
Modelling, Simulation and Implementation of Distributed DEVS

Simulators

Eugene Syriani and Amr Al-Mallah

COMP 512 - Project Report

Abstract. Distributing the Discrete Event system Specification (DEVS) allows for increase in performance,
scalability in terms of the size of the models, interoperability and resource sharing. In this report, we first model
a distributed DEVS simulator as a DEVS model, to then implement it in a distributed environment. This allows
for optimal estimations of parameters in a distributed DEVS implementation.

1 Introduction

Distributed environments overcome many of the limits imposed by large-scale tasks performed on a single
processor. Modelling and simulation frameworks consume a lot of resources. In this report we consider the
Discrete Event system Specification (DEVS) as a modelling and simulation framework. Our experiences show
that using this formalism for large-scale tasks (such as model transformation) is very convenient.
A distributed environment for DEVS models simulation is attractive for several reasons. Although not the
primary goal of distributed simulation, model execution time can be reduced. The limited memory issue for a
single machine can be overcome to handle large models and thus gain a scale in performance. But the main
goal of distributing DEVS is for interoperability. Handling geographically distributed users and/or resources
(e.g., databases, specialized equipment) and exploiting greater data handling capability through specialized
nodes is our main interest. As a side effect, this allows integrating simulations running on different platforms.
Furthermore, properties of distributed systems such as fault-tolerance capabilities become accessible.
After introducing the DEVS language and its simulator in section 2, we describe the model example used for
both the modelling and the implementation in section 3. the remainder of this report focuses on distributed
DEVS techniques. A distributed DEVS simulator modelled as a DEVS model is described in section 4. Section
5 is devoted to the implementation of such a simulator in a distributed environment. Section 6 presents and
discusses advantages and disadvantages of three current implementations of distributed DEVS architectures:
DEVS/Grid, DEVS/RMI, and DEVS P2P. Finally we conclude and plan future work in section 7.

2 The Discrete Event System Specification

2.1 The Classical DEVS formalism

The DEVS formalism was introduced in the late seventies by Bernard Zeigler to develop a rigorous basis for
the compositional modelling and simulation of discrete event systems [1]. It has been successfully applied to the
design, performance analysis and implementation of a plethora of complex systems.
A DEVS block model is either an AtomicBlock or a CoupledBlock. An atomic model describes the behaviour of
a reactive system. A coupled model is the composition of several DEVS sub-models which can be either atomic
or coupled. Submodels have ports, which are connected by channels (represented by the associations between
the different ports). Ports are either Inport or Outport. The abstract classes (In/Out)port can be instantiated
in either an Atomic(In/Out)port or a Coupled(In/Out)port respectively. Ports and channels allow a model to
receive and send signal events (any subclass of Event) from and to other models. A channel must go from an
output port of some model to an input port of a different model, from an input port of a coupled model to an
input port of one of its sub-models, or from an output port of a sub-model to an output port of its parent model.



An atomic DEVS model is a structure 〈S, X, Y, δint, δext, λ, τ 〉 where S is a set of sequential states, one of
which is the initial state. X is a set of allowed input events. Y is a set of allowed output events. There are
two types of transitions between states: δint : S → S is the internal transition function, δext : Q×X → S

is the external transition function, Associated with each state are τ : S → R
+

0 , the time-advance function
and λ : S → Y , the output function. In this definition, Q = {(s, e) |s ∈ S, 0 ≤ e ≤ τ (s)} is called the total
state space. For each (s, e) ∈ Q, e is called the elapsed time. R

+

0 denotes the positive reals with zero included.

Informally, the operational semantics of an atomic model is as follows: the model starts in its initial state. It
will remain in any given state for as long as the time-advance of that state specifies or until input is received on
some port. If no input is received, after the time-advance of the state expires, the model first (before changing
state) sends output as specified by outputFunction, and then instantaneously jumps to a new state specified
by internalTransition. If input is received however before the time for the next internal transition, then it is
externalTransition which is applied. The external transition depends on the current state, the time elapsed since
the last transition and the inputs from the input ports.

A coupled DEVS1 model named D is a structure 〈X, Y, N, M, I,Z, select〉 where X is a set of allowed input
events and Y is a set of allowed output events. N is a set of component names (or labels) such that D 6∈ N .
M = {Mn | n ∈ N, Mn is a DEVS model (atomic or coupled) with input set Xn and output set Yn} is a set of
DEVS sub-models. I = {In | n ∈ N, In ⊆ N ∪ {D}} is a set of influencer sets for each component named
n. I encodes the connection topology of sub-models. Z = {Zi,n | ∀n ∈ N, i ∈ In.Zi,n : Yi → Xn or ZD,n :
X → Xn or Zi,D : Yi → Y } is a set of transfer functions from each component i to some component n.
select : 2N → N is the select or tie-breaking function. 2N denotes the powerset of N (the set of all sub-sets of
N).

The connection topology of sub-models is expressed by the influencer set of each component. Note that for
a given model n, this set includes not only the external models that provide inputs to n, but also its own
internal sub-models that produce its output (if n is a coupled model.) Transfer functions represent output-to-
input translations between components, and can be thought of as channels that make the appropriate type
translations. For example, a “departure” event output of one sub-model is translated to an“arrival” event on a
connected sub-model’s input. The select function takes care of conflicts as explained below.

