
kiltera language reference

Ernesto Posse

December 8, 2006

Contents

1 Introduction 2

2 Execution 2
2.1 Interaction . 3
2.2 Mobility . 3
2.3 Time . 4

3 Data 4

4 Lexical analysis 5
4.1 Tokens . 5
4.2 Comments . 6

5 Expressions 6
5.1 Atomic expressions . 7
5.2 Arithmetic expressions . 9
5.3 Boolean expressions . 9
5.4 String expressions . 9
5.5 Tuple (sequence) expressions . 9
5.6 Channel expressions . 10

6 Pattern-matching 10

7 Processes 12
7.1 The nil process . 12
7.2 Basic processes . 12
7.3 Conditional processes . 15
7.4 Local variable de�nitions . 16
7.5 Match processes . 16
7.6 Channel de�nitions . 17
7.7 Sequential processes . 18
7.8 Parallel processes . 19

1

7.9 Local process de�nitions . 20
7.10 Process instantiation . 21
7.11 Local function de�nitions . 21
7.12 Interrupt processes . 22
7.13 Wait processes . 22
7.14 Timeout processes . 22

8 Modules 23
8.1 Toplevel process de�nitions . 23
8.2 Toplevel function de�nitions . 24

9 Built-in functions 24

References 24

1 Introduction

kiltera is a language for describing concurrent, interacting, mobile processes
which �live� over time. We refer to kiltera as a modelling language as its terms
can be seen as models of processes. We use the terms �model,� �term,� �process,�
�component� and �system� interchangeably.

kiltera is inspired by several languages, but prehaps the most relevant is
Milner's π-calculus [8], which forms the basis of its semantics. Other languages
that have inspired kiltera's design include Erlang [1], CCS [7], Timed CSP [3],
[9], LOTOS [4], Real-time ACP [2], OCCAM [5], Python [10] and ML [6].

2 Execution

A kiltera model consists of one or more dynamic processes. Each process is
an independent computational unit and proceeds concurrently with all other
processes. Processes execute a number of di�erent actions. The most important
kind of actions performed by processes are communication actions.

Processes are dynamic entities, this is, at any given point in time a process
is in a particular state. Each action executed by a process changes its state.
The state determines the set of possible actions which a process can execute.

A process is not necessarily a purely sequential computation, as it may be
itself composed of parallel subprocesses. The state of a process with several
concurrent subprocesses is the combination of the state of the subprocesses.
Hence, a process in a given state may have more than one possible action to
execute.

The order in which actions of concurrent processes are executed is irrelevant,
except when they are interactions between concurrent processes.

2

2.1 Interaction

Processes communicate through channels by message-passing. Processes have
ports. A channel connects two or more processes through their ports. There
are two basic communication operations: sending a message and receiving a
message through some channel. When a process sends or receives a message it
does so by specifying the port connected to the relevant channel.

There are two kinds of channels: synchronous and asynchronous.
Communication through a synchronous channel means that the sender and

the receiver of a message engage in the interaction simultaneously. In other
words, execution of a communication action (sending or receiving a message)
is a blocking operation: the process executing the action will be blocked until
some other process is ready to engage in the interaction. If a process attempts
a receiving operation on a syncrhonous channel, it will be blocked until some
other process sends a message through that channel, and dually, if a process
attempts a sending operation on a synchronous channel, it will also be blocked
until some other process executes a receiving action on that channel.

An alternative way of viewing synchronous communication is in terms of
acknowledgement: a send operation waits for acknowledgment from the receiver
before completion.

Communication through an asynchronous channel means that the sender
and receiver do not need to engage in the interaction simultaneously. In other
words, only the receiving operation is blocking, while the sender of a message can
proceed with execution without waiting for acknowledgement from the receiver.

Channels can connect more than two processes, but communication is by
�unicasting� or �two-way� communication rather than �multicasting� or �multi-
way� communication. This is, when a process sends a message through a channel
connected to two or more receivers, only one of the receivers will get the mes-
sage and the rest will remain blocked. The selection is non-deterministic: the
receivers are considered to be competing for the message. The same is true if
there are many senders and one receiver.

