
Computer Systems and -architecture

Project 2nd Session: Datapath

1 Ba INF 2011-2012

Ruben Van den Bossche
ruben.vandenbossche@ua.ac.be

Sam Verboven
sam.verboven@ua.ac.be

Don’t hesitate to contact the teaching assistants of this course. You can reach them in room
M.G.2.12 or by e-mail.

Time Schedule

The project for the second session is solved individually. There will be an evaluation during the
examination period. At this evaluation moment, you will present your solution of the project
by giving a demo and answering some questions.

For this project, you submit a small report of the project you made by filling in verslag.html

completely. A report typically consists of 500 words and a number of drawings/screenshots. Put
all your files in a tgz archive, as explained on the course’s website, and submit your report to
the assignments on Blackboard.

• Report deadline: August, 19 2012, 23u55

Project

1. Build an arithmetic logic unit (ALU) for 16-bit two’s complement data words. To do this,
create a circuit that implements a 1-bit ALU. Combine them to obtain a 16-bit ALU.
Implement the operations below, giving each operation a 4-bit binary code. Your ALU
will execute the right operation according to a 4-bit operation input. Next to this, your
ALU should have two 16-bit words as input, one 16-bit word as output, and one “error”
bit as output, denoting an error.

Use the Logisim ALU GroupXX.circ file provided on the course page. Your ALU should
be able to perform the operations listed below. Make sure to test everything, including
the different possible overflow cases!

(a) generate 0 (0000).
Example:
result 0000000000000000

(b) AND (0001).
Example:
a 0010010010101010

b 1010100101010010

result 0010000000000010

1

Computer Systems and -architecture 1 Ba INF, 2011-2012

(c) OR (0010).
Example:
a 0010010010101010

b 1010100101010010

result 1010110111111010

(d) NOT (0011).
Example:
a 0010010010101010

result 1101101101010101

(e) numeric inverse (two’s complement) (0100).
Example:
a 0010010010101010

result 1101101101010110
Mind overflow!

(f) numeric addition (two’s complement) (0101). Ripple carry addition suffices.
Example:
a 0010010010101010

b 1010100101010010

result 1100110111111100
Mind overflow!

(g) numeric subtraction (two’s complement) (0110).
Example:
a 0010010010101010

b 1010100101010010

result 0111101101011000
Mind overflow!

(h) shift left (0111).
Example:
a 0010010010101010

result 0100100101010100

(i) shift right (1000).
Example:
a 0010010010101010

result 0001001001010101

(j) signed shift left (two’s complement) (1001). This implements ”times two”.
Example:
a 0010010010101010

result 0100100101010100
Mind overflow!

(k) signed shift right (two’s complement) (1010). This implements ”divide by two”.
Example:
a 0010010010101010

result 0001001001010101
Mind overflow!

(l) less than (1011). Results in 1 if a < b, 0 if a ≥ b.
Example:
a 0010010010101010

b 1010100101010010

result 0000000000000000

2

Computer Systems and -architecture 1 Ba INF, 2011-2012

(m) greater than (1100). Results in 1 if a > b, 0 if a ≤ b.
Example:
a 0010010010101010

b 1010100101010010

result 0000000000000001

(n) equals (1101). Results in 1 if a = b, 0 if a 6= b.
Example:
a 0010010010101010

b 1010100101010010

result 0000000000000000

2. Build a circuit that implements a 16-bit program counter (PC) that selects an in-
struction in a RAM element of 20-bit words. Although, from the hardware perspective,
instructions of a not-a-power-of-two size is inefficient, it suits our demonstrational needs.
By default, the PC is increased each clock cycle, and the next instruction is read from
memory. You should have the following inputs and outputs:

name in/out width meaning

C I 1 bit clock input

instruction address O 16 bits
the address of the instruction in the
instruction memory

3. Build a register file made of sixteen 16-bit (Logisim) registers. The register file must be
able to read from and write to specified registers. Register 0 is a special case: it always
contains zero, and writing to it doesn’t modify its contents. The register file has the
following in- and outputs:

name in/out width meaning

rs I 4 bits register $rs index number
rt I 4 bits register $rt index number
rd I 4 bits register $rd index number
D I 16 bits used as input for the write operation
write I 1 bit write to $rd enabled?
C I 1 bit clock input

S O 16 bits register $rs content
T O 16 bits register $rt content

4. In order to translate from the instruction OP-code to the ALU OP-codes and to get all
control lines right, you will have to add a Control Unit circuit to your datapath.

• Input is the instruction OP-code (4 bits).

• Outputs are the ALU OP-code as well as all control lines for i.e. the program counter,
instruction and data memory, multiplexers and the register file.

More information on the implementation of a control unit can be found in Section 4.4 of
Computer organization and design.

5. Use your register file, your program counter, your control unit, an instruction RAM el-
ement (16-bit addresses, 20-bit words), a data RAM element (16-bit addresses, 16-bit
words) and your own ALU to implement a datapath.

3

Computer Systems and -architecture 1 Ba INF, 2011-2012

19-16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0000 rs rt rd funct 14 R-type Instructions1

0001 rs rt immediate (unsigned) lui3,5: $rt = imm << 8
0010 rs rt immediate (unsigned) ori5: $rt = $rs | imm
0011 rs rt immediate (signed2) addi: $rt = $rs + imm
0100 rs rt immediate (unsigned) andi: $rt = $rs & imm
0101 rs rt immediate (signed2) lw: $rt = MEM[$rs+imm]
0110 rs rt immediate (signed2) sw: MEM[$rs+imm] = $rt
0111 target address jump: $pc = addr
1000 rs rt offset (signed2) jr: $pc = $rs+imm
1001 rs rt offset (signed2) beq: ($rs=$rt) ? $pc=$pc+1+imm
1010 rs rt offset (signed2) bne: ($rs 6=$rt) ? $pc=$pc+1+imm
1011 target address jal: $ra = $pc + 1;$pc = addr

1 14 R-type instructions from your ALU. The ALU opcode is given in the funct field.

2 Two’s complement.

3 “Load upper immediate”: put the 8-bit immediate in the upper 8 bits (shift left x8 and store in register).

4 The lui and ori instructions can be used together to implement a li pseudo-instruction which loads a
16-bit immediate into a register.

6. Once done, your datapath can correctly execute a program written in machine language, as
the behaviour of arithmetic, branching and memory operations is now fully implemented!

7. Exceptions are a very important part of a datapath and control. In this exercise, you will
add a basic form of exception handling to your datapath: when an exception is detected,
your program counter should halt at the instruction that caused the exception. Both
arithmetic overflow and undefined instructions should be detected and supported.

Think about enhanced versions of exception control. What is necessary in order to add a
more advanced form of exception handling to a datapath with our instruction set?

8. Demonstrate the proper operation of your datapath by providing a number of small RASM-
programs. Try to use subroutines at least once. Don’t forget to initialize the stack pointer.
Provide the programs below.

(a) A program that calculates the Fibonacci numbers and stores them in memory. After
which number does overflow occur?

(b) A program that calculates the greatest common divisor (using the Euclidean algo-
rithm, but without recursion) of two integers read from memory. Store the result
back in memory.

(c) A program that finds the biggest element in an array of integers stored in memory.
Store the biggest element back in memory.

(d) A program that writes a 1 to memory if an array of integers in memory contains
duplicates, and writes 0 if it doesn’t.

(e) A program that sorts an array of integers in memory. You can use a sort algorithm
of your own choice. If you want a challenge, you can try to implement the quick sort
algorithm.

4

