OPERATIONAL SEMANTICS OF
PROCESS-ORIENTED SIMULATION
LANGUAGES
PART 1 : wDemos*

G. Birtwistle! and C. Tofts?,
1 Department of Computer Science, University of Calgary,
2 Department of Computer Science, University of Swansea

12 October 1993

Abstract

We give an operational semantics for the synchronisation mechanisms
of wDemos, a small process-oriented discrete event simulation language
based upon Simula and Demos. The operational semantics gives a clear,
concise and precise meaning to #Demos programs and have been extended
to full Demos. The paper includes applications of the semantics as an
implementation blueprint and in verifying the consistency of event list
operations.

*Transactions of The Society for Computer Simulation, 10(4), December 1994, 299-333

Contents
1 Background

2 mDemos programs

2.1 Notation
2.2 Processes
2.3 Resources

3 Execution of a simple rDemos program

4 Semantics of TtDemos synchronisations
4.1 Accessing sets
4.2 Accessing the event list
4.3 Semanticrules
44 Event list commands
4.4.1 decP(classld, classDef)
442 newP(id, classId, dt) oL
443 hold(dt)
444 newR(id)
445 getR(@Ad). o
446 putRAd).
447 close . ..
5 Applications
5.1 Implementation
5.2 Proofs

6 Summary and conclusions

7 APPENDIX

28
28
31

31

34

1 Background

Since they describe dynamically changing scenarios, discrete event simulations
are difficult to program and to reason about. They are usually “debugged”
(whatever that might mean) by extensive validation runs. We present the basis
for an alternative approach — mathematical reasoning about simulation models.
Since the pioneering work of Plotkin [15, 16] structured operational semantics
has gradually emerged as a prominent method of specifying programming lan-
guages and reasoning about programs written in them. In [15], Plotkin showed
how to describe everyday programming constructs (expressions, statements, pro-
cedure/function calls, objects) and in [16], he dealt with guarded commands and
CSP flavoured parallelism. Milner [11] used operational semantics to describe
the non-deterministic interleaving semantics of CCS, and with others, [12, 13],
to describe SML, a modern (mainly) functional programming language. The
text by Hennessy [9] serves as a good introduction to the basic techniques of
operational semantics.

We extend this range to deal with the basic synchronisations of object-
oriented discrete-event simulation. Giving the operational semantics of a com-
plete simulation language, such as Simula [4] would require many pages, most of
which would contain nothing new. What is needed is an operational semantics
for that part of the problem of interest, and since the bugs that give the most
trouble are those caused by scheduling and synchronisation problems, we con-
centrate upon giving simple and consistent formulation of the routines for event
list scheduling and inter-process communication. Since it is unlikely that the
intended audience (simulars) is experienced in reading and applying semantic
definitions, we have chosen to present the development in stages. In this paper
we use a stripped down version of Demos [2, 3], called #Demos, to put across
our mental model and explain the essence of the technique. The operational se-
mantics of the synchronisations of full Demos language is given in a companion
paper [5]. Alternative approaches based upon process logics are being explored

in [17].

The paper is organised as follows: In section 2 we give the structure of
mDemos programs and sketch its built-in facilities. In section 3 we present a
simple mDemos model and explain how it is executed. The presentation gives
insight into the structure of the semantic definition. In section 4 we give oper-
ational definitions for the scheduling and synchronisation facilities of mDemos.
In section 5 we give some applications of semantic techniques: how to derive
implementations from semantic definitions and how to verify the correctness of
event list operations.

2 7Demos programs

In this section we introduce the facilities of mDemos informally using weigh-
bridge access as a running example. Delivery vans arriving at a factory must
pass over a weighbridge on entry. The weighbridge accepts one van at a time
and each weighing operation takes 3 time units. Vans arrive at clock times 0 and
2 and the model is to be run for 6 time units. The complete mDemos program
reads:

line no. wDemos code

1 MAIN =

2 [decP(van, [getR(W), hold(3), putR(W)]),
3 newR (W),

4 newP(V1, van, 0),

5 newP(V2, van, 2),

6 hold(s)

7]

mDemos programs have a particularly simple structure:

e the whole program (lines 1-7) is defined as a process called MAIN whose
body is a list of commands, separated by commas, and enclosed in square
brackets.

e a static section (lines 2-3) giving (a) templates for the process definitions
(line 2 declares the class of vans) and (b) establishing the resources (line
3 creates a resource W representing the weighbridge)

e a dynamic section (lines 4-6) wherein (a) the individual processes are
created and scheduled (line 4 generates a van named V1 and inserts it
into the event list at time 0 and line 5 generates a van named V2 and
inserts it into the event list at time 2) and the length of the model run is
established ((line 6 sets the simulation run length at 6)

2.1 Notation

We have adopted certain notations from modern functional programming lan-
guages ([1, 7, 10, 14]) to express lists and sub-expressions.

Lists. The empty list is denoted by []. When we wish to display a nonempty
list in full, we enumerate it. The process body below with three actions:

[getR(W), hold(3), putR(W)]
is actually short for
getR(W) ::hold(3): :putR(W):: []

where :: is the infix operator (usually called cons) used to glue atoms
onto lists at their head. Most of the time we wish to focus upon the first
action in a process body, since that will be its next action to be carried
out, For this we use the technique of pattern matching: if we write

b::Body = [getR(W), hold(3), putR(W)]

then in the ensuing text, b is matched to the head of the list getR(W) and
Body is matched to its tail [hold(3), putR(W) J.

Updating. We use the notation S[id/x] to mean:

e case id € &: update the value of id € § by x

e case id € §: add the name id to § and initialise it to x

let x = e in E. We use the let notation let x = e in E to clarify the struc-
ture of complicated expressions, preferring, for example, to spell out

exec(current::£L, R[id/RD(true,[])])

in simple steps as

let R”” = R[id/RD(true,[])] in
let ££° = current::£L in
exec(EL, R’)

2.2 Processes

In the process-oriented approach to discrete event modelling, programs are col-
lections of interacting processes which compete for resources with other pro-
cesses before a task can be undertaken. Processes are given distinctive names
and their bodies are described as a list of the tasks that they carry out.