The semantics for a coupled model is, informally, the parallel composition of all the sub-models. A priori, each
sub-model in a coupled model is assumed to be an independent process, concurrent to the rest. There is no
explicit method of synchronization between processes. Blocking does not occur except if it is explicitly modelled
by the output function of a sender, and the external transition function of a receiver. There is however a
serialization whenever there are multiple sub-models that have an internal transition scheduled to be performed
at the same time. The modeller controls which of the conflicting sub-models undergo its transition first by means
of the select function.

We have developed our own DEVS simulator called pythonDEVS [2], grafted onto the object-oriented scripting
language Python.

2.2 The DEVS simulation protocol

This section is based on Prof. Vangheluwe’s lecture notes for a modelling and simulation course at McGill
University.

The algorithm in Fig. 1 is based on the closure under coupling construction and can be used as a specification
of a -possibly parallel- implementation of a DEVS solver or “abstract simulator” [1]. In an atomic DEVS solver
(a.k.a., simulator), the last event time tL as well as the local state s are kept. In a coordinator (the coupled
DEVS solver), only the last event time tL is kept. The next-event-time tN is sent as output of either solver. It
is possible to also keep tN in the solvers. This requires consistent (recursive) initialization of the tLs. If kept,
the tN allows one to check whether the solvers are appropriately synchronized. The operation of an abstract
simulator involves handling four types of messages. The (x, from, t) message carries external input information.
The (y, from, t) messages are used for scheduling (synchronizing) the abstract simulators. The (∗, from, t) and



Fig. 1. DEVS simulation procedure

Fig. 2. DEVS simulation mainloop



(done, from, t) messages are used for scheduling (synchronizing) the abstract simulators. In these messages, t is
the simulation time and tN is the next-event-time. The (∗, from, t) message indicates an internal event ∗ is due.

When a coordinator receives a (∗, from, t) message, it selects an imminent component i∗ by means of the tie-
breaking function select specified for the coupled model and routes the message to i∗. Selection is necessary as
there may be more than one imminent component (with minimum next remaining time).

When an atomic simulator receives a (∗, from, t) message, it generates an output message (y, from, t) based on
the old state s. It then computes the new state by means of the internal transition function. Note how in DEVS
output messages are only produced while executing internal events. When a simulator outputs a (y, from, t)
message, it is sent to its parent coordinator. The coordinator sends the output, after appropriate output-to-input
translation, to each of the influencees of i∗ (if any). If the coupled model itself is an influencee of i∗, the output,
after appropriate output-to-output translation, is sent to the coupled model’s parent coordinator.

When a coordinator receives an (x, from, t) message from its parent coordinator, it routes the message, after
appropriate input-to-input translation, to each of the affected components.

When an atomic simulator receives an (x, from, t) message, it executes the external transition function of its
associated atomic model.

After processing an (x, from, t) or (y, from, t) message, a simulator sends a message to its parent coordinator
to prepare a new schedule. When a coordinator has received (done, from, tN) messages from all its components,
it sets its next-event-time tN to the minimum tN of all its components and sends a (done, from, tN) message to
its parent coordinator. This process is recursively applied until the top-level coordinator or root coordinator

receives a (done, from, tN) message.

To run a simulation experiment, the initial conditions tL and s must first be set in all simulators of the
hierarchy. If tN is kept in the simulators, it must be recursively set too. Once the initial conditions are set, the
main loop described in Fig. 2 is executed.

2.3 Parallel DEVS

The Parallel DEVS formalism [3] has been introduced in order to allow collision handling and parallelism of
DEVS models. Classical DEVS and Parallel DEVS formalisms only have slight modifications.

A confluent transition function δcon : Q ×X → S is added to the classical atomic model. It is triggered when
the collision behaviour of an atomic block receiving an external event at the time of its internal transition. In
pyDEVS it is always the external transition that happens. The event set X is now a set of bags of events since
atomic simulators may output events concurrently. As for the coupled model, the select function is removed
since all delta functions run in parallel. The simulator-coordinator protocol is thus adapted to Parallel DEVS
as described in section 3 of [4].

3 A Client-Server Example

The running example of this report is a simple client-server model. The server consists of three processors in
parallel with the following description:

– Each processor has a finite FIFO queue of length n, where unprocessed jobs can be stored.

– As soon as a processor becomes idle (the current job is finished), it starts processing the first message in its
queue.

– Jobs are sent by a client with a generation time-interval randomly chosen from a uniform distribution.

– Jobs are characterized by their size which corresponds to the amount of time the jobs require to be processed.
Sizes are randomly chosen randomly.

– The client sends its job to the first available processor (a processor is available if it is idle or if its queue is
not full), otherwise the job is discarded.

– The server notifies the client when a job is completed.



As illustrated in Fig. 3, the System is modelled as a coupled DEVS model. The Client atomic model sends job
requests through its request outport and receives notifications via its reply inport. When the Server coupled
model receives a job through its in inport, the job is instantaneously sent to Processor 1. If its state is IDLE and
has an empty queue, it processes the job and outputs an acknowledgement via its out outport. The channel from
the out ports to the client ’s inport ensure reception of the notification. In the case where Process 1 is not idle,
it queues the job. If there is no space left for the size of that job, Processor 1 transfers the job to Processor 2
by the discard outport. The behaviour of the other two processors is identical. However, if Processor 3 discards
a job, this job is lost (hence the client is not acknowledged).