Processes can also communicate through shared variables, and this gives rise
to the usual complications of the shared-memory style of process communica-
tion.

2.2 Mobility

A process network is a set of processes connected through channels. A con�g-
uration is a particular topology of this network. Channels are �rst-class values
and therefore can be communicated between processes. This means that the
con�guration of a network can change dynamically when processes execute. In
particular processes can acquire access to channels and therfore to other pro-
cesses to which they didn't have access. This is known as mobility.

3

2.3 Time

kiltera processes execute over time (whether it is logical or physical time.) The
execution of a process occurs with respect to a global clock. The time base is
the real numbers.

The execution of each action is an event which takes place at a particular
point in time. Most normal actions do not take (logical) time to complete.

Synchronization actions (blocking actions such as waiting to receive a mes-
sage, or sending a message over a synchronous channel) might take some time:
from the point in time when the action is initiated or attempted until the point
in time when the synchronization (exchange of information) actually occurs: for
instance, if process P1 attempts to receive a message through some channel a at
time t0 but no input is available on the channel at that time, it will block and
wait until some other process sends data. When another process P2 sends data
through a at time t1 > t0 then synchronization occurs, and the receiving action
of P1 is said to have taken t1− t0 time units. The actual synchronization is not
considered to take any time itself.

Processes can be made to wait for a given amount of time, of equivalently, a
process may schedule events in the future. Processes can also specify timeouts:
the scheduling of future events which cancels another process which has not
�nished. Processes can also meassure the passage of time and change their
behaviour accordingly.

3 Data

kiltera models manipulate several types of data. Each data value can be com-
municated between processes, assigned to variables or used in expressions.

The data types1 are the following:

• The unit type which consists of a unique value ⊥.

• The boolean type which consists of two values true and false.

• The integer type which consists of the integers.

• The �oat type which consists of the rational numbers.

• The string type which consists of arbitrary character strings.

• The channel type which consists of channel objects,

and

• The tuple type which consists of tuples of the form (v1, v2, ..., vn) where
each vi is a data value from any type.

1Typing is not enforced in the current version of kiltera.

4

4 Lexical analysis

A kiltera interpreter, simulator, compiler or analysis tool takes as input some
text �le or string and uses a lexer to produce a stream of tokens which in turn
is fed to a parser in order to generate an abstract syntax tree which can be
processed.

This section describes the set of tokens that must be recognized by any
kiltera lexer.

4.1 Tokens

The tokens recognized by kiltera are divided into literals, identi�ers, keywords,
operators, brackets, indentation and others.

4.1.1 Literals

There are several types of literals:

1. The unit literal: unit

2. Boolean constants: true, and false

3. Number literals: integers and rational numbers in decimal format: 0, 1,
-2, 1.618, ...

4. String literals: an arbitrary sequence of characters enclosed in double
quotes: �this is a string literal�

4.1.2 Identi�ers

An identi�er is an alphanumeric sequence of characters which may include the
underscore character `_' and which begins with a letter.

4.1.3 Keywords

Keywords cannot be used as identi�ers. The following lists all kiltera's keywords.

after and at async channel channels do else false for

from function if import in interrupt let main match

module nil not or par print process receive send

seq sync then timeout to true unit wait with

4.1.4 Operators

Table 1 lists kiltera's operators in order of precedence, from highest to lowest.

5

Precedence Operators

1 Unary -, not
2 *, /, %
3 +, -
4 <, >, <=, >=
5 =, !=
6 and

7 or

Table 1: Operators

4.1.5 Brackets

kiltera uses the following brackets:

() []

4.1.6 Indentation

kiltera is sensitive to indentation. Indentation is used to describe nesting. In-
dentation can be given in terms of white spaces or tab characters.

Whenever the lexer �nds a change of indentation it produces an appropri-
ate number of �Indent� and �Dedent� tokens which are used by the parser to
delimit nested blocks. If the indentation level is increased, one �Indent� token
is generated. If the indentation level is decreased, as many �Dedent� tokens are
generated as required to match the new indentation level.

4.1.7 Other symbols

Other symbols used in kiltera are

-> , : | :=

4.2 Comments

Comments are indicated with the pound character (#). A comment begins with
the pound character (#) and ends with a new line character.