Process classes are defined by the decP command. decP(classId, classDef)
saves away the class body definition under the lookup name of classId.

New processes are generated by newP commands. newP(id, classId, dt)
enters a new event notice for the process id into the event list delayed by dt.
The second argument gives the lookup name for the class actions.

Each process in the model is represented by its own event notice, of the form
(id, PD(Body, Attrs, evTime)) where

1. id is a unique identifier, e.g. MAIN, V1, V2

2. Body is the sequence of actions in the process’s body,
e.g. [getR(W), hold(3), putR(W) 1].

3. Attrs is a list of properties local to this specific object. In the sequel
we will maintain as attributes, the names of resources acquired but not
yet released. This enables checks to be made which ensure that resources
already owned cannot be acquired again, resources must be acquired before
they are released and that all acquired resources are eventually released.

4. evTime is a non-negative number fixing when the process is scheduled to
carry out its next action. Every time we pass a time delay as argument
to a function, we insert a check to ensure that it is indeed not negative.
In some more modern programming languages, it would be possible to
give event times a non-negative type obviating the need for such explicit

checks.

As an example of this notation in action.

EL = [(MAIN, PD([newP(V2,van,2),hold(6),hold(0),closel,[1,0)),
(vi, PD([getR(W),hold(3),putR(W)], [1,0))

displays the event list with two active processs:

1. MAIN scheduled to carry out the statement newP(V2,van,2) at time 0

2. V1 scheduled to carry out getR(W) also at time 0

Both MAIN and V1 have empty attribute lists. The event notice at the head of
the event list is called current. Above, this is

(MAIN, PD([newP(V1i,van,2),hold(6),hold(0),closel, [1, 0))

We take the simulation clock time to be the event time of current. The mDemos ex-
ecutor is so framed that the next action to be executed is always the first action
in the action list of the current event; in this case, newP(V2, van, 2). When
this action has been carried out, the event list takes the form

EL = [(MAIN, PD([hold(6),hold(0),closel, [1,0)),
(v1, PD([getR(W),hold(3),putkR(W)],[1,0)),
(v2, PD([getR(W),hold(3),putR(W)],[1,2))

in which there are three event notices. Notice that V2 has been scheduled at
time 2 and the list of actions of MAIN has been decremented (in object oriented
parlance, its local sequence control has moved past the last action). timeremains
unchanged by this action.

2.3 Resources

Mutual exclusion is implemented by getR/putR operations on a resource. For
pedagogic simplicity, resources are always of size 1 in this presentation. The
weighbridge resource is introduced by newR (W).

The resource W is aquired via a call getR(W). Requests are always considered
on the first-come, first-served basis. A request is granted immediately if the
resource is free. Otherwise the requester is blocked and held in a (hidden)
queue local to the resource. There it remains until it is first in the queue and
the resource is free again.

A call on putR(W) not only frees the resource but also unblocks the first
waiting process, if any. An unblocked process leaves the resource queue, claims
ownership of the resource, and enters the event list at the same clock time as
its unblocker, but after it.

The most appropriate place to locate a blocked process is in a list local to
the resource itself. It follows that the state of a resource is captured by a (name,
descriptor) pair (id, RD(avail, Q)) where

1. id is a unique identifier, e.g. W

2. avail is a true/false (free/busy) flag

3. Q is a list of processes wanting to acquire the resource. Processes are
queued first-come, first served.

Then

e (W, RD(true, [])) represents a free weighbridge,

e (W, RD(false, [])) represents a busy weighbridge with no blocked pro-
cesses, and

e (W, RD(false, (V2, PD(Body, Attrs, evTime’))::Q)) represents a busy
weighbridge with V2 at the head of the list of blocked processs. We repre-
sent a blocked process by its event notice. Its evTime field is not required
but, if left, contains the time at which it was blocked which can be useful
debug information.

Summary of rDemos commands.

command = decP(classld, classDef)
newP(id, classld, dt)
hold(dt)

newR(id)

getR(id)

putR(id)

close

where:

decP(classId, classDef) defines a fresh class of process under the name classId.
classId must be a fresh identifier.

newP (id, classId, dt) creates a new object, named id, and enters it into the
event list at time+dt. The class body actions are looked up under the
name classId. id must be a fresh identifier. classId must be already

declared.
hold(dt) re-enters the current object into the event list at time + dt.
newR(id) establishes a new resource. id must be a fresh identifier.

getR(id) seeks to acquire the resource id on behalf of current. If the request
cannot be met, current (the requesting process) is blocked. A blocked
process has to wait until the resource is freed by a subsequent call on
putR(id) by another process.

putR(id) frees the resource id and awakens the first process blocked on id (if
any) who can now go into the event list after current but at the same
simulation clock time.

close shuts down a simulation run.

At any given time, a process may be in one of two states: scheduled in the
event list or blocked awaiting a resource to become available. As an illustration,
figure 1 shows how the operations described above move processes between these
states. The arrow for getR forks because a request may cause current to be
blocked (subscript 1) or to be granted at once (subscript 2).

BLOCKED

geth

hold

getR1
< ®

putR

Y

ACTIVE

<+— newP
— [] (deleted)

Figure 1: The ways processes change state

3 Execution of a simple 7Demos program

In order to give insight into our presentation of the semantics of 7Demos, we
now explain how the weighbridge program unfolds. NB. We purposely omit
lookup information to simplify the presentation.

1. The system initialises itself by entering MAIN into the event list, with an
empty attribute list, at clock time zero. An empty resource pool is also

established.