As a case-study, we would like to execute this DEVS model in a distributed environment. For this example, we
propose to distribute the simulators (not the model). An atomic solver is associated with each atomic model and
a coordinator with each coupled model. The distributed environment is composed of a cluster consisting of two
machines Machine 1 and Machine 2. Initially, the simulators are partitioned as follows: the system coordinator
and the client solver are launched on Machine 1 and the server and its processors on Machine 2. The root
coordinator, which ensures the execution of the simulators, runs on Machine 1.

Fig. 3. The client-server model

4 Modelling a distributed DEVS Simulator

In this section, we build a model representing a distributed simulation engine for the DEVS model described
in section 3. The model takes into consideration the simulation entities, the different machines as well as the



network commutation of the nodes. Fig. 4 illustrates the simulation entities modelled in DEVS representing the
distributed simulation of the client-server model.

Fig. 4. The hierarchical model of client-server example (on the left) and and its corresponding simulation entities as DEVS
models for the distributed simulation (on the right)

The notation used in this section is the same as in section 2.

4.1 The simulation entities

This model consists of seven atomic models ensuring the simulation of each of the six components of the client-
server model. Solvers and coordinators hold their corresponding model in the state. E.g., Client Solver holds the
Client atomic model and Processor Solver 1,2, and 3 hold their respective Processor 1,2, and 3 atomic model.
System Coordinator holds the System coupled block and Server Coordinator holds the Server coupled block.
The Root Coordinator is modelled as a separate atomic model.
There are four types of events that these atomic models exchange:

– *: (source, target, t) message to indicate that an internal event ∗ is due,
– X: (x, source, target, t) message to carry external input information x,
– Y: (y, source, target, t) message to carry output information y, and
– DONE: (source, target, t) message to acknowledge termination of event handling.

The Atomic Solver model (AS) has one inport RECEIVE and as many SEND outports as there are
machines. In our case the outports are SEND1 and SEND2. Its state is composed of:

– the atomic DEVS model M it simulates,
– a unique identifier id in a one-to-one correspondence with M given by the bijection map,
– its parent identifier parentId,
– the last event time tL,



– the next event time tN ,
– the output set Λ, and
– a single-rowed table activeOutport identifying which outport is currently active, and
– the mode µ the AS is in: PAUSED or RUNNING.

AS is reactive, waiting for a * or X external event as described in Algorithm 1. It also receives an initialisation
message INIT to which its sets its state. AS can also receive simulation control event χ from the CONTROL_IN
port to set its mode.

Algorithm 1 The external transition δext ((s, e) , x) of an atomic solver

UPON RECEIVE INIT:(parent, t′L, M ′, s′M , Λ′, activeOutport’) then
M ←M ′

sM ← s′M
parentId← parent

tL ← t′L
tN ← tL + τM (sM )
Λ← Λ′

activeOutport ← activeOutport’′

µ← PAUSED

UPON RECEIVE X:(x, source, target, t) then
sM ← δM

ext ((sM , t− tL) , x)
tL ← t

tN ← tL + τM (sM )
M.elapsed← 0

UPON RECEIVE *:(source, target, t) then
Λ← Λ ∪

{

λM (sM )
}

sM ← δM
int (sM )

tL ← t

tN ← tL + τM (sM )
M.elapsed← 0

UPON RECEIVE χ then
IF χ == PAUSE: µ← PAUSED
IF χ == RESUME: µ← RESUMED

The time advance function τ of AS is always infinity. However, if Λ 6= ∅ or if an external input was re-
ceived then τ evaluates to 0. The output function first sends Y: (Λ, id,parentId, tL) if in case Λ 6= ∅ and
then DONE: (id,parentId, tN) or otherwise. The output is sent via the current active outport. The internal tran-
sition function δint clears Λ. The output function λ (s) and time advance function τ (s) are extended to allow
logging. Whenever any of the enumerated messages (except for χ) is received, the new state of AS is output
through the LOG port.

The Coordinator model (CO) also has one inport RECEIVE and as many SEND outports as there are
machines. Its state is composed of:



– the coupled DEVS model M it simulates,

– a unique identifier id,

– its parent identifier parentId,

– the last event time tL,

– the next event time tN ,

– the list of events to be processed L,

– the list of children (simulators the CO coordinates down the simulators hierarchy) children,

– the list of children still processing an event activeChildren,

– the output set Λ of X messages for its children,

– an output set Ψ for all the events on the outports of M , and

– a single-rowed table activeOutport identifying which outport is currently active.

CO is reactive, waiting for a *, X, Y, or DONE external event as described in Algorithm 2. Note that the first two
are received from its parent, while the latter two are received from its children It also receives an initialisation
message INIT to which its sets its state. CO can also receive simulation control event χ from the CONTROL_IN
port to set its mode.



