
Lab session Datapath

Group A: November 9, 2009
Group B: November 10, 2009

Work in the given groups of two. Submit your solutions to the respective
assignment on Blackboard. The �le name is:
a05_s0XXXXX_s0XXXXX.tar.gz

One of the group members commits your solution. Keep an eye on the deadline
(see Blackboard)!

1 Project

1. Build a circuit that implements a 16-bit program counter (PC) that selects
an instruction in a RAM element of 16-bit words. By default, the PC is
increased each clock cycle, and the next instruction is read from memory.
The special case of branching/jumping must also be implemented. In this
case, the PC must go back or forward according to the branch o�set. You
should have te following inputs and outputs:

name in/out width meaning

branch? I 1 bits
selects whether we want to
branch or simple increase the PC

branch o�set I 16 bits the branch o�set w.r.t. the PC

instruction O 16 bits
the selected instruction from
memory

2. Use four 16-bit registers, a RAM element (16-bit addresses, 16-bit words)
and your own ALU to implement a partial datapath. The circuit has the
following inputs (no outputs):

1

name in/out width meaning

operation I 4 bits
denotes which operation is exe-
cuted (cfr. ALU operations)

rs I 2 bits
source register index for the cur-
rent operation

rt I 2 bits
2nd source register index for the
current operation

rd I 2 bits
destination register index for the
current operation

o�set I 8 bits
memory index o�set for the
sw/lw operations

• The datapath must be able to perform so-called register operations.
These are the 14 operations you implemented in your ALU. This
time, operands are read from, and the result is stored into registers.
The right registers are selected by specifying the rs, rt and rd index
inputs. For binary operations (e.g. add, eq, ...), the registers are
used as follows:

$rd = $rs operation $rt

For unary operations (e.g. not, sl, ...), the registers are used as follows
($rt is unused):

$rd = operation $rs

• The datapath must be able to perform the load word (lw � reading
from RAM) and store word (sw � writing to RAM) operations. These
are immediate instructions, and similar to the MIPS lw/sw instruc-
tions, a constant can be used to denote an o�set. The meaning of
these instructions is as follows:

lw: $rt = MEM[$rs + o�set]

sw: MEM[$rs + o�set] = $rt

Examples:

To add the values of register1 and register3, and put them in register0,
the following inputs are given:

operation your opcode for addition
rs 01
rt 11
rd 00
o�set ignored

To store the value of register0 in memory, two words beyond the address
stored in register2:

operation your opcode for store word
rs 10
rt 00
rd ignored
o�set 4 (remember that words are 2 bytes long in our datapath)

2