EL

[(MAIN, PD([decP(van, [getR(W),hold(3),putR(W)]),
newR (W),
newP(V1i,van,0),
newP(V2,van,2),
hold(8),
hold(0),
close

1, 0, o)l

R (1

The main program has the five actions supplied explicitly by us
[decP(van, ...), newR(W), newP(V1,van,0), newP(V2,van,2), hold(s)]

which define the class of vans, initialise the weighbridge resource, create
and schedule the two van processes into the event list, and then run the
model for 6 time units. Two actions, hold(0) and close are automatically
added to every user definition of MAIN. hold(0) permits all other actions
scheduled for the system shut down time to complete, and close first calls
a final report and shuts down the run gracefully.

2. The system is so framed that the next action to be executed is the first ac-
tion of the current object, here decP(van, [getR(W),hold(3),getP(W)]1)
which saves the class actions under the name van.

3. The next action is to create and initialise the weighbridge.

EL
R

[(MAIN,PD([newP(V1,van,0),newP(V2,van,2),hold(6),hold(0),closel, [1,0))]
[(w,T,[1)]

4. Then newP(V1,van,0) creates a new van process V1 and schedules it for
time 0.

10

EL = [(MAIN, PD([newP(V2,van,2),hold(6),hold(0),closel,[1,0)),
(vi, PD([getR(W),hold(3),putR(W)], [1,0))
]
R = [(W,T,[1)]

The event list now has two members each scheduled for time 0. The next
two steps create a second van at time 2

EL = [(MAIN,PD([hold(6),hold(0),close]l, [],0)),
(vi, PD([getR(W),hold(3),putR(W)]1,[1,0)),
(v2, PD([getR(W),hold(3),putR(W)],[1,2))
]
R = [(W,T,[1)]

and then reschedule MAIN for time 6.

EL = [(Vi, PD([getR(W),hold(3),putR(W)],[1,0)),
(v2, PD([getR(W),hold(3),putR(W)1,[1,2)),
(MAIN, PD([hold(0),closel, [1,6))
]
R = [(wW,T,[1)]

Notice that MAIN has now done the first part its job (established all the
dynamic entities in the system). Now it waits to shut down at the appro-
priate time. We now have a new current but the simulation clock time
remains at 0.

V1 now acquires the weighbridge and remembers that fact in its attribute
list.

EL = [(vi, PD([hold(3),putR(W)], [(wl,0)),
(v2, PD([getR(W),hold(3),putR(W)],[1, 2)),
(MAIN, PD([hold(0),close], [1, &)

]

R = [(wW,F,[])]
V1 now carries out hold(3) which moves it down the event list.

EL = [(v2, PD([getR(W),hold(3),putR(W)],[1, 2)),
(vi, PD([putR(W)], wl,3)),
(MAIN, PD([hold(0),closel, 1, 6))
]
R = [(W,F,[1)]

11

9. Again we have a new current, this time V2, and the simulation clock moves
up to 2. V2 is blocked. It is removed from the event list and waits on the
resource W.

EL

[(vi, PD([putR(W)], wl, 3)),
(MAIN, PD([hold(0),closel, [1, 6))
]

R [(w,F,[(v2, PD([hold(3),putR(W)],[]1,2))1)]

10. This moves the simulation clock up to 3 and makes V1 the new current.
It owns one share of W and can thus release it. This unblocks V2 which
returns to the event list behind V1 and owning W.

EL = [(vi, PD([], 1, 3)),
(v2, PD([hold(3),putR(W)],[W]l, 3)),
(MAIN, PD([hold(0),close]l, [1, 6))
]
R = [(w,F,[1)]

11. V1 has now exhausted its actions and is deleted (having checked that its
attribute list is empty)

EL = [(V2, PD([hold(3),putR(W)],[W], 3)),
(MAIN, PD([hold(0),close]l, [1, 6))
]
R = [(w,F,[1)]

12. V2 now carries out the weighing task

EL = [(MAIN, PD([hold(0),closel, [1, 6)),
(v2, PD([putR(W)1, wl, 6))
]
R = [(w,F,[1)]

13. which brings back MAIN to be current. Now you see the need for the
hold(0) — it allows the program to complete the final release action®.

EL
R

[(v2, PD([putR(W)1, [Wl, 6)), (MAIN, PD([closel, [1, 6))]
[(w,F,[1)]
I Stopping the simulation at exactly the right time is made easier in process based languages

if one treats the main program block as just another process. If need be, it can then be blocked
on a bin (or passivated) and woken up at the right instant.

12

14. V2 now releases its share in W

EL
R

[(v2, PD([], [1, 6)), (MAIN, PD([closel, [1, 6))]
C(w,T,[1)]

15. and 1s deleted

EL
R

[(MAIN, PD([closel,[1,6))]
[(w,T,[1)]

leaving MAIN to execute the final close action which issues a final report
and then shuts down.

13

4 Semantics of TDemos synchronisations

As a simulation run unfolds, we have to keep track of the current states of the
processes and resources it contains. Thus we may define the state of a program
as the product of the states of its constituents (resources and processes) together
with the set of valid class, process and resource names. We represent the state
of a program at any time by a triple (££, R, X) where:

EL is an event list which contains all the active (scheduled) processes, ranked
according to the time of their next scheduled event.

R is the set of resources. It is convenient to keep blocked processes local to
the resource upon which they are waiting, so R implicitly contains all the
blocked processes as well.

Y. is an environment of defined names. In this account, ¥ contains class, indi-
vidual object and resource definitions.

NB ¥ is used in our presentation to save and lookup definitions. If is
possible to combine R and ¥ into a single set. We have chosen to represent
them separately to ephasize that all uses of ¥ (checks that identifiers are
fresh, and that definitions exist and are of the appropriate type) could be
carried out by a mwDemos compiler.

As each program command is executed the system will change from one state
to another

(EL, R, ¥) = (£L’, R, ¥7)

Execution is so framed that the next action to be executed is always the first
action in the action list of the first object in the event list. Thus given the event
list pattern-matching

— the next action must be b and the system takes the time of this action to be
time.

