
kiltera user manual

Ernesto Posse

December 8, 2006

Contents

1 Introduction 1

2 Using the kiltera interpreter 2

2.1 Normal execution . 2
2.2 Event traces . 3
2.3 Alternative main . 4
2.4 Pretty printer and syntax trees 4
2.5 Other options . 5

3 Using kiltera distributed over a network 5

3.1 The kiltera server . 6
3.2 Connecting kiltera modules to the server 7
3.3 A note about time, mobility and dynamic structure 7

4 Command-line options summary 8

1 Introduction

This document describes how to use the kiltera interpreter and server. For
information on the language itself, consult the language reference provided in
the documentation (doc/reference.pdf.)

kiltera modules can be run in two modes:

• stand-alone, or

• as part of a system distributed over a network

The �rst mode is described in section 2. The second is described in section 3.

1

2 Using the kiltera interpreter

The basic mode of execution of kiltera modules is as stand-alone applications. In
this mode, kiltera modules are executed in the command-line using the command

klt

This command is normally installed in the Python scripts directory. Usually this
is /usr/local/bin or /usr/bin on Unix/Linux, and on Windows, the Scripts
subdirectory of your Python installation (e.g. C:\Program Files\Python24\Scripts.)
To �nd the precise location, go to the directory where you unpacked the distri-
bution and type

cat install_data.py

The install_scripts �eld contains the directory where klt was installed. It is
highly recommendable to add this directory to your path environment variable.1

2.1 Normal execution

The klt command is normally executed passing as parameter the name of the
module to be interpreted, as follows:

klt <�le_name>

It is recommendable to use .klt as extension for kiltera �les.
If the execution of the module results in dead-lock (the interpreter hangs,)

or is taking too much time, it can be interrupted by pressing Ctrl-C.
The interpreter can accept a number of di�erent options, in which case the

command has the form:

klt <options> <�le_name>

The full list of options is summarized in section 4. You can also see the list of
options by typing

klt -h

To see the version used, type

klt -V

To execute in verbose mode, which shows many internal messages, type

klt -v<level> <�le_name>

where <level> is the level of detail in the messages. See section 4 for full details.

1On some machines the klt �le might not be given the correct executable permissions, so

you might have to execute it as python <install_scripts>/klt where <install_scripts> is the

directory mentioned above. Note that executing python <install_scripts>/klt.py will not

work. This is important since the �les klt and klt.py are not the same.

2

2.2 Event traces

When executing a module it is very useful to obtain a log of the events which
occurred. The interpreter provides three formats for such a trace:

• Short XML format

• Long XML format

• Tuple-based format

For each option, it is possible to either dump the trace into a �le, or to standard
output (which may be used in a pipe.)

Also, for each option it is possible to specify a format for the time tag in
each event. This is described below.

To generate the trace in short XML format and save it into a �le, type

klt -X<trace_�le> <module_�le>

To dump it to standard output, type

klt -x <module_�le>

To generate the trace in long XML format and save it into a �le, type

klt -Y<trace_�le> <module_�le>

To dump it to standard output, type

klt -y <module_�le>

To generate the trace in tuple-based format and save it into a �le, type

klt -E<trace_�le> <module_�le>

To dump it to standard output, type

klt -e <module_�le>

In the generated trace, every event has a timestamp, or time-tag. For each
option it is possible to specify a format for this time-tag in each event by using
the -P option which has as argument the precision of the time, with the form
<length>.<decimals>, or just .<decimals>. For example

klt -Xmytrace.trc -P7.3 mymodule.klt

3

2.3 Alternative main

A typical kiltera module has the form

module <name>

<top_level_function_de�nition_1>

<top_level_function_de�nition_2>

...

<top_level_function_de�nition_n>

<top_level_process_de�nition_1>

<top_level_process_de�nition_2>

...

<top_level_process_de�nition_m>

main

<main_process>

which is short for

module <name>

<top_level_function_de�nition_1>

<top_level_function_de�nition_2>

...

<top_level_function_de�nition_n>

<top_level_process_de�nition_1>

<top_level_process_de�nition_2>

...

<top_level_process_de�nition_m>

process main[]:

<main_process>

in

main[]

It is possible to specify an alternative process as the �main� process to be exe-
cuted by the interpreter by means of the -m command-line option, as follows:

klt -m<process_name> <�le_name>

Where <process_name> must be de�ned in the module, otherwise there will
be a runtime-error.

2.4 Pretty printer and syntax trees

The kiltera interpreter provides facilities to pretty-print the module, to print its
abstract-syntax tree, to print its concrete syntax-tree and to print the results

4

of lexical analysis. These may be useful for dealing with syntax issues, or to be
used by other tools such as editors, IDEs, or for module exchange.

To pretty-print the module, type

klt -p <�le_name>

To print the abstract syntax tree, type

klt -a <�le_name>

To print the concrete syntax tree, type

klt -t <�le_name>

To print the full list of tokens produced by the lexer, type

klt -l <�le_name>

2.5 Other options

If the kiltera prebuilt parser is corrupted, or if the installation process failed to
build the parser, the interpreter may still build the parser on-line by typing

klt -b <�le_name>

Keep in mind that this process may take several seconds.
It is also possible to see kiltera's internal parsing table by typing

klt -T

3 Using kiltera distributed over a network

kiltera sytems can be distributed over a network where modules can commu-
nicate with other possibly remote modules. In order to do this there must be
a central server to which all modules in the system must be connected. Each
module can then communicate with others via the server. The server is in charge
of routing messages from each module to their destination2.

In each module, the link to the server is provided by the �rst port of its
main process. If the module wants to send a message to some other module, it
must be a pair of the form (<destination>, <data>), where <destination> is a
string with the name of the target module, and <data> is any kiltera value. For
example, consider the following two modules which may be in remote machines:

2In the current version, only remote asynchronous communication is supported.

5

#File module1.klt on machine 1

module A

process main[server]:

send ("B", "hello") to server

#File module2.klt on machine 2

module B

process main[server]:

receive msg from server ->

print msg

In order to run this system it is necessary to setup a kiltera server, as described
in section 3.1 and then connecting each of the modules to the server as described
in section 3.2.

If there are multiple machines executing a module with the same name, the
message will go to any of them, chosen randomly. But it is possible to specify
to which particular instance we want to send the message by providing the
name of the machine containing the module in the <destination>, where the
<destination> �eld is a string which has the form <target-machine>:<module-

name>. For example

#File module1.klt

module A

process main[server]:

send ("mach1.cs.mcgill.ca:B", "hello") to server

If there is more than one instance of the module in the target machine, the
message will go to any of them.

3.1 The kiltera server

The kiltera server plays the role of message-dispatcher for a distributed kil-

tera system. The server is initiated by the command

kltserver

which is found in the same location as the klt command (see section 2.)
Normally it is enough to start the server on some machine (typically as a

deamon process.)
The server accepts command-line options, in which case the command is

typed as follows:

kltserver <options>

The full list of options is summarized in section 4. You can also see the list of
options by typing

kltserver -h

6

To see the version used, type

kltserver -V

To execute in verbose mode, which shows many internal messages, type

kltserver -v<level>

where <level> is the level of detail in the messages. See section 4 for full details.
The server and the client modules communicate by a TCP socket. To do this

the use a port. The port number must be the same for the server and clients.
By default both clients and the server are setup to have the same port, but if
for some reason communication fails over that port, it is possible to specify an
alternative port using the -p option:

kltserver -p<number>

In which case the clients must start with the same port (see section 3.2 below.)

3.2 Connecting kiltera modules to the server

In order to connect a kiltera module to a server, the module must be executed
with the -r option, as follows:

klt -r<server_address> <module_�le_name>

where <server_address> is the (symbolic) address of the server, for example:

klt -rhost.cs.mcgill.ca module1.klt

If the server was started with an alternative port number, then this port number
must be speci�ed in the command-line as follows:

klt -r<server_address>:<port_number> <module_�le_name>

For example, if the server was executed in 'host.cs.mcgill.ca' as

kltserver -p50006

then all the client modules must start as

klt -rhost.cs.mcgill.ca:50006 <module_name>

3.3 A note about time, mobility and dynamic structure

In the current version, the support for distributed computing is limited in the
sense that it does not support distributed timing and full mobility. The system
does not guarrantee cross-network time consistency. With respect to mobility,
if a channel is sent to a remote site, the channel cannot be used for remote
communication.

Nevertheless, the system does support another form of dynamic structure:
it is possible to add and remove new client modules at runtime.

7

Option Description

-h Lists all the options.
-V Prints the version number.
-v<level> Verbose mode; shows various internal messages with the given

level of detail, where <level> is of the form all, <number>,
<number>:<mask> or all:<mask>, where <mask> is a com-
bination of: o (only one level), T (time), t (thread), m (module),
c (class), f (function/method) and l (line number).

-a Print the module's abstract syntax tree.
-b Build kiltera's parser instead of using the prebuilt parser.
-e, -E<�le> Print or save the event trace to <�le> in tuple format.
-l Print the list of tokens produced by the lexer.
-m<name> Use <name> as the main process.
-p Pretty-print the given module.
-P<length>.<decimals> Use the given format for the timestamps in the trace.
-r<server> Connect to the remote <server>.
-r<server>:<port> Connect to the remote <server> using the given <port>.
-t Print the module's concrete syntax tree.
-T Print kiltera's parsing table.
-x, -X<�le> Print or save the event trace to <�le> in short XML format.
-y, -Y<�le> Print or save the event trace to <�le> in long XML format.

Table 1: klt command-line options.

4 Command-line options summary

Table 1 shows the command-line options for the kiltera interpreter summarized.
Table 2 shows the command-line options for the kiltera server summarized.

8

Option Description

-h Lists all the options.
-V Prints the version number.
-v<level> Verbose mode; shows various internal messages with the given

level of detail, where <level> is of the form all, <number>,
<number>:<mask> or all:<mask>, where <mask> is a com-
bination of: o (only one level), T (time), t (thread), m (module),
c (class), f (function/method) and l (line number).

-p<number> Uses the port number given for the TCP socket.

Table 2: kltserver command-line options.

9