Algorithm 2 The external transition δext ((s, e) , x) of a coordinator

UPON RECEIVE INIT:(parent,children’, t′L, t′N , M ′, L′, Λ′, Ψ ′, activeChildren’, activeOutport’) then
M ←M ′

parentId← parent

children← children’

tL ← t′L
tN ← t′N
Λ← Λ′

Ψ ← Ψ ′

activeOutport ← activeOutport’′

activeChildren ← activeChildren’

µ← PAUSED

UPON RECEIVE X:(x, source, target, t) then
activeChildren ← activeChildren

{

i|self ∈ IM
i

}

Λ←
⋃

i∈activeChildren
ZM

self,i (x)
tL ← t

UPON RECEIVE *:(source, target, t) then
immList← {i| (i, T ) ∈ L ∧ T = t}
i∗ ← select(immList)
activeChildren ← activeChildren ∪{i∗}
remove(i∗, L)
tL ← t

UPON RECEIVE Y:(y, source, target, t) then
activeChildren ← activeChildren

{

i|i ∈ IM
source\ {self}

}

Λ←
⋃

i∈activeChildren
ZM

i,source (y)

Ψ ← Ψ ∪
{

ZM
i,self (y) |i ∈ IM

self

}

tL ← t

UPON RECEIVE DONE:(source, target, t) then
L← L∪̃ {(source, t)} // replace source entry if it already exists in L, otherwise add entry to L

activeChildren ← activeChildren −{source}
tN ← min (tN , t)

UPON RECEIVE χ then
IF χ == PAUSE: µ← PAUSED
IF χ == RESUME: µ← RESUMED

In this notation, ZM is the transducer function of M and IM
i is the set of influencers of the sub-model i of

M . The time advance function τ of CO is always infinity. However, if Λ 6= ∅ or if activeChildren = ∅, then τ

evaluates to 0. If Ψ 6= ∅, the output function first sends Y: (Ψ, id,parentId, t) where t is the time CO received
Y. Then if Λ 6= ∅, X: (Λ, id,activeChildren, t) is sent when Y was received or X: (Λ, id, i∗, t) is sent when * was
received. Finally, if activeChildren = ∅ then DONE: (id,parentId, tN) is sent. The internal transition function
δint clears Λ and Ψ . The output function λ (s) and time advance function τ (s) are extended to allow logging.



Whenever any of the enumerated messages (except for χ) is received, the new state of CO is output through
the LOG port.

The Root Coordinator model (RC) also has one inport RECEIVE and as many SEND outports as there
are machines. Its state is composed of:
– a unique identifier id,
– the current simulation time T
– the list of children (simulators at the top of the simulators hierarchy) children
– a termination condition β, and
– a single-rowed table activeOutport identifying which outport is currently active.

When a DONE: (source, target, t) is received, T ← t. However if β is not satisfied, the simulation is stopped. The
time advance function τ of RC is always infinity except when DONE was received. The output function returns
INIT: (id,children, 0) when the simulation starts and *: (id,children, T ) when DONE was received.
All the simulators have a channel to each machine. This is resolved at instantiation-time. However, the simulators
interact with only one machine. It is only in the case of a machine failure that the simulator will communicate
with another machine.

4.2 Communication between simulators

Each simulation entity runs on a machine. This is modelled by a channel from the simulator to the machine
being active. There can be at most one active channel at the same time.

Local Coupling Table (LCT) holds a table mapping each simulator running on the machine to a unique
port. When it receives an event, it is forward to the appropriate port of the target after some delay time. The
delay time for local search is sampled from a parameterized uniform distribution (typically order of milliseconds).
However, if the target is not in the local table, it is forwarded to the REMOTE_SEND outport. LCT models
intra-machine communication of simulators.

Remote Coupling Table (RCT) has a similar behaviour to LCT. It holds a table mapping each simulator
in the cluster to the machine it is running on. The delay time is typically longer taking in consideration network
communication delays (order of seconds). RCT models inter-machine communication of simulators.

Machine Activity Each coupled model Machine has a LM and an Activity atomic model generating failures
on the machine. After some time (specified in the time advance), Activity sends a failure message to LCT. After
some time, it can send a revival. Note that the time for revival can be infinite. When LCT receives a failure, its
time advance evaluates to infinity.

4.3 Fault-tolerance entities

When running a distributed environment, several fault-tolerance issues must be handled. Among them is machine
failures. As a consequence, mechanisms such as state restoration and resource reallocation come into place. Fig.
5 illustrates the cluster integrating all the different modelled entities.

Monitor server monitors each machine to detect failures. At regular time intervals, it pings all the machines
through its PING outport. The monitor accumulates all responses within a certain time-out. It continues pinging
(at the regular frequency) as long as it receives responses from all the machines (from its ALIVE inport). However,
if timeout is reached before head, the monitor considers the remaining machines as failed. It subsequently notifies
the Master.



Fig. 5. A DEVS model representing distributed environment for DEVS simulation. A star on an inport is a shorthand notation
to represent channels incoming from all the components of the same type as the source of the channel. A star on an outport
is a shorthand notation to represent channels outgoing to all the components of the same type as the target of the channel.
Dots between ports with a generic label is a shorthand notation to represent as many ports on the host component as there
are components of the same type as the source/target of the channel. e.g., the outports labelled ports simID on the Machine
component represent one outport per AS, CO, and RC.



Log server receives the log entries from the AS, CO, and RC entities. As described previously, the log server
receives the DEVS messages sent and received, together with the simulator state and the (simulated) time stamp.

A cleaning mechanism removes irrelevant traces from the log. Whenever a second entry from the same simulator
is received, the log server removes the previous one. This is sufficient since state restoration is only applied from
the nearest previous state.

Master coordinates the whole environment. Its state holds the simulation hierarchy (coupling of the AS, CO,
and RC models) and the resource allocation (which simulator is currently running on which machine).