14

4.1 Accessing sets

We use sets to hold resources, names, and attributes. The basic operations over
a set are: the test for set membership, looking up an entry, adding an entry,
and deleting an entry. We do not impose an implementation, but adopt the
following conventions:

Membership. id € 8§ returns true if an entry for id lies in S, false if not.

Lookup an entry. LOOKUP id & returns rd when (id, rd) € &. The callis
an error if id ¢ §.

Remove an entry. § -—id returns § when (id, rd) € &. The call is an
error if id ¢ §.

Update an item. If id ¢ S, we add an entry (id, rd) to § by S[id/rd] If
id € &8, then §[id/rd] overwrites the previous entry for id. If the update
simply adds an identifier, we will usually write & ++ id.

4.2 Accessing the event list

The event list is an ordered list of pairs of the form (id, PD(Body,Attrs,evt))
ranked by increasing time evt. Given that

gﬁ: [(idl, PD(bl, ai, tl)), (idg, PD(bQ, a9, tQ)), ceey (ldn, PD(bn, Apn, tn))]

then t; <ts <... <t,. We posit two basic event list routines and two auxiliaries:
here are their explanation together with concrete FCFS list implementations.

evTime en (event notice en) returns the event time of en.

evTime (id, PD(Body,Attrs,evt)) = evt

pName en (event notice en) returns the identifier of en.

pName (id, PD(Body,Attrs,evt)) = id

ENTER en £L: enters the event notice en into the event list £L ranked acord-
ing to its event time

ENTER en [] [en]

ENTER enl (en2::EL) = if evTime enl < evTime en2
then enl::en2::EL
else en2::(ENTER enl EL)

15

DELETE id £L returns a copy of the event list ££ with the event notice for
id located and deleted. It raises an error if id is not scheduled.

DELETE id [] = error
DELETE id (en::££) = ifid=pName en then £L else en::(DELETE id ££)

4.3 Semantic rules

Structural operational semantics takes a language, command by command, and
tells us how the system state will change when we carry out that command. In
general, a command will fire only if certain constraints are satisfied, and it may
fire in different ways depending upon the constraints. The typical rule is written:

constraint,
constraints
constraint,,

(EL, R, T = (EC, R, %)

where the constraints are listed above the horizontal line and the firing rule
below. It is interpreted as “when all the constraints above the line are satisfied,
then fire the rule below it”.

As an example, suppose that the next command is newR(id). We pattern
match the current state of the system to

((c, PD(newR(id)::Body, Attrs, time))::EL, R, X)
There are two cases to consider:

1. error if id is already in use, expressed by
current = (C, PD(newR(id)::Body, Attrs, time))

id € ¥
(current::£L, R, X) =— error

2. normal case : the name id is added to the name pool, and a new res is
added to the set of system resources. The system state changes to

((C,PD(Body,Attrs,time))::£L, R[id/RD(true,[1)],X ++ id)

16

where C remains current, at the same clock time, but has moved on to
the next instruction; the set of resources R has been incremented by (id,
RD(true, [1)), a pair with identifier id and a resource descriptor in-
tialised to free and with an empty listy of blocked processes. id is added
to the set of names Y. This is expressed by:

current = (C, PD((newR(id)::Body, Attrs, time))
current’ = (C, PD(Body, Attrs, time))
id ¢ %

(current::L, R, ¥) — (current’::£L, R[id/RD(true,[1)], ¥ ++ id)

It is common practice to list the firing rules separately as above. However
after consideration of the target readership of this paper (with simulation rather
than proof backgrounds), we prefer to coalesce the rules into a single case struc-
ture which has the merit of being closer to normal programming practice, as
below

(current = (C, PD(newR(id)::Body, Attrs, time))::£L, R, X)
— ifid € X then error else

| let R’ = R[id/RD(true, [])]) in

let ££° = current::£L in

let ¥’ =X ++1id in
(ELC, R, YD)

(the lets merely break the description into simple steps).

17

4.4 Event list commands

It is now straightforward to give a semantics as a case statement over the struc-
ture of tDemos commands, as sketched below:

1 exec ([], R, ¥) = error

2 exec ((C, PD([],Attrs,time))::EL, R, ¥) =
if Attrs=[] then exec(£L, R, X) else error

3 exec ((C, PD(b::Body,Attrs,time))::EL, R, X)
— let current = (C, PD(Body, Attrs, time)) in
(caseb of

decP(classld, classDef) §4.4.1

| newP(id, classld, dt) §4.4.2
| hold(dt) §4.4.3
| newR(id) §4.4.4
| getR(id) §4.4.5
| putR(id) §4.4.6
| close §4.4.7
)

1. an error arises if the event list becomes empty (the system should be shut
down with a call on close).

2. When a process has exhausted its actions, a check is made to see whether
it still owns any attributes. It should not and an error results if it does.
If not, all is well. The process is deleted from the event list and the
simulation proceeds from the next action of the new current.

3. The normal case — we focus on (C, PD(b::Body,Attrs,time)) the ob-
ject at the head of the event list, and execute its next action b. The
names Body, Attrs, and time are directly accessible in the case clause.
The cases are detailed each to its own subsection as indicated above. For
convenience, we name the expected next current.

18

4.4.1 decP(classld, classDef)

Informally, a new entry (classId, classDef) is entered into the set of process
declarations. An error arises if classId 1is not fresh.
Semantics:

decP(classld, classDef)

— ifclassld € ¥ then error else
let ££° = current::£L in
let ¥’ = Y[classId/classDef] in

exec(EL, R, X7)

Interpretation:

1. classld € Y. error if the process identifier is not fresh

2. Normal case

(a) let ££°= current::£L: put the (diminished) current back as head of
the event list at the current clock time.