The lexer does not produce any token for comments, and thus, comments
are ignored by the parser.

5 Expressions

An expression is a syntactic element which can be evaluated to yield a data
value from a data type described in section 3.

There are six types of expressions:

6

1. Atomic expressions

2. Arithmetic expressions

3. Boolean expressions

4. String expressions

5. Tuple (sequence) expressions

6. Channel expressions

5.1 Atomic expressions

An atomic expression is one of the following:

1. A constant

2. A variable

3. A tuple access

4. A function call

5. A channel constructor

5.1.1 Constants

Constants are literals as described in section 4.1.1. The value of a constant is
the corresponding data value as described in section 3.

5.1.2 Variables

A variable is an identi�er as described in section 4.1.2. The value of a variable
depends on the environment in which it occurs. Its value is whatever value the
environment associates with the variable's name.

Variables must be declared, either as parameters of a process (see sections
7.9 and 8.1,) parameters of a function (see sections 7.11 and 8.2,) or by a local
variable de�nition (see section 7.4.)

Operationally, the environment is a stack of frames. Each frame is a table
associating a name with a value. The value of a variable is obtained by looking
up its name in the environment from the topmost frame downwards.

Frames are created by di�erent language constructs, such as function calls,
process instantiation, local variable declaration, pattern matching, etc.

7

5.1.3 Tuple access

A tuple access is an expression used to access an element of a tuple (see section
5.5) by index. It has one of the following forms:

<variable> [<arithmetic_expression>]

or

<tuple_expression> [<arithmetic_expression>]

Its value is the value of the element n + 1 of the tuple t where n is the value of
the arithmetic expression and t is the value of the variable or tuple expression.
This is, the �rst element of the tuple has index 0 and the last has index k − 1
where k is the size of the tuple.

5.1.4 Function calls

A function call is of the form

<variable> (<expr_1>, <expr_2>, ..., <expr_n>)

Its value is the value of the expression which results from replacing v1, v2, ...,
vn in the body of f where each vi is the value of <expr_i>, and f is the value
of <variable> in the current environment, and which must be a function as
de�ned in section 7.11 or section 8.2.

Operationally this results in creating a frame on top of the current environ-
ment, associating each parameter of the function with the value of the corre-
sponding argument and executing the body of the function in such extended
environment2.

There are some built-in functions described in section 9.

5.1.5 The channel constructor

The channel constructor is an expression of the form:

channel

or

async channel

or

sync channel

Its value is a new asynchronous (resp. synchronous) channel. If no channel class
is speci�ed (the �rst form) the default is an asynchronous channel.

2This could also be implemented by inlining, since functions here are pure functions with

no side-e�ects.

8

5.2 Arithmetic expressions

An arithmetic expression is an expression which evaluates to a number. It can
have atoms, parenthesis and the arithmetic operators +, -, *, /, % (modulo)
with the usual meaning and precedence rules.

5.3 Boolean expressions

A boolean expression is an expression which evaluates to a boolean value true
or false. It can have atoms, parenthesis and the boolean operators and, or,
not, and the comparison relations <, <=, >, >=, =, != (di�erent) with the usual
meaning and precedence rules.

5.4 String expressions

A string expression is an expression which evaluates to a string. Currently only
atoms can be string expressions.

5.5 Tuple (sequence) expressions

A tuple expression is an expression whose value is a tuple, this is, an ordered
sequence of values (which themselves may be any legal kiltera value.)

There are two kinds of tuple expressions:

1. Explicit or extensive (called explicit tuples)

2. Implicit or comprehensive (called comprehensions)

5.5.1 Explicit tuples

An explicit tuple has the form

(<expr_1>, <expr_2>, ..., <expr_n>)

The value of an explicit tuple is the sequence (v1, v2, ..., vn) where each vi is the
value of <expr_i> in the current environment.

5.5.2 Comprehensions

A comprehension has the form

(<expr> for <pattern> in <tuple_expression>)

or

(<expr> for<pattern> in<tuple_expression> if<boolean_expression>)

where <pattern> is an expression, typically a variable or a tuple expression
with free variables.

