
Computer Systems and Architecture
UNIX Scripting

Ruben Van den Bossche
Original slides by Bart Sas

University of Antwerp

1 / 33

Outline

Basics

Conditionals

Loops

Advanced

Exercises

2 / 33

Outline

Basics

Conditionals

Loops

Advanced

Exercises

3 / 33

Shell scripts

I Grouping commands into a single file
→ Reusability

I Possible to use programming constructs
I Variables
I Conditionals
I Loops
I . . .

I No compilation required

4 / 33

Creating a shell script

1. Save the script as a (.sh) file
2. Add the line ‘#!/bin/bash’ (or #!/usr/local/bin/bash on

radix) to the beginning of the script
I ‘#!’ indicates that the file is a script
I ‘/bin/bash’ is the shell that is used to execute the script
I When the script is executed, the program after the ‘#!’ is

executed and the name of the script is passed to it
I Since the line starts with a ‘#’ it is ignored by the shell

3. Make the script executable using ‘chmod +x’
4. Execute the script by calling it

I Put ‘./’ in front of the name in order to avoid confusion with
commands

5 / 33

Comments

I Comments are placed behind a # and last until the end of
the line

I There are no multiline comments
I The #! line is a comment

6 / 33

Variables

I Setting variables
I VARIABLE=value
I No spaces before and after the ‘=’

I Using variables
I Place a ‘$’ before the name
I If the variable name is followed by text → place the name

between braces
I E.g.: echo "Today is the ${DAY}th day of the week"

I Waiting for keyboard input
I read VARIABLE

I Exporting variables
I To make them accessible from other programs
I Place ‘export’ before the name of the variable
I E.g.: export PATH=’/bin:/usr/bin’

7 / 33

Special variables

$@ Expands to the list of positional parameters,
separated by commas

$# The number of positional parameters
$0 The name of the script

$1, . . . , $9 The nine first positional parameters
$? The exit status of the last executed command
$! The PID of the last process that was started in the

script
$RANDOM A positive random integer

8 / 33

Example

I pico script.sh
#!/usr/local/bin/bash

name=‘whoami‘

echo Hello $name !

I Execute:
chmod +x script.sh

./script.sh

9 / 33

Outline

Basics

Conditionals

Loops

Advanced

Exercises

10 / 33

Conditions

I Between [...]

I Spaces before and after []
I Examples

I [-d dir] returns true if dir is a directory
I [$var -eq 2] returns true if $var equals 2
I [$var -eq 1] || [$var -eq 2] returns true if $var

equals 1 or 2

11 / 33

Conditions - Files

-e File exists
-d Is a directory
-f Is a regular file
-r Is readible
-w Is writeable

12 / 33

Conditions - Strings

-n Length of string is nonzero
-z Length of string is zero

s1 = s2 s1 and s2 are identical
s1 != s2 s1 and s2 are not identical

13 / 33

Conditions - Numbers

i1 -eq i2 i1 and i2 variables are equal
i1 -ne i2 i1 and i2 variables are not equal
i1 -gt i2 i1 is greater than i2
i1 -ge i2 i1 is greater than or equal to i2
i1 -lt i2 i1 is less than i2
i1 -le i2 i1 is less than or equal to i2

14 / 33

Conditions - And, or, not

! negation (NOT) operator
&& AND operator
|| OR operator

15 / 33

If statements

if [$# -ne 1]

then

echo Please specify your name

elif id $1 > /dev/null

then

echo Hello $1

else

echo I don\’t know you

fi

16 / 33

If statements

I Zero or more elif clauses are possible
I The else clause is optional
I The if body is executed if the exit status of the condition is 0

17 / 33

Case statements

case $NUMBER

in

11|12|13)

echo ${NUMBER}th

;;

*1)

echo ${NUMBER}st

;;

*2)

echo ${NUMBER}nd

;;

*3)

echo ${NUMBER}rd

;;

*)

echo ${NUMBER}th

;;

esac

18 / 33

Case statements

I Executes code based on which pattern matches a word
I Multiple cases can be specified per block by separating

them using ‘|’
I Each block has to be terminated by a ‘;;’
I Use ‘*’ to match ‘the rest’
I If multiple cases match, the first one is executed

19 / 33

Outline

Basics

Conditionals

Loops

Advanced

Exercises

20 / 33

For loops

for FILE in ‘ls /bin‘

do

echo "Creating link to $FILE..."

ln -s /bin/$FILE

done

21 / 33

For loops

I The list can be
I A literal list: a b c
I A glob pattern: *.jpeg
I The output of a command: ‘ls -a‘

I The body is executed for each element in the list
I The Loop variable is set to the value of the current word

22 / 33

While and until loops

while [-f file.txt]

do

echo file.txt still exists... Please remove it

sleep 5

done

23 / 33

While and until loops

I The condition is evaluated on each iteration
I While loops are executed as long as the exit status of the

condition is zero
I Until loops are executed as long as the exit status of the

condition is not zero

24 / 33

Break and continue

for I in ‘seq 10‘

do

if [$I -eq 3]

then

echo Skipping 3...

continue

fi

if [$I -eq 7]

then

echo Stopping at 7...

break

fi

echo The square of $I is $((I*I))

done

25 / 33

Break and continue

I break causes a loop to be exited immediately
I continue causes a loop to continue with the next iteration
I An integer parameter can be specified to continue or break

from the nth enclosing loop
I ‘break 2’ will break from the second enclosing loop
I ‘continue 1’ is the same as ‘continue’

26 / 33

Outline

Basics

Conditionals

Loops

Advanced

Exercises

27 / 33

Arithmetic

I Arithmetic can be performed between ((and))

I Only operations on integers are possible
I The exit status is 0 when the result of the expression is not

zero and 1 if the result of the expression is zero
I An expression between $((and)) expands to the result of

the expression.
I For more advanced calculations bc can be used.

28 / 33

Arithmetic

A=$RANDOM

B=$RANDOM

C=$A

D=$B

while ((D != 0))

do

TEMP=$D

D=$((C % D))

C=$TEMP

done

echo "The GCD of $A and $B is $C"

29 / 33

Functions

I Functions behave the same as commands
I The exit status of the function is the exit status of the last

executed process
I Parameters are placed in variables $1, . . . , $9
I Use ‘return’ to exit from the function early
I Use the ‘local’ keyword to make local variables

30 / 33

Further reading

I The Bash Manual
www.gnu.org/software/bash/manual/bashref.html

I Advanced Bash-Scripting Guide
tldp.org/LDP/abs/html/

31 / 33

www.gnu.org/software/bash/manual/bashref.html
tldp.org/LDP/abs/html/

Outline

Basics

Conditionals

Loops

Advanced

Exercises

32 / 33

Exercises

I http://msdl.cs.mcgill.ca/people/hv/teaching/

ComputerSystemsArchitecture/#csw4

33 / 33

http://msdl.cs.mcgill.ca/people/hv/teaching/ComputerSystemsArchitecture/#csw4
http://msdl.cs.mcgill.ca/people/hv/teaching/ComputerSystemsArchitecture/#csw4

	Basics
	Conditionals
	Loops
	Advanced
	Exercises