Before the simulation starts, the master sends an INIT message to all the simulators. The message provides
knowledge of the parent of the simulator, its children (for CO and RC), the initial state the simulator will start
at and the machine it will be running on. Then RO sends a * message to its children and the simulation runs
until a termination condition is satisfied. When it receives a failure notification, the master first sends a PAUSE

message to all the simulators to halt the simulation. We define a simulator (AS, CO, or RC) to be failed if it
is allocated to a failed machine. It also request the last saved state of the simulators formerly running on the
failed machines. Upon receiving these entries, the master repartitions the simulators1 and notifies each machine
is notified by its new allocation of resources. The master also sends an INIT message to the failed simulators.
Finally it sends a RESUME message to all the simulators to continue simulation from their current (or newly
modified) state.

We have modelled the Master, Log, and Monitor components as three different servers. It is possible to con-
sider them as one single server. Note that the master server could even be modularly split further. This is an
implementation design consideration.

4.4 Generic instantiation and simulation experiments

This model of a distributed DEVS simulator was implemented in pythonDEVS. To be able to simulate this model,
several simulation experiments are provided as a library. It instantiates the Cluster coupledDEVS model which
in turn creates the necessary AtomicSolvers and Coordinators according to the given host DEVS model (in our
example, it is the client-server model that). The necessary inports, outports, and port connections are created.
The parameters of the cluster are the following.

– The host model as a pythonDEVS data structure,

– the number of machines in the cluster,

– the initial partition of resources specifying the node location of every simulation entity,

– the initial states of all the AS, CO, and RC2 models (a default initialisation is also provided),

– the termination condition of the simulation i.e., the condition RC should wait for to end the simulation,

– the distribution of the delay for LCT to respond,

– the distribution of the delay for RCT to respond,

– the distribution of the delay for Master-Log communication (typically very fast),

– the distribution of the delay for Master-Monitor communication (typically very fast),

– the ping frequency of the Monitor, and

– the distribution of the delay for the Activity to notify that machine has not failed.

We propose an experiment where the only variable is the time before the Monitor times-out. The simulation
collects performance results for different time-out values. Performance can be measured by the number of log
entries in the Log server since every simulation operation of AS, CO, and RO is logged.

1 The repartition may also need to reallocate simulators that were running on non-failed machines.
2 the start time of the simulation can be specified in the initial state of RC.



5 Implementing a distributed DEVS Simulator

5.1 Middleware Description

RMI/Blocking: We have chosen the RMI (Remote Method Invocation) as a middleware layer for many rea-
sons. It simplifies distributed computing through its ease of use for the programmers providing transparency for
remote procedure calls. It also hides all internal implementations of the lower level communication to maintain
remote references locally. Given the nature of our particular simulations, any type of object can be sent between
the solver objects (thus a flexible solution). That would be much more tedious to implement using TCP. To
accomplish this task for our python implementation of the DEVS formalism, we have chosen the PYRO frame-
work. PYRO is an RMI-based middleware solution, written purely in python and runs in a similar fashion to
JAVA RMI.

PyRO is short for Python Remote Objects. It is an advanced and powerful Distributed Object Technology
system written entirely in Python. It abstracts away most of the network communication code. PyRO takes care
of the network communication between objects once split over different machines on the network. It resembles
Java’s RMI. PyRO, however, has less similarity with CORBA, a system and language independent from the
Distributed Object Technology.

Factory object: distributing the different simulation solvers onto different server machines
The factory solution allows for dynamic partitioning of solver objects onto the cluster machines. Factory objects
can create and host many solver objects. They represent basically a running daemon or a service which can host
these solver objects. This approach will facilitate the fault tolerance aspect of the simulator which we intend to
implement, namely: the re-instantiation of failed solvers throughout the simulation.

5.2 Distribution Issues

Location configuration and model partitioning: The deployment of different solver objects on different
server is called partitioning. There exist several algorithms which allow for optimal partitioning, but these are
not in the scope of this work. It is however possible with this implementation to allow for dynamic partitioning:
meaning that an algorithm is easily pluggable into our implementation.

Simulation Tracing - Log Server: The simulation is meant to produce a trace which describes events
occurring at certain times and how they are handled. This trace can be produced from all of the solver objects.
And since in a distributed setting, these objects live on separate machine, a new mechanism to aggregate these
individual traces into a single trace is needed. We have implemented this by means of a Log server. The log
server can keep logs for many simulations running at the same time. It creates a simulation trace object for each
simulation running, which can then be called upon to store logs from the individual solver objects. At the end
of the simulation, the log server can be used to print the simulation trace of the whole run.

Instantiation: The initial step is to start a naming server on one of the machines on the cluster. Then a server
containing a factory object, Solver Factory, is instantiated. It will subsequently register itself with the naming
server. Through the naming server, the Solver Factory can be discovered by the simulation engine clients. These
clients wish to instantiate solver objects, atomic or coupled, destined to live on the factory object’s machine.
A remote reference is created for each factory and is used to create the solver objects. These solver objects are
passed the log server reference to send their traces. We have implemented the simulator to accept a mapping
object, which describes which machine in the cluster a solver should be running on. The simulator will then
instantiate the solvers according to their specified location or will instantiate them locally if there is no specific
mapping provided for them. Fig. 6 illustrates the overall architecture of the implementation.