9

The value of the second form of comprehension is the tuple (v1, v2, ..., vn)
where each vi is the value of <expr> such that for each item wj in the value
of <tuple_expression> that matches the pattern <pattern> and the condition
<boolean_expression> is true.

More precisely, the value of the second form of comprehension is the tuple
(v1, v2, ..., vn) where each vi is the value of <expr> with all its free variables re-
placed according to the substitution that results from matching3 the <pattern>
with an element wj of t (the value of <tuple_expression>) as long as the value
of <boolean_expression> is true.

Intuitively, the tuple expression <tuple_expression> is evaluated, yielding
a tuple t = (w1, w2, ..., wm), and each data value wk is matched against the
pattern <pattern>. If the data does not match the pattern, it is ignored, and
the next item is considered. If the data value matches the pattern, it yields a
substitution, i.e. a set of variable bindings, associating each free variable in the
pattern with the corresponding data in wk. If, in the environment extended
with these new bindings, the <boolean_expression> evaluates to true, then the
expression <expr> is evaluated in this extended environment, and its value vi

is added to the resulting tuple.
The �rst form of comprehension

(<expr> for <pattern> in <tuple_expression>)

is equivalent to

(<expr> for <pattern> in <tuple_expression> if true)

5.6 Channel expressions

Channel expressions are expressions whose value is a channel. Currently the
only kind of channel expressions are atomic expressions.

6 Pattern-matching

Pattern matching is an action performed in certain expressions and processes,
particularly in comprehensive tuple expressions (see section 5.5.2) and in the
match process (see section 7.5,) which is used to extract information from data.

Intuitively the idea is this: a pattern is an expression with free variables; a
datum is a ground expression i.e. an expression with no free variables. A datum
is said to �match� a pattern if it has the same structure, and all the corresponding
constants agree. For instance the datum (5, (�abc�,true), (unit, 1.618))

matches the pattern (5, (�abc�, x), y) but it does not match the pattern (5,
(�abc�, x), false). If a datum matches a pattern, it yields a substitution, i.e.
a mapping associating each free variable in the pattern with the corresponding

3See section 6 on pattern-matching.

10

piece of data occurring in the datum. In the previous example, for the succesful
match, the resulting substitution is {x 7→ true, y 7→ (unit, 1.618)}.

A variable may occur more than once in the pattern. If this is the case, all
occurrences of the variable must match the same data. For example, the datum

(2, (3, �abc�), (false, (3, �abc�)))

matches the pattern is

(2, z, (false, z))

with the substitution {z 7→ (3, “abc”)}, but the datum

(2, (3, �abc�), (false, (3, �qwe�)))

does not match the same pattern.
More precisely, we de�ne pattern-matching as follows: A substitution is a

mapping of variables to data values. If s is a substitution, and x is a variable,
we denote s(x) for the value of x in the substitution s.

A datum d matches a pattern p with respect to a subsitution s and yielding
a new substitution s′ if one of the following cases is true:

• Both d and p are constants and they are the same constant, irrespective
of s. In this case s′ = s.

• p is a variable which does not appear in the substitution s, and d is any
datum. In this case, s′ is the result of extending s by adding the association
{p 7→ d}

• p is a variable which does appear in the substitution s, and s(p) = d. In
this case, s′ = s.

• p is a tuple expression of the form (p1, p2, ..., pn) and d is a tuple of the
form (d1, d2, ..., dn) of the same length, and

� d1 matches p1 with respect to s yielding s1,

� d2 matches p2 with respect to s1 yielding s2,

...

� dn matches pn with respect to sn−1 yielding sn

In this case, s′ = sn.

If none of these cases succeeds, there is no match and the resulting substitution
is empty.

11

7 Processes

There are several kinds of processes in kiltera.

1. The nil process

2. Basic processes

3. Conditional processes

4. Local variable de�nitions

5. Match processes

6. Channel de�nitions

7. Sequential processes

8. Parallel processes

9. Local process de�nitions

10. Interrupt processes

11. Wait processes

12. Timeout processes

7.1 The nil process

The nil process is written

nil

It represents the dead process: it does nothing, and cannot interact with any
process.