(b) let ¥’ = X[classId/classDef]: add the entry for the process class id
to X.

(c) continue execution from (££°, R, ¥’)

19

4.4.2 newP(id, classId, dt)

Informally, a new process named id is entered into the event list at the simula-
tion clock time + dt. An error arises if the delay dt is negative or if id is not
unique. The same process remains as current and the simulation clock time is
unchanged.

Semantics:
newP(id, classld, dt)

— ifide X then error else
if classld ¢ X then error else
if not(classld is class definition) then error else
ifdt <0 then error else
let classDef = LOOKUP classld X in
let en = (id, PD(classDef, [], time-+dt)) in
let ££’= current::(ENTER en ££) in
let ¥’ =% ++ 1id in

exec(EL, R, ¥7)
Interpretation:

1. id € X: error if the process identifier is not fresh
2. classld & X error is the identifier class Id is not already defined

3. not(classld is class definition): error if classId is not a process class
definition

4. dt < 0 error if the relative time of scheduling is negative

5. Normal case

(a) let classDef = LOOKUP classId : lookup the definition of class

(b) let en = (id, PD(classDef, [], time+dt)): prepare an event list entry
for id at the current clock time + dt.

(c) let £L°= current::(ENTER en £L£): and enter it into the event list
after current

(d) let ¥’ = ¥ ++ id: add the name of the fresh object to ¥

(e) continue execution from (££°, R, ¥’)

Notice that we make no attempt to give a semantics for arithmetic values. In
a full semantic definition, we should include an extra clause stating that if the
argument dt evaluates to error, then so does newP(id, classId, dt).

20

4.4.3 hold(dt)
Informally we move current down the event list with a delay of dt. An error
arises if dt is negative. Typically a new current will result.

Semantics:

hold(dt)
— if dt < 0 then error else
let ££’ = ENTER (C, PD(Body,Attrs,time+dt)) ££ in
exec(EL, R, X)

Interpretation:

1. dt < 0: error if dt is negative

2. Normal case

(a) let ££° = ENTER (C, PD(Body, Attrs, time+dt)) £L: enters the

updated event notice for current into the tail (££) of the event list.

(b) continue evaluation from the new state (££°, R, X)

21

4.4.4 newR(id)

Informally a new resource is added to the resource set. It is saved as a pair (id,
RD(true, [1)). An error occurs if the resource name id has been used before.

Semantics:
newR(id)
— ifid € ¥ then error else

let ££° = current::€L in

let R’ = R[id/RD(true, [])] in

let ¥ =% +4+1d in

exec(EL, R, X7)

Interpretation:

1. @d € ¥: an error if the resource identifier is not fresh

2. Normal case

(a) let ££° = current::£L: update the event list.

(b) let R’ = R[id/RD(true, [])] : add the new resource descriptor for id
(free and with an empty blocked queue) to the resource pool R.

(c) let ¥ = ¥ ++4 id: add the fresh identifier to the list of resource
names

(d) continue from (££°, R’, ¥7)

22

4.4.5 getR(id).

Informally current acquires the resource id only if there are no blocked pro-
cesses waiting on id and id is free at the time of the request. Otherwise current
is blocked and waits in a queue local to the resource id. A successful request
is recorded in the attribute list of current. An error arises if the resource is
already owned since a second attempt must deadlock the system.

Semantics.

getR(id)
—> ifid € Attrs then error else
case LOOKUP id R of
RD(true, [])

= let Attrs’ = Attrs ++ id in
let ££’ = (C, PD(Body,Attrs’,time))::£L in
let R’ = R[id/RD(false, [])] in

exec(EL, R, X)

| RD(false, Q)
= let Q= Q@[current] in
let R’ = R[id/RD(false, Q)] in
exec(EL, R, X)

| anythingelse = error

Interpretation.

1. id € Attrs: an error if current already owns the resource (otherwise, the
system deadlocks)

2. Normal case

3. case LOOKUP id R of: returns the descriptor for id.

(a) RD(true, []): the resource is available and no other process is blocked.
Acquire it and continue on as current

i. let Attrs’ = Attrs ++ id: add id to the attribute list of current.

ii. let ££° = (C, PD(Body,Attrs’ time))::£L: update the event list

iii. let R’ = R[id/RD(false, [])]: update the entry for id to reflect

its busy status

iv. and continue on from exec(£L’, R’, X)

(b) RD(false, Q) : the resource is already in use. Current is blocked.

23

il.

iil.

. let Q" = Q@[current]: add current to the tail of the blocked

queue associated with resource id

let R’ = R[id/RD(false, Q’)]: update the entry for the resource
id

continue on with a fresh current, exec(£L, R’, X))

(c) anythingelse = error: an error if the lookup fails. NB we can prove
that the LOOKUP case RD(true, q::Q) (a free resource with one or
more blocked process) cannot arise.

24

4.4.6 putR(id)

Informally when current releases a resource id, the resource count is made free
and then its pending queue is examined. The leading blocked process, if any,
can now be promoted. Promotion entails seizing the resource and entering the
event list at the current clock time, but note that the “putter” will remain as
current. An error arises if an attempt is made to release a resource that has
not been aquired.

Semantics.
putR(id)
—> ifid ¢ Attrs then error else
let Attrs” = Attrs —id in

let ££’ = (C, PD(Body, Attrs’, time))::£L in
case LOOKUP id R of
RD(false, [])
= let R’ = R[id/RD(true, [])]) in
exec(EL, R, X)

| RD(false, (pl, PD(B1,A1,t1))::Q1)

= let R’ = R[RD(id/(false, Q)] in
let A1’ = Al ++ id in
let en = (p1,PD(B1,A1’ time)) in
let ££” = ENTER en ££° in

exec(EL”, R, X)

| anythingelse = error

Interpretation.