Fig. 6. The RMI architecture of a distributed DEVS simulator using Pyro



5.3 Fault tolerance

Since the solvers are dispersed over several machines, it is expected to encounter a new class of errors which
were not present in the classical non-distributed DEVS simulator. Like in any distributed settings, we would
have to deal with unexpected machine crashes. It is important to handle such crashes with affecting minimally
the simulation flow. Assume a simulation which is supposed to run for a few days on a cluster. If one of the
machines that are associated with the simulation runs into some error or if it simply crashes, the simulation
will stop and would have to be manually restarted later on. This is deemed inconvenient and not scalable as
we expect the possibility of machines crashing increasing with running time. As in any fault-tolerant technique,
there are two phases for achieving that: fault detection and fault recovery. For fault detection, there exists many
techniques, e.g., acceptance tests or n-version programming among others. For recovery, first perform regular
backup operations whenever a modification to the state of the system (or object) takes place. Second, restore
the latest fault-free state.

Fault Model and Detection: In the application of the distributed DEVS simulation, we will consider a
fault model where cluster machines, which are part of the simulation, can crash during the simulation or even,
become in a faulty state without crashing. The fault detection technique would be a timeout on methods being
executed on remote objects. Meaning that if a solver failed to respond to a call (a simulation call, heartbeat call
or other calls) after a certain timeout the site or the component on the site is considered crashed. The recovery
technique takes over. Ideally these timeouts should be specified according to the partitioning or mapping of the
simulation. This is discussed in detail in another section.

Fault Recovery: To recover from a fault, once detected, a strategy has to be implemented. In general, enough
data needs to be collected about the state of several solvers and the DEVS models they simulate. For Atomic
Solvers: tL and tN . For Coordinators: tL, tN , eventList, and subsolvers (the solver objects, coupled or atomic,
which simulate the sub-DEVS component of the current solver’s DEVS model). For both solvers the DEVS
model being simulated with its state.
Having this information is sufficient to restore the whole simulation at a correct state to resume the simulation.
The simulation needs only to keep the last valid version of the state of all the solvers of the simulation for it to
be restored. The choice of when to update this version is one of the key optimization issues. For our application
we have chosen the time of this backup to be just when the Root Coordinator sends the * message to its top
level solver model.
The Root Coordinator holds the mapping of solvers to machines. And before sending the * message, it will
traverse the mapping configuration and use it to send a retrieve current state message for each solver asking it
for its current state. It will then store these states for further use in case a restore is needed. Performing this
operation right before sending the * allows for using this stage as a check-point activity. It will be associated
with the time that the * message should have been sent. This is useful because, assuming that one of the solvers
down the solver hierarchy have crashed after sending the * message from the root coordinator. This error will be
detected. The Master Server (the same as the Root Coordinator in this implementation) will be able to use on
another machine the last stored and valid version of the simulation to reinitialize the solver which has crashed.
It also reset the references, if any, to its corresponding parent and sub-solvers. The last thing left would be to
resynchronize the states of all the solvers to the last stored valid state in the Master. Performing the backup
operation could be optimized by simply pulling the changed state, rather than the new states of the solvers.
The Master could be optimized to reason about which solver states it should update, due to changes by the last
sent * message.

5.4 Optimal estimation of parameters

One of the biggest configuration questions in the distributed implementation, with regards to efficient fault-
tolerance, is the timeout that should be set on solver calls, before assuming that the site has crashed or even



has a fault. This timeout really depends on the model being simulated and the partitioning that is used for the
solvers. The timeout value might also be different at different solver levels. Setting an arbitrary constant value
may not be sufficient, as it has to take into account the network message passing time and other properties.

Network statistics for a specific cluster can be gathered using the current implementation of the log server. As
discussed, the solver objects send their traces into the log server throughout the simulation. By running a simple
simulation, the log server can produce some average network parameters with regards to the time a message
takes to travel over the network from a solver to another in the hierarchy. These numbers can be given to the
modelled distributed simulator described earlier. It then can simulate this delay which is specific to the cluster.

The trace message produced at each solver is augmented with the following parameters:

– name : name of the model in the solver,

– t_global: the global current time at which this trace was produced,

– t_machine_receive: the local time at the solver machine when the message was received,

– t_machine: the local time at the machine when the trace was produced.
It gets augmented at the log server by:

– t_local_received: the local time at the machine when the trace was produced.

The optimal timeout for a specific solver message on another can be discovered using the modelled simulator:
before a solver makes a call on another solver, it can invoke the modelled simulator to run a simulation of the
current call and expect the time length it should take. This simulation is expected to be much faster than the
actual implementation since it will only simulate and not run the actual model. The computed value is then
used as a timeout limit for the call.

6 Current state-of-the-art of distributed DEVS

The DEVS formalism and its simulation protocol as described in section 2 is well suited for local execution
on a single machine. Many approaches for distributing DEVS have been proposed and implemented in several
projects (e.g., [5,6,7,4]). Thanks to the modularity and hierarchical structure of DEVS, distributing a DEVS
model execution on several processes can be achieved without modifying the simulation models.

In fact the distributed architecture for DEVS can be divided into layers. The application layer (highest level of
the system) is the modelling and simulation problem under study. The DEVS model lies in the modelling layer.
At the simulation layer, the protocol to simulate the DEVS model is implemented. The lowest level layer is the
middleware layer where the communication between computing nodes is established.

In the remainder of this report, we compare three implementations for distributing DEVS: DEVS/Grid, DEVS/RMI,
and DEVS P2P. Note that the simulation protocols used are based on Parallel DEVS.