7.2 Basic processes

Basic processes are processes that perform a single action and then proceed
to execute some process (called the continuation.) Actions are divided into
two kinds: external and internal. External actions are those which involve
interaction, i.e. communication through some channel. These actions are also
called observable actions. Internal actions are those which are not observable.

The following are the possible actions:

1. Output: send actions (with or without timing)

2. Input: receive actions (with or without timing)

3. Assignment actions

12

4. Print actions

The input (receive) and output (send) actions are external actions. The wait
and print actions are internal. The assignment action is normally considered an
internal action, but since it can be used to modify the value of a shared variable
it can also be considered an external action, since it provides an alternative
approach to inter-process communication.

In general a basic process has the form

<action> ->

<continuation>

where <continuation> is any process, or

<action> at <variable> ->

<continuation>

for the actions with timing. Note that the continuation processmust be indented
with respect to the action.

If the contination is the nil process, there is no need to write it (or the
arrow:)

<action>

is equivalent to

<action> ->

nil

7.2.1 Send actions (with or without timing)

Without timing A send action without timing is of the form

send <expression> to <channel_reference> ->

<continuation>

where <channel_reference> is any expression whose value is a channel.
The meaning of a send action is to send the value of the expression through

the given channel. If the channel is synchronous, the process will be blocked
until some other process receives the message. Otherwise the send action �nishes
immediately and the process continues with the <coontinuation>.

With timing A send action without timing is of the form

send <expression> to <channel_reference> at <variable> ->

<continuation>

13

where <channel_reference> is any expression whose value is a channel.
The meaning of a send action with timing is as without timing, but once

the action is completed, the variable is bound to the amount of time it took to
complete, from when it was initially attempted. In other words, it is assigned
the value of the time elapsed since the process arrived at the current state where
it attempts to send the message. As before, if the channel is synchronous, the
process will be blocked until some other process receives the message, and there-
fore the variable will record the amount of time the process remains blocked.
Otherwise the send action �nishes immediately and the process continues with
the <coontinuation> in which case the variable's value is 0.

7.2.2 Receive actions (with or without timing)

Without timing A receive action without timing is of the form

receive <variable> from <channel_reference> ->

<continuation>

where <channel_reference> is any expression whose value is a channel.
The meaning of a receive action is to wait for a message comming from the

given channel. Once the message arrives, the variable is bound to the value of
that message. A receive action is always blocking. Once the message is received,
the process proceeds with the <coontinuation>.

With timing A receive action without timing is of the form

receive <variable> from <channel_reference> at <vari-
able> ->

<continuation>

where <channel_reference> is any expression whose value is a channel.
The meaning of a receive action with timing is as without timing, but once

the action is completed, the variable is bound to the amount of time it took to
complete, from when it was initially attempted. In other words, it is assigned
the value of the time elapsed since the process arrived at the current state where
it attempts to receive the message. As before, the process will be blocked until
some other process sends a message through that channel, and therefore the
variable will record the amount of time the process remains blocked.

7.2.3 Assignment actions

An assignment action it of the form

<variable> := <expression> ->

<continuation>

14

Its meaning is to evaluate the expression in the current environment and as-
sign the resulting value to the variable in the current environment. Since the
language has lexical scoping, this might mean looking up the variable in the
environment's frame stack. Since two or more processes may share an environ-
ment, the e�ect of assigning a value to a variable may be observed by other
processes, and thus may in�uence their behaviour.

A variable can be assigned a value only if it was declared with a local de�-
nition (let, see section 7.4,) or if it is a parameter of a process (see sections 7.9
and 8.1.)

7.2.4 Print actions

A print action is of the form

print <expression> ->

<continuation>

Its meaning is to print the value of the expression to standard output.

7.3 Conditional processes

Conditional processes have the form

if <boolean_expression> then

<process_1>
else

<process_2>

or

if <boolean_expression> then

<process_1>

which is equivalent to

if <boolean_expression> then

<process_1>
else

nil

The meaning of a conditional process is to evaluate the boolean expression in
the current environment and if it is true, continue with <process_1>, otherwise
continue with <process_2>.

