
Lab session Recursion

Group A: November 27, 2009
Group B: November 24, 2009

Work in the given groups of two. Submit your solutions to the respective
assignment on Blackboard. The �le name is:
s06_s0XXXXX_s0XXXXX.tar.gz

One of the group members commits your solution. Keep an eye on the deadline
(see Blackboard)!

1 Project

Consider the following C program implementing a factorial:

int fact(int n) {

if (n < 1)

return (1);

else

return (n * fact(n - 1));

}

Inspect the factorial assembler code (you can download on the website) - an
example of recursion. Note the use of the stack pointer $sp, frame pointer $fp,
return address register $ra, argument register $a0 and return register $v0. Ex-
ecute it and discover how recursion works. Look at the stack during execution.

In essence, fact(4) is executed as the following recurrence relation:

fact(4) = 4 * fact(3)

= 4 * (3 * fact(2))

= 4 * (3 * (2 * fact(1)))

= 4 * (3 * (2 * (1 * fact(0))))

= 4 * (3 * (2 * (1 * 1)))

= 4 * (3 * (2 * 1))

= 4 * (3 * 2)

= 4 * 6

1

= 24

Your project consists of implementing the following C code:

int f1(int a) {

if (a < 3)

return (a);

else

return (f2(a-1, a-2) + f2(a-2, a-1));

}

int f2(int x, int y) {

return 2*f1(x) + y;

}

f1 is a indirect recursive function. The function behaves as follows:
i 1 2 3 4 5 6 7 8 9 10

f1(i) 1 2 9 27 79 221 611 1677 4591 12553

1. Compose the recurrence relation for i = 4, and write this in your report
of this project. Keep in mind what part will be �rst resolved/calculated
(this is stricter than simply applying mathematical properties)! That way,
you know how your stack will behave.

2. Implement this code in MIPS assembly language. You're obligated to
use the stack pointer, the frame pointer, the return address register, the
argument registers and the return registers. Implement the two functions
as two seperate subroutines (so do not substitute expressions).

2