1. id & Attrs: any attempt to return a resource that is not owned is in error

2. Normal case: proceed by removing id from the attributes of current and
pre-computing the updated event list

3. case LOOKUP id R of: three cases arise

(a) RD(false, []): there are no blocked processes
i. let R’ = R[id/RD(true, [])]: simply update id to be free, and
ii. continue on from exec(£L°, R’, X)

(b) RD(false, (p, PD(bl,al,t1))::Q): there are blocked processes, and the

leading one is p

i. let R’ = R[id/RD(false, Q)]: the resource is now busy and p is
deleted from its blocked queue

25

1

iil.

1v.

V.

an

i. let A1’ = Al 4+ id: update the attributes of p1 with the re-

source name id

let en = (pl,PD(B1,A1’time)): create a new event notice for
the unblocked process p1

let ££7 = ENTER en ££’: the event notice for p1 is entered
into the (precomputed) event list at the current simulation time.

continue on from exec(£L”, R’, X)

ythingelse = error: an error if the lookup fails. NB we can prove

that the LOOKUP case RD(true, (), an attempt to free an already
free resource cannot arise (we have already checked that it is owned

by

current)

26

4.4.7 close

A call on close shuts down the simulation run.
Semantics.

close — reportR
Interpretation.

In a fully-fledged simulation, a final report on resource usage would be issued
at this point.

27

5 Applications

5.1 Implementation

An implementation of 1Demos was developed as the operational semantics was
being formulated. This style of co-development was important as it helped
both debug the semantics (especially missing error cases) and streamline its
presentation.

As implementation language we used SML [14], a modern functional lan-
guage with strong datatypes. As one might have expected, it was a straight-
forward matter to convert from the operational semantics into SML (much eas-
ier than it would have been to convert to an imperative language with weak
datatypes such as C [6]). It is interesting commentary on the power of modern
functional languages that only 184 lines of code were required (with full tracing?
but no resource utilisation statistics), and that the object-oriented style can be
modelled in such a direct fashion.

Two fully-explained representative code expansions are presented below. A
full listing of mDemos, our running example and its full execution trace are given
in an Appendix.

Implementation of sets in SML

Here are the intuitive definitions and implementations of the basic routines
for set membership, updating an item, and look-up together with the actual
implementations. A set is represented by a list; each member of a set is held
as a pair (r, rd), where r is a (unique) identifier and rd is its associated
descriptor.

Membership. id € R returns true if an entry for id lies in R, false if not.
This definition is implemented by

fun isMEM id [] = false
| isMEM id ((r, rd)::R) if id=r then true else isMEM id R

id is not in the empty list [1. Otherwise search the nonempty list ((r,
rd)::R) from its head (r, rd): if id = r then return true; else search
the rest of the list.

Lookup an entry. LOOKUP id R returns rd when (id, rd) € R. The call
is an error if id € R. This definition is implemented by

2The traces shown in this paper came from this toy implementation

28

fun LOOKUP id [] = error
| LOOKUP id ((r,rd)::R) if id=r then rd else LOOKUP id R

Lookup on an empty list is an error. Otherwise lookup in the nonempty
list ((r, rd)::R) from its head (r, rd): if id = r then return the as-
sociated descriptor rd; else search the rest of the list.

Remove an entry. REMOVE id R returns R --(id, rd) when id € R. The
call is an error if id € R. This definition is implemented by

fun REMOVE id [] = error
| REMOVE id ((r,rd)::R) if id=r then R else (r,rd)::(REMOVE id R)

Removing an item from an empty list is an error. Otherwise search
nonempty list ((r, rd)::R) from its head (r, rd): if id = r then re-
turn the rest of the list R; otherwise save the current list head and add it
onto the result of removing id from the tail R.

Add/update an item. If id ¢ R, we add an entry (id, rd) to R by R[id/rd]
If id € R, then R[id/rd] overwrites the previous entry for id. This def-
inition is implemented by

fun UPDATE []1 (z, rd)
= [(r, rd)] (* add a new entry *)
| UPDATE ((r’,rd’)::R) (r, rd)
= if r’=r then (r, rd)::R else (r’,rd’)::(UPDATE R (r, rd))

If the list is empty, return a list with one item. Otherwise search nonempty
list ((r’, rd’)::R) from its head (r’, rd’): if r’=r then replace the old
entry (r’ rd’) by the update (r, rd); otherwise save the current list head
and add it onto the result of updating (r, rd) in the tail R.

Implementation of putR in SML

The implementation of the putR synchronisation is again very close to that of
the semantic definition. The major change being the syntactic form of lets in

SML.

29

putR(id)
—> ifid ¢ Attrs then error else
let Attrs’ = Attrs —id in
let ££’ = (C, PD(Body, Attrs’, time))::£L in
case LOOKUP id R of
RD(false, [])
= let R’ = R[RD(id/(true, [])]) in
exec(EL, R, X)

| RD(false, (pl, PD(B1,A1,t1))::Q1)
= let R’ = R[RD(id/(false, Q)] in
let A1’ = Al ++ id in
let ££” = ENTER (pl,PD(B1,A1’ time)) ££° in
exec(EL”, R, X)

| anythingelse = error

is implemented by

putR(id)
=> if not(isMEM id Attrs) then error else
let val Attrs’ = REMOVE id Attrs
val EL’ = (C, PD(Body, Attrs’, time))::EL
in
(case LOOKUP id R of
(RD(false, [1))
=> let val R’ = UPDATE R (id, RD(true, [1))
in
exec (EL’, R’, Sigma)
end

| (RD(false, (pl, PD(B1,A1,t1))::Q1))
=> let val R’ = UPDATE R (id, RD(false, Q1))

val A1’ = UPDATE A1 (id, RA)
val en = (p1,PD(B1,A1’,time))
val EL’’ = ENTER en EL’

in
exec (EL’’, R’, Sigma)

end

| anythingelse => error
)

end

30

With set definitions established, and allowing for a sugared let construct, the
translation is quite mechanical.