6.1 DEVS/Grid

As introduced in [5], DEVS/Grid makes use of the distributed computing paradigm: grid computing. Together
with the simulator, the simulation layer comprises a model partitioner, deployer, and activator. The partitioner
divides the DEVS model in partitions containing at least one DEVS block. Partitioning is computed based on the
construction of a cost tree using a hierarchical reconstruction of the states of coupled models. These partitions
are dispatch by the deployer to an activator on each host resolved by Grid middleware services. The message
received consists of the activator’s id, the blocks in the partition and the coupling information (between different
partitions). The activator then creates a simulator for each DEVS block (atomic or coupled) and starts it. At
that time, the necessary communication channels are automatically created based on the coupling information
(how the ports are connected).

Simulators communicate at the middleware layer. A DEVS message is sent from the simulator to a proxy which
encodes the message as a “Globus message”. Messages are exchanged via sockets following the Globus protocol
(widely used in grid computing).



The DEVS/Grid simulation protocol does not use coordinators, in contrast with the conventional abstract
simulator in section 2.2. Coordinators have two roles (in parallel DEVS). One is to maintain the coupling
relations between ports, but this is taken care of by the grid activators, statically and dynamically. The other
role of a coordinator is to synchronize simulation time and control simulation behaviour of its (inner-)atomic
simulators. For that, the DEVS/Grid protocol distinguishes protocol messages from user messages. The protocol
message TA is for publishing the next event time tN of a DEVS model, while done is used for expressing the
termination of a simulator. User messages are those generated by DEVS models.
The simulation protocol works as follows. After publishing a TA message, a simulator is blocked until it re-
ceives all TA messages from the other simulators. It advances its simulation time by the minimum tN received.
Thereafter, output is computed (if needed) and the simulator delivers the corresponding output message to the
linked models via the communication layer. Upon receiving DEVS messages, each simulator publishes a done

message and performs its delta transition function concurrently depending on the message (event) received. It
then computes its new tN and the simulation cycle starts again.

6.2 DEVS/RMI

DEVS/RMI [7] combines DEVSJAVA (the implementation of a DEVS modelling and simulation framework, like
pyDEVS) with java remote object technology JAVA/RMI.
In DEVS/RMI the DEVS model is extended with three additional key components (that can be modelled as
DEVS blocks): the configurator for model partitioning, the controller for simulation control, and the monitor
for failure detection and status verification of hosts. The configurator analyses the model received to then
apply a partition/repartition algorithm. Partitioning can be done statically by assigning model partitions to
remote locations during initialization phase. Moreover, dynamic partitioning is performed at run-time, passing
models as parameters to remote machines. When a new partition plan needs to be computed, the controller
stops the simulation until the partition information is received from the configurator. Thereafter, the controller
re-configures the simulation environment and continues the simulation. Since JAVA/RMI supports persistent
object migration natively, migrated or newly created simulators need not to restart the simulation from time
zero and the simulation continues seamlessly. The monitor collects information about each running model in the
network, measures their activities and sends that information to the configurator.
The simulation algorithm remains the same as the conventional one. However remote interfaces must be extended
(using proxies) in order to communicate via JAVA/RMI and pass serialized messages. It is important to note
that simulators may be created remotely or locally, depending on what is specified in the (sub-)model “where”
parameter.

6.3 DEVS P2P

DEVS P2P allows DEVS models to be simulated on a peer-to-peer network [6]. Each DEVS block is coupled
in a coupled block with “virtual” DEVS ports correctly routed according to the corresponding source/target
coupling. The channels are mapped to pipes over the network.
The middleware used is JXTA. Thus a mapping from the virtual DEVS channels to JXTA pipes needs to
be processed as described in [6]. DEVS P2P supports the same hierarchical partitioning and restructuring as
implemented in DEVS/Grid. In DEVS P2P peers are wrappers for their local simulator (atomic or coupled).
Each simulator is assigned to the active partitions of the model only, which decreases the number of simulation
processes and control messages. At run-time, when a new simulator/peer is created, the new pipe is published
to the network. Then, when a source pipe needs to communicate, it advertises its discovery pipe and only then
the I/O communication can be established.
The peer, atomic simulator and coupled simulator protocols are described in [4]. The peer algorithm simply
serves as an interface for communication between other peers over the network, wrapping message I/O handling.
The atomic simulator protocol remains almost unchanged with the difference that message I/O is sent or



received via the peer it is located on. The coupled simulator protocol however, handles the coupling relation
between DEVS blocks internally. The simulation time synchronization is also managed at the coupled level. The
coupled simulator also processes message I/O via the peer. In the case of a remote submodel, it is the peer that
communicates via the network. All messages peers exchange are serialized to JXTA messages in XML format.

When a peer delivers a TA or done message, it is published to all connected peers. Given that it is in JXTA
message format, the identifier of the peer is also passed and the JXTA layer will ensure communication with the
specified peer. Reconfiguration and load balancing is managed in that layer as well. Caching is used to decrease
network communication overhead.