15

7.4 Local variable de�nitions

Local variable de�nitions have the form

let <variable> = <expression> in

<some_process>

or

let <variable_1> = <expression_1>
and <variable_2> = <expression_2>
and ...
...
and <variable_n> = <expression_n> in

<some_process>

The meaning of this construct is to bind each variable to the value of the cor-
responding expression and execute the process <some_process> in an environ-
ment enhanced with these bindings. This de�nes a lexical scope for variables, so
the proces <some_process> is the scope of the variables, and when the process
�nished, the frame with the local bindings is discarded.

7.5 Match processes

A match process has the form

match <expression> with

<pattern_1> ->

<process_1>
| <pattern_2> ->

<process_2>
| ...
...
| <pattern_n> ->

<process_n>

Note that there may be only one alternative.
The meaning is to evaluate the expression <expression>, and match that

value with each pattern from top to bottom according to the pattern-matching
procedure described in section 6. If the value matches some pattern <pat-
tern_i> yielding a substitution s then <process_i> is executed in an environ-
ment enhanced with the bindings speci�ed by the substitution s. Only the �rst
match found executes the corresponding process. If no pattern matches, then
the process is equivalent to the nil process and nothing is done.

16

7.6 Channel de�nitions

Channel de�nitions are the mechanism used to create channels local to a process,
or equivalently, to hide channels from the environment.

There are two general forms of channel de�nitions: single channels and chan-
nel arrays.

7.6.1 Single channels

Single channel de�nitions have the form

channel <variable_1>, <variable_2>, ..., <variable_n> in

<some_process>

or

async channel <variable_1>, <variable_2>, ..., <vari-
able_n> in

<some_process>

or

sync channel <variable_1>, <variable_2>, ..., <vari-
able_n> in

<some_process>

The meaning of the �rst two forms is the same as that of

let <variable_1> = async channel

and <variable_2> = async channel

...
and <variable_n> = async channel in

<some_process>

and respectively, for the last form (syncronous channels:)

let <variable_1> = sync channel

and <variable_2> = sync channel

...
and <variable_n> = sync channel in

<some_process>

7.6.2 Channel arrays

Channel array de�nitions have the form

channels <variable> [<arithmetic_expression>] in

<some_process>

17

or

async channels <variable> [<arithmetic_expression>] in

<some_process>

or

sync channels <variable> [<arithmetic_expression>] in

<some_process>

The meaning of the �rst two forms is the same as that of4

let <variable> = (async channel for i in range(0, <arith-
metic_expression>)) in

<some_process>

and for the last form (synchronous channels:)

let <variable> = (sync channel for i in range(0, <arith-
metic_expression>)) in

<some_process>

7.7 Sequential processes

Sequential processes are processes which, as the name implies, execute subpro-
cesses in sequence.

There are two forms of sequential processes: normal and indexed. The
normal form is used to specify a �xed and usually small number of processes
to execute in sequence. The indexed form is used to specify loops, i.e. the
repetition of a process.

7.7.1 Normal sequence

A normal sequence process has the form

seq

<process_1>
<process_2>
...

<process_n>

There must be at least two sub-processes.
The meaning of this construct is to execute each process in turn one after

the other. In particular, <process_(i+1)> begins only after <process_i> has
�nished. This implies that if <process_i> is a parallel process (see section 7.8)
then the sequence construct acts as a join operator, i.e. all the subprocesses
must �nish before continuing.

4See section 9 for the meaning of the built-in function range.

18

7.7.2 Indexed sequence

An indexed sequence has the form

seq

<some_process>
for <pattern> in <tuple_expression>

Note that there is only one process in the body of this construct.
The meaning is to execute <some_process> in an environment enhanced

with the bindings produced by matching v the pattern <pattern>, for each
item v of t that succesfully matches5 the pattern, where t is the value of <tu-
ple_expression>. Items of t that do not match the pattern are ignored. Each ex-
ecution of <some_process> must �nish completely (including all subprocesses,)
before the next iteration begins.

7.8 Parallel processes

Parallel processes are processes that execute independently of other processes.
The parallel construct introduces parallel processes. It is both a structural and
a behavioural construct: it speci�es some processes as subprocesses within the
process, and it initiates them.

