
1

Linear constraints layout in

graph grammars, layout

algorithms, and scoped UI

layout

Presented by Denis Dubé

August 27, 2005

2

Overview

1. Automatic graph layout

¤ Graph grammars and QOCA linear constraints

¤ General layout algorithms

n Hierarchical, Force transfer, Spring-electrical,

Circle, Tree-like, Import/Export

2. Graphical user interfaces and statecharts

3

Graph grammars: previous work

n Automatic latex code documentation generator

n Eliminates lack of or inaccurate documentation

4

Automatic documentation

5

Why linear constraints?

n FSA graph grammar based simulator
¤ A simple linear constraint could have moved the

“Current State” box over the active state

6

n QOCA is an object-oriented constraint solving

toolkit whose source code is available in C++ and

Java

n QOCA is worth using because:

¤ Makes building a custom solver unnecessary

¤ Unlike general purpose constraint solvers, it works
incrementally, allowing for rapid re-solving of

constraints when small changes occur

(Example: user drags a node)

What is QOCA? Why use it?

7

Pacman example: QOCA off

n NOTE: Connections are not visible (but present)

8

Pacman example: QOCA on

Centering

constraints

To left of constraintTo right of constraint

Bounded by min/max X, Y

Relative to top-center block

To bottom
of

constraint

To top of
constraint

9

Pacman simulation grammar

LHS of GG rule RHS of GG rule

10

QOCA Pros/Cons

n Pros

¤ High level constraints are easy to set by

formalism developers, no special layout

knowledge required

¤ The incremental constraint solver is fast

n Cons

¤ Linear constraints are not sufficient to capture

many aesthetic constraints such as:

n Crossing minimization

n Overlap prevention

11

General layout algorithms

n Clearly QOCA cannot solve all our layout
woes

n Indeed, the NP-Complete nature of
satisfying virtually every aesthetic criteria
singly, let alone all at once, indicates a
need for many different heuristic strategies

12

Hierarchical Layout

n A Sugiyama-based algorithm
implementation, it works well on many
graph types

n Hierarchical layout algorithm sketch:
¤ Layers nodes from root to leaves and remove

cycles

¤ Swaps nodes on a given layer to minimize
crossing

¤ Places nodes on a grid, aligns them

13

Hierarchical: Random test graph

14

Hierarchical: Class diagrams

Bond graph meta-model by Sagar Sen

15

Hierarchical: Reachability graph

n Graph generated from a Petri-Net

16

Hierarchical: GPSS models

17

Random layout: Devs model

18

Force Transfer Algorithm: Devs model

19

Spring-Electrical layout: Random test graph

20

Tree-like layout: Random test graph

21

Circle layout: Random test graph

22

Export/Import capabilities

n AToM3 can export graphs to the following
formats:
¤ GML (Graph Modeling Language) , GXL (Graph Exchange Language) , and DOT

¤ Can be imported by: yED, JGraphpad, and GraphViz

n In particular, yED is very powerful, and AToM3 can

re-import yED output, thus preserving AToM3

model graphics

23

Questions

n Graph grammar documentation

n QOCA linear constraints

n Hierarchical layout

n Force transfer layout

n Sprint-Electrical layout

n Circle layout

n Tree-like layout

n Export/import tool support

n Next: GUI and statecharts

24

Graphical user interface (Before)

25

Graphical user interface (After)

26

GUI: List of improvements

n Context sensitive popup menus

n Help dialogs

n Uncaught exception handler (GUI + Logging)

n Combined option dialog and option file database

n Ability to select/manipulate more than one
node/edge at a time

n Ability to scale nodes and edge drawings

n Cut/copy/paste nodes or just the semantic
attributes

n Undo/redo

27

GUI: Under the hood

n Old method: if-statements and dictionary
self.UMLmodel.bind("<Button-1>", self.buttonPressed)

def buttonPressed (self, event):

for action in self.userActionsMap.keys():

if self.mode == action:

self.userActionsMap[action](self, event.x, event.y)

return

n DChart method: send event to statechart

def handler(event):

self.UI_Statechart.event("Fresh Selection", event)

self.UI_Statechart.event("Select Point", event)

self.UI_Statechart.event("Drop Point", event)

self.UI_Statechart.event("Start Drag", event)

canvas.bind("<ButtonPress-1>", handler)

28

Reactive behavior of
the user interface
described by a DChart

DChart formalism, simulator,

and code generator by Thomas

Feng

Currently simulating state

reached after double-clicking

on an arrow to edit the control

points

29

GUI: Scoped User Interface

n Why have only one DChart for the entire
application?

n New idea:

¤ Divide the canvas into scoped UI zones

¤ If input occurs inside a scoped UI zone, send

input to all the DCharts defined for that zone

30

GUI: Scoped User Interface

n Scoped UI bindings:
canvas.bind("<ButtonPress-1>", lambda event, scopedUI=self.UI_zone:

scopedUI ('<ButtonPress-1>', event))

n Scoped UI example on a DChart like model

DChart: Zone A

Composite: Zone B Composite: Zone C

Orthogonal: Zone D

Canvas: Default zone

31

GUI: Scoped User Interface

DChart: Zone A

Composite: Zone B Composite: Zone C

Orthogonal: Zone D

Canvas: Default zone

DChart: Zone A

Composite: Zone B Composite: Zone C

Orthogonal: Zone D

Canvas: Default zone

<User Input>

Use event coordinates

to find the deepest UI

zone in the tree

Send event to

each UI statechart

defined for that zone

32

GUI: Scoped User Interface

n Advantages:
¤ Ability to create domain-specific user interfaces

¤ Possibility of multiple domains co-existing with
different behaviors

¤ Ability to assign more than one UI behavior
statechart to a given scope level
n Although this duplicates the functionality of

orthogonal states, it might be desirable to address
different concerns in different statecharts

n Example: reactive behavior versus automated layout
triggers

33

Conclusion

n AToM3 now posses a powerful user
interface and many algorithms to tackle
graph layout

34

Future work

n Finish the new and improved DChart
formalism featuring scoped UI

n Implement orthogonal layout for formalisms
like Causal Block Diagrams

n Improve edge routing, perhaps taking
inspiration from yED

n Extend QOCA integration in AToM3 (on
request)

35

Questions

1. Automatic graph layout

¤ Graph grammars and QOCA linear constraints

¤ General layout algorithms

n Hierarchical, Force transfer, Spring-electrical,

Circle, Tree-like, Import/Export

2. Graphical user interfaces and statecharts

¤ GUI improvements

¤ DCharts GUI behavior

¤ Scoped UI