6.4 Discussions

DEVS/Grid DEVS P2P DEVS/RMI

Middleware Globus JXTA Neutral: RMI

Portability No No Yes

Dynamic reconfiguration Grid computation JXTA message service JAVA/RMI

Mapping to node Resolved by grid Extend each block to
communicate with peer

Host IP passed as pa-
rameter for each block

Partitioning GMP AHMP Any

Message exchange GIIS JXTA message format Serializable object

Simulation protocol Explicit message deliv-
ery

Modified to communi-
cate through peer

Unchanged, interfacing
with RMI technology

Table 1. Matrix comparison

Distributed DEVS is achieved in layers. As shown in the previous section, the three approaches differ at the
middleware layer, but also in the simulation layer.

DEVS P2P strongly relies on JXTA Pipe Interface as middleware to support distributed execution of DEVS.
DEVS/Grid relies on a grid infrastructure “Globus” for its communication layer. The most neutral approach
is DEVS/RMI which uses the RMI technology (in this case Java/RMI). The advantage of using RMI is the
portability of the distributed simulation framework. Because RMI supports persistent data migration on remote
machines, DEVS/RMI natively supports dynamic model structure change. In DEVS/Grid, the grid layer requires
explicit specification when migrating the state of a simulator. As for DEVS P2P, this is handled through JXTA
services. Additionally, each block is coupled with a “virtual” block to communicate between peers. Similarly, Grid
resolves simulator mapping on computing nodes by the activator. In DEVS/RMI, the location of the simulator
is specified statically as a parameter in the block. This can then be changed by the controller at run-time. As
far as model partitioning is concerned, DEVS/Grid uses the Generic Model Partitioning Algorithm (GMP) to a
cost tree that it constructs. DEVS P2P uses a more cost-efficient algorithm, the Autonomous Hierarchical Model
Partitioner (AHMP). DEVS P2P and DEVS/Grid use a message exchange format respective to their middleware
constraint, while RMI supports serialized objects to be exchanged. DEVS P2P simulation protocol forces all none
I/O messages are exchanged locally between the simulator and its peer. In the DEVS/Grid environment, the
simulation protocol must explicitly deal with delivering messages to remote simulators. As for DEVS/RMI, the
simulation protocol must implement the RMI interface, without changing the conventional protocol. DEVS P2P
and DEVS/Grid need an additional layer for simulation time management. These comparisons are summarized
in Table 1.



7 Conclusion

In this report we have described how a distributed DEVS simulator can be modelled in classical DEVS. This
model allows us to simulate and try out our fault-tolerance solutions for different scenarios such as machine
failures. The simulated model was then implemented as a distributed simulator using an RMI technology. Trace
matching was used to ensure consistency between the two approaches and the original non-distributed simulator.
Moreover, the implementation is used to collect statistics about the network by running some sample experi-
ments. These statistics, such as the message passing and response times of different servers and solver objects, is
given back to the simulator model. The simulator model can then use these values to simulate network delays.
Consequently, it can expect more accurately optimal timeout intervals throughout the simulation. Furthermore,
the implemented distributed DEVS simulator can launch simulation experiments to determine optimal values
of its parameters. At run time, the executions of such experiments should be very fast compared to the actual
execution since they only simulate the network delays and not execute the model.
We proposed to compute the optimal time-out duration before resource reallocation. This approach of simulating
“on the side” different possible scenarios given the current state while running a DEVS simulation in a distributed
environment may solve important issues in such distributed systems. Once the model has the information it needs
to simulate the network delays in a given cluster, it could be then used to simulate different machine-resource
repartitioning possibilities and find the optimal configuration. Fault-tolerance and load balancing can be fine-
grained with this approach.
Another possible future work would be to generate the implementation code form the simulator model, by passing
just few parameters which are needed. This will allow for simulating complex experiments in a distributed setting
in a more automated way. In fact, this would make a perfect fit for a distributed DEVS simulation framework
to be used on any cluster.

References

1. B. P. Zeigler, Multifacetted Modelling and Discrete Event Simulation. Academic Press, 1984.
2. J.-S. Bolduc and H. Vangheluwe, “The modelling and simulation package pythonDEVS for classical hierar-

chical DEVS,” McGill University, MSDL Technical Report MSDL-TR-2001–01, June 2001.
3. A. C.-H. Chow and B. P. Zeigler, “Parallel DEVS: a parallel, hierarchical, modular modeling formalism,”

TSCS, vol. 13, pp. 55–67, 1996.
4. P. Sunwoo, S. H. J. Kim, C. A. Hunt, and D. Park, “DEVS peer-to-peer protocol for distributed and par-

allel simulation of hierarchical and decomposable DEVS models,” in ISITC’07, H. Kim and B. Wah, Eds.
Jeonju(Korea): IEEE Computer Society, November 2007, pp. 91–95.

5. C. Seo, S. Park, K. Byounguk, S. Cheon, and B. P. Zeigler, “Implementation of distributed high-performance
DEVS simulation framework in the grid computing environment,” in ASTC’04, H. Unger, Ed. Arlington
(USA): Society for Modeling and Simulation International, April 2004.

6. S. Cheon, C. Seo, S. Park, and B. P. Zeigler, “Design and implementation of distributed DEVS simulation
in a peer to peer network system,” in ASTC’04, H. Unger, Ed. Arlington (USA): Society for Modeling and
Simulation International, April 2004, pp. 18–22.

7. M. Zhang, B. P. Zeigler, and P. Hammonds, “DEVS/RMI-an auto-adaptive and reconfigurable distributed
simulation environment for engineering studies,” Journal of Test and Evaluation, vol. 27, no. 1, pp. 49–60,
April 2006.