There are two forms of the parallel construct: normal and indexed. The
normal construct is used to specify a �xed and usually small number of sub-
processes to run in parallel. The indexed form is used to describe an array of
processes, each of which is an instance of the same �process class.� (see section
7.9 or section 8.1.)

7.8.1 Normal parallel processes

A normal parallel process has the form

par

<process_1>
<process_2>
...

<process_n>

There must be at least two sub-processes.
The meaning of this construct is to execute all subprocesses in parallel. This

construct �nishes when all subprocesses have �nished.

7.8.2 Indexed parallel processes

An indexed sequence has the form

5see section 6 on pattern-matching.

19

par

<some_process>
for <pattern> in <tuple_expression>

Note that there is only one process in the body of this construct.
The meaning is to execute in parallel an instance of <some_process> in an

environment enhanced with the bindings produced by matching v the pattern
<pattern>, for each item v of t that succesfully matches6 the pattern, where t
is the value of <tuple_expression>. Items of t that do not match the pattern
are ignored. In other words, as many instances of the process are created and
executed in parallel, as items in t which match the pattern, and each such
instance has variable bindings which resulted from the corresponding matching
with the pattern.

7.9 Local process de�nitions

A process de�nition de�nes a class7 of processes, this is, it de�nes the structure
of a family of processes and can be instantiated to create individual represen-
tatives from it. It speci�es a name for the class, its initial ports8, optional
parameters and the body which is an arbitrary process.

A process de�nition has the form

process <name>[<port_1>, ...,<port_m>]:
<body>

or

process <name>[<port_1>,...,<port_m>](<param_1>,...,<param_n>):
<body>

where <body> is any process.
A local process de�nition de�nes a set of processes within a limited scope.

It has the form:

<process_de�nition_1>
<process_de�nition_2>
...
<process_de�nition_n>
in

<some_process>

The meaning of this is analogous to that of the local variables de�nitions (see
section 7.4.) The current environment is extended with a frame binding each
process name to a latent process, which can be instantiated by <some_process>
as described in section 7.10. The scope of the de�nitions is <some_process>.

6see section 6 on pattern-matching.
7A �class� of processes should not to be confused with the notion of �class� from Object-

Oriented Programming.
8Ports may change due to mobility or may be �inherited� from the enclosing scope.

20

7.10 Process instantiation

Process instantiation has the form

<name> [<ch_expr_1>,...,<ch_expr_n>]

or

<name> [<ch_expr_1>,...,<ch_expr_n>](<expr_1>,...,<expr_k>)

where each <ch_expr_i> is a channel expression, this is, an expression whose
value is a channel. The <name> must be de�ned in the current scope, and
introduced by a process de�nition (see section 7.9 or section 8.1.) The �rst
form is used if the process de�nition has no additional parameters. The second
is used if the de�nition has parameters. The number of arguments must be the
same as the number of parameters expected.

The meaning is to create an instance of the process with each port connected
to channel given by evaluating the corresponding channel expression, and pass-
ing as arguments the value of each argument expression. The body of the process
is executed in an environment extended by a frame binding each port name to
the corresponding channel and each parameter to the corresponding argument.

A process instantiation �nishes when the body of the process �nishes.

7.11 Local function de�nitions

A function de�nition de�nes pure functions, i.e. functions in the mathematical
sense, with no side e�ects. Therefore, the body of a function cannot contain
any state-based actions, only expressions.

A function de�nition has the form

function <name>(<param_1>,...,<param_n>):
<expression>

A local function de�nition de�nes a set of functions within a limited scope. It
has the form:

<function_de�nition_1>
<function_de�nition_2>
...
<function_de�nition_n>
in

<some_process>

The meaning of this is analogous to that of the local variables de�nitions (see
section 7.4.) The current environment is extended with a frame binding each
function name to a latent function, which can be called by an expression ocurring
in <some_process> as described in section 5.1.4. The scope of the de�nitions
is <some_process>.

21

7.12 Interrupt processes

The interrupt construct is used to describe processes that can be interrupted by
another process.

An interrupt process has the form

do

<process_1>
interrupt

<process_2>

Its meaning is as follows: <process_1> and <process_2> are executed con-
currently as long as <process_2> does not engage in any external interaction
(receive or send.) If <process_1> �nishes before <process_2> engages in ex-
ternal interaction then the whole process �nishes. If, however, <process_2>
engages in external interaction before <process_1> �nishes then <process_1>
is killed and control passes fully to <process_2>.

7.13 Wait processes

A wait process describes a process which blocks for a certain amount of time.
A wait process is of the form

wait <arithmetic_expression> ->

<continuation>

The meaning of such process is to block for an amount of time d where d is the
value of the arithmetic expression in the current environment.

This construct is equivalent to (see 7.14.)

timeout

nil

after <arithmetic_expression> ->

<continuation>

7.14 Timeout processes

The timeout construct is used to describe processes whose behaviour depends
on the clock.

A timeout process has the form

timeout

<process_1>
after <arithmetic_expression> ->

<process_2>

22

Its meaning is as follows: <process_1> is executed, and if it does not engage in
a purely external interaction (send or receive actions) before the given timeout t
(the value of <arithmetic_expression>) is due, then it is eliminated, along with
all of its subprocesses, and <process_2> is executed. If, on the other hand,
<process_1> does engage in an external interaction before t time units, then
it completes its execution, the timeout and <process_2> are ignored and the
whole process �nishes when <process_1> �nishes.

8 Modules

Modules are the toplevel unit in kiltera. A module is given by a (text) �le with
a .klt extension.

A module has the form

module <name>

<top_level_function_de�nition_1>
<top_level_function_de�nition_2>
...
<top_level_function_de�nition_n>

<top_level_process_de�nition_1>
<top_level_process_de�nition_2>
...
<top_level_process_de�nition_m>
main

<main_process>

Its meaning is to evaluate each top-level process and function de�nitions, add
them to an initial, empty environment, and execute the main process in this
environment.

8.1 Toplevel process de�nitions

A top-level process de�nition has the form

process <name>[<port_1>, ...,<port_m>]:
<body>

or

process <name>[<port_1>,...,<port_m>](<param_1>,...,<param_n>):
<body>

where <body> is any process.
Its meaning is the same as in section 7.9 but the scope of the de�nition is

the entire module.

23

Name Parameters Returns Description

range start, end int tuple This returns a tuple of all
integers from start to end-1.

len tuple int This return the length of a
tuple.

zip tuple list tuple tuple This takes a list of tuples and
returns a tuple where the i -th
element is a tuple of the i -th
element of each tuple in the list
respectively.

random - float This returns a number between
0 and 1, including 0 but
excluding 1.

Table 2: Built-in functions.

8.2 Toplevel function de�nitions

A top-level function de�nition has the form

function <name>(<param_1>,...,<param_n>):
<expression>

Its meaning is the same as in section 7.11 but the scope of the de�nition is the
entire module.

9 Built-in functions

Table 2 lists the supported built-in functions.

References

[1] J. L. Armstrong and R. Virding. Erlang � an experimental telephony
switching language. In International Switching Symposium, Stockholm,
Sweden, May-June 1991.

[2] J. C. M. Baeten and J. A. Bergstra. Real time process algebra. Technical
report, Amsterdam, 1990.

[3] C. A. R. Hoare. Communicating sequential processes. Comm. ACM,
21(8):666�677, August 1978.

[4] ISO. LOTOS - language of temporal ordering speci�cation. Technical
Report ISO DP 8807, 1987.

[5] David May. OCCAM. In SIGPLAN '83, pages 69�79, 1983.

24

[6] R. Milner. Standard ML proposal. Polymorphism - The ML/LCF/Hope
Newsletter, 1(3), 1983.

[7] Robin Milner. A Calculus of Communicating Systems. Springer-Verlag,
1980.

[8] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, parts I and II. Reports ECS-LFCS-89-85 and 86, Computer
Science Dept., University of Edinburgh, March 1989.

[9] Steve Schneider. Concurrent and Real-time Systems: The CSP Approach.
John Wiley & Sons, Ltd., 2000.

[10] Guido van Rossum. Python Reference Manual. Stichting Mathematisch
Centrum, Amsterdam, 1996.

25

