

Figure 3.8: Post UI observer statechart

3.4.3 Pre/post observer statechart models

Recall that a pre UI statechart observes events before the generic UI behaviour statechart acts on
them. The pre UI statechart is shown in �gure 3.7. Likewise, the post UI statechart observes events
just after the generic UI behaviour statechart acts on them and is shown in �gures 3.8 and 3.9.
For the new DCharts formalism, these observers prove useful mainly for the following four events:
deletion, selection, the drop after dragging selected entities, and edit.

The deletion event is useful for two reasons. The �rst of these is rather trivial. It removes the
pre/post statecharts from the main event loop if the DC_DChart instance has been deleted. The
second is a layout consideration. If a state is deleted, then its parent, a composite state or the
DC_DChart, may require less area. Thus it makes sense to send the behaviour statechart of the
parent a layout request event. The parent's behaviour chart will in turn send a layout request event
to the parent's layout statechart, where the layout will �nally be handled. At the very least, this
layout will result in the parent container shrinking itself to occupy less space. Ultimately, the parent
may also completely redraw itself and its contents in a new con�guration that takes advantage of
the state's removal. Layout statecharts are discussed in greater detail in section 3.4.5.

The selection event makes it possible to detect what entities are selected. If an entity with hierar-



3.4 Formalism-speci�c UI modeling 79

In
iti

al

M
ai

n

A
dd

 T
o 

S
el

ec
tio

n

<
 la

st
S

el
ec

te
dO

bj
ec

tT
up

le
 =

 c
b.

bu
ild

S
el

ec
tio

nO
bj

ec
tS

et
()

N
ew

 S
el

ec
tio

n

D
ra

g 
N

od
es

 P
os

t U
I o

bs
er

ve
r

T
: S

ta
rt

A
: f

ro
m

 C
al

lb
ac

kH
an

dl
er

s 
im

po
rt

 *

   
at

om
3i

, p
re

C
ha

rt
, p

os
tC

ha
rt

 =
 e

ve
nt

ha
nd

le
r.

ge
t_

ev
en

t_
pa

ra
m

s(
)

   
cb

 =
 a

to
m

3i
.c

b

   
la

st
S

el
ec

te
dO

bj
ec

tT
up

le
 =

 (
)

   
fr

om
 D

C
ha

rt
V

3C
od

e.
pr

eP
os

tC
ha

rt
A

ct
io

ns
 im

po
rt

 p
os

tC
ha

rt
F

in
is

hS
el

ec
tio

n,
 p

os
tC

h

ar
tF

in
is

hD
ra

g,
 p

os
tC

ha
rt

D
el

et
io

n,
 p

os
tC

ha
rt

W
ar

ni
ng

, p
os

tC
ha

rt
E

di
t

N
: E

nt
ity

D
el

et
eR

eq
ue

st

T
: <

S
hi

ft-
K

ey
P

re
ss

-D
el

et
e>

A
: p

os
tC

ha
rt

D
el

et
io

n(
at

om
3i

, p
re

C
ha

rt
, p

os
tC

ha
rt

)

--
-

N
: D

el
et

eR
eq

ue
st

T
: <

K
ey

P
re

ss
-D

el
et

e>

A
: p

os
tC

ha
rt

D
el

et
io

n(
at

om
3i

, p
re

C
ha

rt
, p

os
tC

ha
rt

)

--
-

N
: C

le
ar

 C
an

va
s

T
: <

C
on

tr
ol

-K
ey

P
re

ss
-D

el
et

e>

A
: p

os
tC

ha
rt

D
el

et
io

n(
at

om
3i

, p
re

C
ha

rt
, p

os
tC

ha
rt

, c
an

va
sC

le
ar

ed
=

T
ru

e)

--
-

N
: E

di
t

T
: <

K
ey

P
re

ss
-e

>

A
: p

os
tC

ha
rt

E
di

t(
at

om
3i

)

--
-

N
: E

di
t

T
: E

di
t P

ro
pe

rt
ie

s

A
: p

os
tC

ha
rt

E
di

t(
at

om
3i

)

N
: A

dd
iti

ve
 S

el
ec

tio
n

T
: <

S
hi

ft-
B

ut
to

nP
re

ss
-1

>

G
: c

b.
is

Ite
m

U
nd

er
C

ur
so

rU
ns

el
ec

te
d(

 a
to

m
3i

, e
ve

nt
ha

nd
le

r.
ge

t_
ev

en
t_

pa
ra

m
s(

))

--
-

T
: <

S
hi

ft-
B

ut
to

nP
re

ss
-1

>

G
: c

b.
is

N
oI

te
m

U
nd

er
C

ur
so

r(
 a

to
m

3i
, e

ve
nt

ha
nd

le
r.

ge
t_

ev
en

t_
pa

ra
m

s(
))

T
: <

A
ny

-B
ut

to
nR

el
ea

se
-1

>

A
: p

os
tC

ha
rt

F
in

is
hS

el
ec

tio
n(

at
om

3i
, l

as
tS

el
ec

te
dO

bj
ec

tT
up

le
)

N
: F

re
sh

 S
el

ec
tio

n

T
: <

B
ut

to
nP

re
ss

-1
>

G
: c

b.
is

N
oI

te
m

U
nd

er
C

ur
so

r(
 a

to
m

3i
, e

ve
nt

ha
nd

le
r.

ge
t_

ev
en

t_
pa

ra
m

s(
))

--
-

T
: <

B
ut

to
nP

re
ss

-1
>

G
: c

b.
is

Ite
m

U
nd

er
C

ur
so

rU
ns

el
ec

te
d(

 a
to

m
3i

, e
ve

nt
ha

nd
le

r.
ge

t_
ev

en
t_

pa
ra

m
s(

))

T
: <

A
ny

-B
ut

to
nR

el
ea

se
-1

>

A
: p

os
tC

ha
rt

F
in

is
hS

el
ec

tio
n(

at
om

3i
, (

))
N

: P
as

te

T
: <

C
on

tr
ol

-K
ey

P
re

ss
-v

>

G
: 

--
-

N
: S

ta
rt

 D
ra

g

T
: <

B
ut

to
nP

re
ss

-1
>

G
: c

b.
is

Ite
m

U
nd

er
C

ur
so

rS
el

ec
te

d(
 a

to
m

3i
, e

ve
nt

ha
nd

le
r.

ge
t_

ev
en

t_
pa

ra
m

s(
))

 a
nd

 n
ot

 c
b.

is
La

be
lD

ra
gM

od
e(

)

--
-

N
: D

ra
g 

O
ve

rla
p

T
: <

K
ey

P
re

ss
-d

>

G
: c

b.
ge

tO
ve

rla
pp

ed
Ite

m
U

nd
er

C
ur

so
r(

 a
to

m
3i

, e
ve

nt
ha

nd
le

r.
ge

t_
ev

en
t_

pa
ra

m
s(

) 
)

T
: <

A
ny

-B
ut

to
nR

el
ea

se
-1

>

A
: p

os
tC

ha
rt

F
in

is
hD

ra
g(

at
om

3i
)

Figure 3.9: Post UI observer statechart bootstrapped in the new DCharts formalism
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Figure 3.10: DC_DChart behaviour statechart

chical children, via containment relationships, is selected, then the children should also be selected.
This makes it impossible for a user to delete or drag a container entity without doing the same to
the contained children entities.

The drop event at the end of a drag and drop operation allows for dragging multiple entities outside
the DC_DChart scoped UI environment. This is very useful for temporary editing by a modeler.
For example, one could drag a composite state out of the DC_DChart, which triggers a containment
disconnect (as the next section will show), and then drag the composite state back into another
composite state inside the DC_DChart, triggering a new containment relation inside a composite
state.

Finally, the edit event simply triggers an edit dialog. It could have been handled with entity-speci�c
behaviour statecharts. However, if edit were only handled by the DC_DChart behaviour statechart,
then an entity outside the containment of DC_DChart could not be edited.

3.4.4 Formalism entity-speci�c behaviour models

All visual entities of the DCharts formalism require their own behaviour models. The most impor-
tant of these are those associated with the arti�cial entity that contains all others of the DCharts
formalism and that of the composite state. Referring to the class diagram in �gure 3.5, these cor-
respond to DC_DChart and DC_Composite respectively. At the other extreme, the behaviour
statechart for the transition edge, DC_Hyperedge, is trivial. All the remaining entities, excluding
the non-visual containment relationships, use behaviour statecharts that are subsets of that of the
composite state.

DC_DChart behaviour statechart

The behaviour of the DC_DChart entity begins with initialization when the entity is �rst created.
This initialization includes a �(create)*� trigger that sets the active state to �Idle�. From then on,
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the following �ve events trigger interesting behaviour:

1. The �<DChartSelect>*� event is generated by the post UI observer statechart. The event
indicates that DC_DChart has been selected by the user. It is then necessary to ensure that
all the hierarchical children of DC_DChart are also selected so that delete and drag operations
work as expected.

2. The �<Edit>*� event is also generated by the post UI observer statechart. It indicates that
the user has opened an edit dialog on the DC_DChart attributes. The action code for the
transition with this event trigger applies the changes made to the DC_DChart attributes,
which range from the color of a default state to which layout statechart to use for a given
class of entities.

3. The �<Control-Button-Press-3>� event is directly captured from the main event loop and
explicitly handled, thus halting its propagation. This event indicates that a new DCharts
formalism entity should be added to the canvas. Note that the same event is generated if one
uses the AToM3 menu system or a keyboard/mouse shortcut. The actual creation of an entity
is of course handled by the button behaviour statechart previously seen in subsection 3.4.2.

4. The �<Control-Button-Press-1>*� event, is also directly captured from the main event loop.
Moreover, this event triggers a lock, forcing all events in main event loop to only this statechart.
The lock is only released when either an arrow is �nally created or the process is aborted,
via the �<Arrow Created>*� and �Reset*� events respectively. It is necessary to re�ne the
behaviour found in the generic UI behaviour statechart for two reasons. The �rst is merely
for the convenience of the user. Instead of allowing the user to draw arrows to indicate
containment relationships, only transitions may be drawn. This saves time, and a perfectly
good drag-and-drop method exists for creating and destroying containment relationships as
shall be shown later in this subsection. The second reason is simply to know when transitions
are actually created so that their UI behaviour statecharts may be initialized.

5. The �<layoutRequest>� event is generated exclusively by the UI behaviour statecharts of the
children entities of DC_DChart. This event occurs when a new entity is created since the
new entity will be contained by the DC_DChart and thus upsets the old layout. The event
can also occur when DC_DChart is idle, such as when an entity is manually dragged by the
user. The layout request is forwarded to the layout statechart of the DC_DChart, described
in subsection 3.4.5.

DC_Composite behaviour statechart

The behaviour of the DC_Composite, the composite state, is the most complex of all. Fortunately,
it is also re-usable by many other entities as shall be shown further on in this subsection. The
initialization phase is rather involved, with two main possibilities. The �rst is that an interactive
session with the user is in e�ect, in which case the �(create)� trigger signals the creation of a
new DC_DChart. Immediately, the user is presented with a dialog asking them to which of the
entities in the region of the newly created DC_Composite, they would like to contain the new
composite state. If the composite state is successfully connected to either a DC_DChart or another
DC_Composite, then the �[didConnect]� trigger is generated, followed by a �<layoutRequest>�
event to the container, and �nally a �[Done]� event to set the state to �HasParent�. If the composite
state is not successfully connected, then a �[didNotConnect]� event is generated and the active state
is set to �NoParent�.

Finally, the second of the two possibilities is that the model was being loaded rather than inter-
actively edited. In this case, a �(loadModelCreate)� event is �rst sent when the DC_Composite
is �rst instantiated, setting the active state to �NoParent�. Then a second �(loadModelCreate)�
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Figure 3.11: DC_Composite behaviour statechart

event is sent if a containing relationship is instantiated with this DC_Composite as its parent, thus
setting the active state to �HasParent�. The following is a list of all the events that occur after
the initialization phase. Unless stated otherwise, the events are generated by the post UI observer
statechart.

1. The "<DChartSelect>*" event is dealt with in the same manner as the DC_DChart UI
behaviour statechart. All hierarchical children are selected.

2. The �<Edit>� event indicates that the user has opened an edit dialog on the DC_Composite
attributes. In particular, the user may have changed the amount of information visually
displayed by the DC_Composite. At the furthest extreme, the user may have requested that
all children entities contained by the composite state be rendered invisible, thus reducing the
size of the composite state drastically. Thus the transition with this trigger event will execute
action code to apply the changes and often generate a �<layoutRequest>� event as well.

3. The "<DChart Drop>" event indicates that this composite state, among potentially many
other entities, has just been dragged and then dropped. The transition with this trigger
promptly generates two events: �[Done]�, which restores the active state to either �NoPar-
ent� or �HasParent�, followed by �[drop]�, which causes hierarchical connection or hierarchical
disconnection, respectively, to be attempted. A disconnection occurs only if the entity has
been dropped outside of its parent container and the user has explicitly agreed to disconnect
it. This triggers a �<layoutRequest>� followed by an attempt to hierarchically connect the
disconnected composite state in its new location.

4. The �<DChartDelete>� event indicates that this composite state is to be deleted. Before
being erased, it warns its hierarchical container parent with a �<layoutRequest>�. In this
fashion the parent can �nd a new layout that takes advantage of the extra space a�orded by
the deleted entity.

5. The "<layoutRequest>" event is generated exclusively by the UI behaviour statecharts of the
children entities of DC_Composite, just as it was in DC_DChart. This even occurs whenever
the children of this entity are modi�ed by the user, such as by add/removing them from the
DC_Composite or by simply moving them. The layout request is forwarded to the layout
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Default* Idle
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Figure 3.12: DC_Hyperedge behaviour statechart

statechart of the DC_Composite, described in subsection 3.4.5.

DC_Hyperedge behaviour statechart

The behaviour of the DC_Hyperedge or transition, is trivially simple, as �gure 3.12 shows. As noted
earlier, the transition is a hyper-edge only in the meta-model, in the generated DCharts formalism
itself it is a simple directed edge with one source and one target. The transition is �rst initialized
with a �(create)� event. Afterwards, it simply awaits �<Edit>*� events from the post UI behaviour
chart in order to apply changes made in its edit dialog. These changes a�ect the information content
of the label associated with the transition.

Other behaviour statecharts

The UI behaviour statecharts of the remaining DCharts formalism entities are subsets of the one
previously shown for DC_Composite. For the DC_Orthogonal entity which denotes an orthogo-
nal partition of a composite state, and is also a hierarchical container entity, the only structural
di�erence is the removal of the �<Edit>� event. Orthogonal partitions have no attributes that
require application after being edited by the user in an edit dialog. The only other di�erence is that
DC_Orthogonal forwards layout requests to its own layout statechart as will be shown in the next
section.

The remaining entities are not hierarchical container entities, but rather primitive children. They
include DC_Basic, DC_History, DC_Port, DC_Server, and DC_Stickynote. The main structural
di�erence between their UI behaviour statecharts and that of the one for DC_Composite is that
they do not accept the �<layoutRequest>� event. Naturally, no entity exists that would generate
and send it to them. Also, some of them do not have attributes whose modi�cation by the user must
be applied, so they do not accept the �<Edit>� event either. In those that do accept the �<Edit>�
event, they apply di�erent attributes than would the DC_Composite UI behaviour statechart. In
all other aspects, the UI behaviour statecharts are identical to that of the DC_Composite.

3.4.5 Layout Behaviour

The �nal link to the built-in automatic layout methods described in chapter 2 are the layout behav-
iour statecharts. Each hierarchical container type can potentially have a di�erent layout behaviour
statechart. Recall that the hierarchical containers in DCharts are: DC_DChart, DC_Composite,
and DC_Orthogonal. Moreover, the layout statechart models associated with each of these can be
modi�ed at run-time by the user, compiled, and substituted for all the existing layout statecharts
without restarting the AToM3 tool. This enables rapid prototyping of new layout behaviours by
both the formalism developer and the �nal user.

Figure 3.13 shows a typical layout statechart. In this case the built-in layout algorithm it draws
upon is Force-transfer, described in detail in section 2.6. Structurally, it is very simple. It is
initialized with a �(create)*� event and is thereafter ready to do layout. The "<applyLayout>"
event, which triggers the layout sequence, is generated by the behaviour statechart associated with
the entity requiring layout. This occurs when the entity's behaviour statechart enters the state
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Figure 3.13: Force-Transfer Layout Statechart

�serviceLayoutRequest+�. Thereafter, the following sequence of actions occur:

1. Apply the built-in general purpose layout algorithm. Inside the action code, a choice is made
of which types of entities and links that should be sent to the layout algorithm. This choice is
generally limited to only the direct children entities of the hierarchical container parent and
the visual arrows between them. Moreover all the parameters passed to the layout algorithm
are chosen. After the layout is applied, a �[Done]� event is generated.

2. Apply a trivial shrink-wrapping algorithm. This simply �ts the hierarchical parent to be
visually just large enough to contain all its children entities. As is explained in the third
action, either a �[Done]� or a �[requestParentLayout]� event are generated when done.

3. Send a layout request to the behaviour statechart of the parent of this hierarchical container.
This action is only taken conditionally, which is depicted in the layout statechart using two
alternate transitions. Clearly one condition is that the hierarchical container possesses a
hierarchical parent itself. The other condition, is that the hierarchical container has either
moved or changed size. Obviously, if neither position nor size have changed, the layout of the
higher-levels of the hierarchy are completely una�ected. Finally, a �[Done]� event is generated
and the layout statechart returns to the �Idle�, ready state.

The propagation of layout requests described in action 3, �ow upwards only, in the current imple-
mentation. In other words, they propagate from the lowest to the highest level of the hierarchy.
This is because the lowest level of the hierarchy will determine a layout that uses a certain area.
Requesting this lower level hierarchical container to use more space is of no value, since area is at a
premium. Requesting it to use less space is equally unfeasible, since it will simply result in overlap.
By obscuring information, overlap defeats the purpose of automatic layout.

However, suppose instead that a layout statechart provided support for multiple layout algorithms
with di�erent amounts of area e�ciency. In this situation, it would indeed make sense for the
higher level hierarchical containers to require the lower level hierarchical containers to use more or
less area by choosing di�erent layout algorithms. The di�culty, of course, would be that the lower
level hierarchical container is not guaranteed to be able to meet certain area requirements, barring
overlap, no matter what layout it chooses. Therefore, some compromise would be the best this
system could achieve.

A �nal consideration is that the modeled behaviour of the DCharts formalism is designed for inter-
active sessions with the user. An example of such a session is shown in �gure 3.14. In the �gure, the
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entire reactive behaviour of a standard four button wristwatch is modeled. However, a statechart
model might be generated automatically using graph transformations. This can be dealt with by
simply adding a button to the formalism that does a reversed, breadth �rst search of the model,
and directly sends layout request events to each hierarchical container.
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Figure 3.14: Wristwatch behaviour model in the new DCharts formalism



Conclusion

The goal of this thesis was to �nd a better solution for the speci�cation of the reactive behaviour
of multi-formalism visual modeling environments. Such a solution was needed due to the growing
complexity of visual models and the need to decompose complex systems into models of multiple
formalisms. Moreover, it is necessary that new formalisms be easy to create and integrate into
the visual modeling environment, since complex systems are best modeled in formalisms that are
as close as possible to the problem domain. Thus the modeled framework presented in chapter 3
for dealing with reactive behaviour, including layout behaviour, of visual modeling environments in
a fashion that naturally supports multiple formalisms simultaneously is a signi�cant improvement
over the hard-coded approaches found in known existing visual modeling tools.

In visual modeling, the arrangement of the vertices and edges of a model are highly signi�cant.
Since manual layout is so time consuming, automatic layout is an important component of the
visual modeling environment, the behaviour of which is included in the modeled framework pre-
sented. To realize the automatic layout, a number of graph drawing techniques were implemented
and were described in detail in chapter 2. These techniques included a fairly sophisticated layered
layout engine as well as a multiple physical simulation based spring-embedder layout engine. More-
over, e�orts were made to tap into existing graph drawing tools (such as yED) via export/import
mechanisms, though this proved generally unsatisfactory. Finally, a linear constraint based lay-
out was implemented, making use of the QOCA linear constraint solving toolkit. All the di�erent
graph drawing techniques realized prove necessary to handle the speci�c needs of the many di�erent
formalisms encountered in a multi-formalism visual modeling tool such as AToM3.

Many graph drawing techniques exist in the literature. Prior to the implementations described in
chapter 2, a thorough review of the existing techniques was compiled. This review, described in the
�rst chapter, included the visual aesthetics optimized by each technique as well as the computational
complexity of the algorithms whenever possible.

Future work

In many ways, this thesis is just a starting point. Although the framework for the reactive behaviour
of the visual modeling environment is robust, the code synthesized from the behaviour models is not
nearly as e�cient as possible (i.e., some commercial tools can synthesize highly optimized code).
Moreover, further work is required to fully explore the layout behaviour of the visual models and
solve some important layout algorithm challenges. Finally, to make the worth of this approach even
clearer, an existing (commercial) visual modeling environment should be recreated and improved
upon.

Layout behaviour

The layout behaviour component of the framework for reactive behaviour of the visual modeling
environment requires further work. In particular, in the current implementation, layout requests
propagate strictly upward from lower hierarchical levels to higher hierarchical levels. There are a
number of situations in which this is insu�cient. Consider a situation whereby a higher hierarchical
level must be constrained to use a certain amount of area. It is thus necessary that this higher level
be able to negotiate with lower levels to use less area. This can be accomplished in several ways.
The lower level hierarchical components may employ di�erent layout algorithms, di�erent layout
algorithm parameters, or use zooming to scale down the amount of information shown.
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Layout challenges

There remain some important challenges in developing layout algorithms for visual modeling. At
a high level, there remains the question of whether the layout should be fully automatic (i.e., the
user creates/modi�es a model but does not participate in the visual arrangement of the components
of the model at all) or manual with automatic support. The former approach promises ultimate
e�ciency for the modeler. The caveat is that the graph drawing technique used must work at
interactive speeds and provide su�cient quality, as measured by a broad range of visual aesthetics
among which mental map is particularly important in this context. In the current implementation,
models are drawn manually (with the exception of automatic vertex overlap removal via the force
transfer algorithm) and additional layout is provided only at the modeler's explicit request.

The decomposition of a model into hierarchical components, despite its great usefulness, presents
additional di�culties for graph drawing algorithms. Recall that most graph drawing algorithms
are non-polynomial in complexity, thus a hierarchical decomposition provides huge speed increases,
because many small problems are much easier to solve than a single large problem in this context.
The di�culties occur when elements of a hierarchical component have edges with an end that lies
outside this component (an external edge). This means that the layout of the entire graph is not
optimized by the localized layout of the hierarchical components since, in the current implementa-
tion, such external edges are ignored. Thus it is necessary to extend layout algorithms to handle
these external edges. For the layered drawing technique, this may be done by either implementing
a hierarchical aware variant or by simply adding row and layer constraints to the vertices (e.g., a
vertex with an external edge to a vertex above the hierarchical component should be constrained to
the top layer). For a spring-embedder drawing technique, one could imagine treating the external
vertices as anchor points and proceeding as usual, although it may prove necessary to project the
external vertices to the borders of the hierarchical component so as not to arti�cially in�ate the size
of this component. Finally, it was previously assumed that layout at high hierarchical levels did
not a�ect lower levels. This is clearly no longer the case with external edges, thus layout behaviour
becomes increasingly complex, and requires negotiation between levels as previously discussed.

At a low level, the e�ciency of all the layout algorithms could be considerably improved. In
particular, the layered, spring-embedder, and force-transfer drawing techniques would bene�t most.
The simplest improvement is just to re-implement them in a non-interpreted language. The spring-
embedder and force-transfer can also be improved using partitioning techniques to eliminate the
need for pair-wise calculations between every vertex.

Recreate an existing tool

Rebuilding an existing modeling environment such as Simulink (www.mathworks.com/products/
simulink/) would aid in proving the worth of the framework described in this thesis. In particular,
it would show that a completely modeled approach is possible, e�cient, and easily maintained. The
easy maintenance stems from two aspects of modeling reactive behaviour with statecharts. The �rst
is that small changes to the behaviour can be realized with similarly small changes to the statechart
model, irrespective of any large changes that may occur in the generated code. The second is that
unlike code, statecharts are easily understood, thus serving as documentation in and of themselves.
Once an existing modeling environment has been rebuilt, then completely new formalism-speci�c
environments should be modeled and synthesized (and formalisms allowed to co-exist).

As a �nal note, the �gures used in this thesis are the result of manual layout unless otherwise stated.
Manual layout was generally used whenever automatic layout was not available at the time of model
creation and when maximum compactness of the model was desired. All implementations used in
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this thesis and additional pictures are available at msdl.cs.mcgill.ca/people/denis/.



4
Glossary

Vertex An element of the set V, the set of vertices of which a graph G is composed. Also called
node or point.

Edge An element of the set E, the set of edges connecting the vertices in a graph G. Edges can
be drawn as a single line or as a poly-line sequence. If a line is curved then it is drawn as a
spline. Orthogonal edges are a sequence of connected horizontal and vertical line segments.

Graph A pair G = (V, E) of disjoint sets. The set E is an mapping of edges to a pair of vertices.
The vertex pairs of an edge are unordered. If an edge maps both ends to the same vertex,
it is a loop. Multiple edges can possess the same endpoint vertex or vertices. Also called a
multi-graph.

Digraph Digraphs are the directed version of graphs. In digraphs, the order of the endpoint vertices
in the description of an edge is important. Thus the edges e1=(v1, v2) and e2=(v2, v1) are
di�erent for digraphs but identical for graphs.

Subgraph A graph G' is a subgraph of G if V' ⊆V and E' ⊆E. In other words, the graph G
contains everything in G'.

Bipartite-graph A graph such that the vertices can be divided into exactly two groups and that
no edge has both endpoint vertices in the same group.

Forest A graph containing no cycles.

Tree A graph containing no cycles and such that all components are connected.

Incident A vertex is incident to an edge if it is an endpoint of the edge.

Adjacent A vertex is adjacent (neighbor) of another vertex if an edge connects them.

Degree The number of edges connected to a vertex.

Indegree The number of incoming edges to a vertex.

Outdegree The number of outgoing edges from a vertex.

Source A vertex of a digraph with no incoming edges.

Sink A vertex of a digraph with no outgoing edges.

Acyclic-graph A graph with no cycles.

st-digraph An acyclic digraph with exactly one source and one sink (also called bipolar digraph).
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Path A sequence of vertices such that from each of its vertices there is an edge to the successor
vertex.

Connected-graph A graph G = (V, E) where for all vertices v1and v2, there exists a path from
v1to v2(also called 1-connected).

Biconnected-graph A graph where any two vertices are joined by two vertex-disjoint paths (also
called 2-connected). Equivalently, a graph that has no cut-vertex. The removal of a cut-vertex
divides a connected subgraph into two or more smaller connected subgraphs.

Sparse-graph A graph G = (V, E) with |E| = O(|V|).

Small-graph A natural de�nition for this is a sparse graph G = (V, E), where |V| is small enough
that NP-hard layout problems can be solved exactly. This is typically true for graphs with
less than 100 vertices.

Medium-graph Similarly to a small-graph, a medium-graph has |V| small enough that layout
problems with quadratic time complexity can be solved in reasonable time. There is no
agreed upon range for a medium-graph in the literature, but as a general guideline, a graph
with less than 1000 vertices can be considered of medium size.

Large-graph Any graph larger than a medium-graph. Layout problems on such graphs must have
linear or nearly linear time complexity to terminate within reasonable time. At present, the
largest graphs that can be drawn in reasonable time have at most 107vertices [YKC02].

Compound-digraph A directed graph G = (V, EA, EI) . The edges EA are the usual directed
adjacency edges typically drawn as arrows. The edges EI are directed inclusion edges and are
typically drawn as a geometric inclusion. The parent vertex is usually drawn as a rectangle
with the children vertices drawn inside this boundary. The inclusion edges are required to
form a tree or hierarchical structure.

Hypergraph A graph G = (V, E) where V and E are disjoint sets and the elements of E are
non-empty subsets of V (of any cardinality). In other words, hypergraphs have hyperedges
that can connect from one to many vertices.

Mixed-graph A graph containing both directed edges and undirected edges.

Graph-theoretical-distance The graph theoretical distance of two vertices is a measure of the
shortest path between them.
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