5.2 Proofs

Work is underway with Tom Melham of Glasgow University formalising and
proving facts about 7Demos in the HOL proof assistant [8]. The HOL descrip-
tion is a direct encoding of the operational semantics presented here. Initial
work has shown that the event list does indeed remain ordered. In further work
we expect to prove that terminating mDemos models evolve uniquely and that
“well-formed” mDemos models must terminate. Formalising systems and car-
rying out proofs in proof assistants like HOL is time consuming and requires a
reasonable level of expertise. Proof assistants are very demanding and see to it
that every detail has to be properly proved (no corners can be cut, which can
be tedious), that all sub-proofs are completed, and (in this case) that an appro-
priate induction schema be used. The effort is justified by the extra confidence
that a formal proof bestows and the intrinsic interest of the proof.

6 Summary and conclusions

In this paper we have given an operational definition of the synchronisations
and event list operations of a small discrete event simulation language, mDemos.
The same style and techniques can be applied to give a semantics for other com-
mon synchronisation mechanisms, such as producer/consumer, buffers, waitgs,
waituntil, broadcasting, and interrupts (see [5]); and to compare and contrast
simulation languages.

Giving a language a “good” semantics is important because it serves as a
clear (taking care with notation), short (using good abstractions), and unam-
biguous statement of the intent of each language construct and how a model
will evolve. The semantic description can be used by implementors to ensure
consistent developments across different hardwares, by simulars to understand
how models unfold in “tricky” situations, and in proving facts about models.

This semantics was developed hand-in-hand with an implementation in SML.
This co-development was important as is helped debug and simplify the semantic
definitions. In general, we would contend that languages designed in this way via
semantic principles will be simpler, cleaner, and safer. The work presented here
is leading to further research on proofs about simulation models, comparisons
with other semantics bases (the more abstract denotational semantics), formal
checking of the properties of simulation models, and meta-level abstractions
over synchronisations to ensure their consistency.

31

Acknowledgements

This work has been supported by an Operating Grant from the Natural Sciences
and Engineering Research Council of Canada and by a Science and Engineering
Research Council (UK) Advanced Research Fellowship tenable at University
College, Swansea.

References

(1]

2]

R. Bird and P. Wadler. Introduction to Functional Programming. Prentice
Hall, Hemel Hempstead, UK, 1988.

G. Birtwistle. DEMOS — a system for discrete event modelling on Simula.
Macmillen, London, 1979.

G. Birtwistle. The Demos Implementation Guide and Reference Manual.
Technical Report, 260 pages, Computer Science Department, University of
Calgary, 1983.

G. Birtwistle, O-J. Dahl, B. Myhrhaug, and K. Nygaard. Simula begin.
Studentlitteratur, Lund, Sweden, 1973.

G. Birtwistle and C. Tofts. Operational Semantics of Process-Oriented Sim-
ulation Languages. Part 2: Demos. Computer Science Technical Report,
University of Calgary, 1993.

A. Cave Brown. C. Macmillan, New York, 1987.

W. Burge. Recursive Programming Techniques. Addison-Wesley, New York,
1975.

M. J. C. Gordon and T. F. Melham. Introduction to HOL: a theorem
proving environment for higher order logic. Cambridge University Press,

Cambridge, 1993.

M. Hennessy. The Semantics of Programming Languages. John Wiley,
Chichester, England, 1990.

S. L. Peyton Jones. The Implementation of Functional Programming Lan-
guages. Prentice Hall, London, 1986.

R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.

R. Milner and M. Tofte. Commentary on Standard ML. MIT Press, Cam-
bridge, Mass., 1991.

32

[13]

[14]

[15]

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT
Press, Cambridge, Mass., 1990.

L. C. Paulson. ML for the Working Programmer. Cambridge University
Press, Cambridge, Britain, 1991.

G. D. Plotkin. A Structural Approach to Operational Semantics. Research
Report DAIMI FN-19, Computer Science Department, Aarhus University,
Denmark, 1981.

G. D. Plotkin. An Operational Semantics for CSP. Research Report CSR-
114-82, Computer Science Department, Edinburgh University, Scotland,
1982.

C. Tofts. Process Semantics for Simulation. Technical Report, Department
of Mathematics and Computer Science, University of Swansa, Swansea,

Wales, 1993.

33

7 APPENDIX

exception BLOW_UP;

fun error s
= (output(std_out, "sxxerror -- " ~ s ~ " xxx\m\n")
raise BLOW_UP
)3

fun pllum x = (makestring (x:imt));
fun showB b = if b them "T" else “E";

fun bkt s PTG IR
fun sbkt s =t s t
fun splice [o

| splice [al a

| splice (a::h) =a = "," " (splice A);
fun rbs § bkt(splice S);
fun sbs § = sbkt(splice §);
type Id = string
type Time = int
datatype ACTION

= decP of TId * ACTION list

| newP of Id * I1d * Time

| hold of Time

| close

| newk of Id

| getk of Id

| putk of Id

datatype PROC
= PD of ACTION list # (Id # ATTRIBUTE) list * Time

and RESOURCE
= RD of bool * (Id * PROC) list

and ATTRIBUTE
= RA

and DECL
= PDEC of Id * Time
| RDEC
| CDEC of ACTION list;

fun showACT a

= case a of
decP(classId,classDef) => "decP:" ~ classId = " = " = (showACTS classDef)

| mewP(id,classId,t) => "newP" ~ rbs[id,classId,plunm t]

| hold(t) => "hold" * bkt(plum t)

| close => “close"

| newk(id) => "mewk" " (bkt id)

| getR(id) => “getR" = bkt(id)

| putR(id) => “putR" * bkt(id

and showACTS L = sbs(map showACT L)

and plame (id, PD(Body, Attrs, evt)) = id
and evTime (id, PD(Body, Attrs, evt)) = evt

and sysTime [] = error “empty EL"
| sysTime (em::EL) = evlime en

and showEl (id, PD(Body, Attrs, evt))
= rbs[id, "PD" - rbs[showACTS Body, showATTRS Attrs, pllum evt]]

and showENS L = sbs(map showEl L)

and showRESOURCE (id, RD(b, §)) = rbs[id, showB b, showEIS §]
and showRESOURCES L = sbs(map showRESOURCE L

and showATTR (id, RA) = id
and showATTRS L = sbs(map showATTR L)

and showDEC (id, PDEC(cId,dt)) = rbs["PROC", id, cId, pllum dt]
| showDEC (id, RDEC) rbs["RES", id]
| showDEC (id, CDEC cDef) = rbs["CLASS",id, showACTS cDef]
and showDECS L = sbs(map showDEC L)

and showEL L = showENS L
and showRHO L = showDECS L;

fun showState (EL, R, SIGHA)
= (output(std_out,("*+Clock time = " ~ plum(sysTime EL) ~ "\n"));

34

output(std_out,("EL = " " (showEL EL) =~ "\n"));

output(std_out,("B = " ° (showRESOURCES R) ~ "\n"));
output(std_out,("RHO = " = (showDECS SIGHA) ~ "\m\n")
)3
isHEH id [] = false

isHEM id ((r, rd)::R) = if id=r them true else isMEH r R;

LOOKUP
LOOKUP

REHMOVE
REHMOVE

UPDATE
UPDATE

ia 1

= error ("LOOKUP " ~ id = “:: " " id ~ " not found")

id ((r,rd)::R) = if id=r then rd else LOOKUP id R;

ia 0

= error (“REHOVE " ~ id ~ " " " id © " not found")

id ((item as (r,rd))::R) = if id=r then R else item::(REHOVE id R);

0 (zr, rd) = [(r, rd)] (* add a new entry *)
((r’,rd’)::R) (r, rd) = if r=r’ them (r, rd)::R else (r’,rd’)::(UPDATE R (r, rd))

ENTER enl [] = [enl]
ENTER enl (en2::EL)
= if evTime enl < evTime en2

DELETE

ia 0

en2::EL
::(ENTER enl EL)

= error (“attempt to DELETE mnon-scheduled process " ~ id)

DELETE id (en::EL) = if id = pllame en then EL else en::(DELETE id EL);

exec state
(showState state;
case state of

([1, &, Sigma) => error (“exec:: empty evemt list'")

((C, PD([], Attrs, time))::EL, R, Sigma)

=> if not(Attrs = [1)

then error (“exec:: process " ~ C = " dies owning attrs::" ° (showATTRS Attrs)
else exec(EL, R, Sigma)

((C, PD((b::Body), Attrs, time))::EL, B, Sigma)

=> (let val curremt = (C, PD(Body, Attrs, time))

in

case b of
decP(classId, classDef)
=> if (isMEH classId Sigma) them error ("decP:: class id " ~ classId ~ "’ used before") else
let val EL’ = curremt::EL
val Sigma’ = UPDATE Sigma (classId, CDEC classDef)
in
exec (EL’, B, Sigma’
end

newP(id, classId, dt)
=> if (isHEH id Sigma) then error (“mewP:: proc id ’" * id ~ "’ used before") else
if mot(isHEH classId Sigma) them error (“mewP:: " ° classId ~ " not declared") else
if dt < 0 then error (“mewP with megative delay " = (plum dt)) else
let val (CDEC classDef) = LOOKUP classId Sigma

val en (id, PD(classDef, [1, time+dt)
val EL’ current: : (EITER en EL)
val Sigma’ = UPDATE Sigma (id, PDEC(classId, dt))
in
exec (EL’, B, Sigma’
end
| hold(dt)
=> if dt < 0 them error (“hold:: megative argument " ~ (plum dt)) else
let val EL’ = ENTER (C, PD(Body, Attrs, time+dt)) EL
in
exec (EL’, B, Sigma)
end

| close => output(std_out, "\nm\n*** end of simulation run *#*\n\n")

| newk(id)
=> if (isMEH id Sigma) then error (‘'mewR:: resource id ’" " id " "’ used before") else
let val B> = UPDATE R (id, RD(true, [1))

val EL’ = current::EL
val Sigma’ = UPDATE Sigma (id, RDEC)

in
exec (EL>, B’, Sigma’)
end
| getR(id)
=>if (isMEM id Attrs) them error (“deadlock --- re-acquire of owned resource " ~ id) else

(case LOOKUP id B of
(RD(true, [1))
=> let val Attrs’ = UPDATE Attrs (id, RA)
val EL’ = (C, PD(Body, Attrs’, time))::EL
val B’ = UPDATE R (id, RD(false, [1))
in

35

exec (EL’, B’, Sigma)
end

| (RD(false, Q))
=> let val @’ = Qe[current]
val R’ = UPDATE R (id, RD(false, §’))
in
exec (EL, B, Sigma)
end

| anythingelse => error "LOOKUP failure in getR"

| putk(id)
=> if not(isHEM id Attrs) them error ("putk of mot owned resource " ~ id) else
let val Attrs’ = REHOVE id Attrs
val EL’ = (C, PD(Body, Attrs’, time))::EL
in
(case LOOKUP id R of
(RD(false, [1))
=> let val B’ = UPDATE R (id, RD(true, [1))
in
exec (EL’, R’, Sigma)
end
| (RD(false, (p1, PD(B1,A1,t1))
=> let val B’ UPDATE R (id, RD(false, Q1))
val AL’ UPDATE A1 (id, RA)
val EL’’ = ENTER (p1,PD(B1,A1’,time)) EL’
in
exec (EL’’, B>, Sigma)
end
| amythingelse => error ("LOOKUP error om putk")
end
end
)
)
fun e H

= exec([("HAIN'", PD(He[hold(0), closel, [1, 0))1, [1, [1);

36

