
Computer Systems and -architecture

Project 3

1 Ba INF 2011-2012

Ruben Van den Bossche
ruben.vandenbossche@ua.ac.be

Sam Verboven
sam.verboven@ua.ac.be

Don’t hesitate to contact the teaching assistants of this course. You can reach them in room
M.G.2.12 or by e-mail.

Time Schedule

Projects are solved in pairs of two students. Projects build on each other, to converge into a
unified whole at the end of the semester. During the semester, you will be evaluated three times.
At these evaluation moments, you will present your solution of the past projects by giving a
demo and answering some questions. You will immediately receive feedback, which you can use
to improve your solution for the following evaluations.

For every project, you submit a small report of the project you made by filling in verslag.html

completely. A report typically consists of 500 words and a number of drawings/screenshots. Put
all your files in a tgz archive, as explained on the course’s website, and submit your report to
the exercises on Blackboard.

• Report deadline: November, 6 2011, 23u55

• Evaluation and feedback: November, 8 2011

Project

Read section C.5 of Appendix C. Build a arithmetic logic unit (ALU) for 16-bit two’s complement
data words. To do this, create a circuit that implements a 1-bit ALU. Combine them to obtain
a 16-bit ALU. Implement the operations below, giving each operation a 4-bit binary code. Your
ALU will execute the right operation according to a 4-bit operation input. Next to this, your
ALU should have two 16-bit words as input, one 16-bit word as output, and one ”error” bit as
output, denoting an error.

Use the Logisim ALU GroupXX.circ file provided on the course page.

1



Computer Systems and -architecture 1 Ba INF, 2011-2012

Your ALU should be able to perform the operations listed below. Make sure to test every-
thing, including the different possible overflow cases!

1. generate 0 (0000).
Example:
result 0000000000000000

2. AND (0001).
Example:
a 0010010010101010

b 1010100101010010

result 0010000000000010

3. OR (0010).
Example:
a 0010010010101010

b 1010100101010010

result 1010110111111010

4. NOT (0011).
Example:
a 0010010010101010

result 1101101101010101

5. numeric inverse (two’s complement) (0100).
Example:
a 0010010010101010

result 1101101101010110
Mind overflow!

6. numeric addition (two’s complement) (0101). Ripple carry addition suffices.
Example:
a 0010010010101010

b 1010100101010010

result 1100110111111100
Mind overflow!

7. numeric subtraction (two’s complement) (0110).
Example:
a 0010010010101010

b 1010100101010010

result 0111101101011000
Mind overflow!

8. shift left (0111).
Example:
a 0010010010101010

result 0100100101010100

9. shift right (1000).
Example:
a 0010010010101010

result 0001001001010101

2



Computer Systems and -architecture 1 Ba INF, 2011-2012

10. signed shift left (two’s complement) (1001). This implements ”times two”.
Example:
a 0010010010101010

result 0100100101010100
Mind overflow!

11. signed shift right (two’s complement) (1010). This implements ”divide by two”.
Example:
a 0010010010101010

result 0001001001010101
Mind overflow!

12. less than (1011). Results in 1 if a < b, 0 if a ≥ b.
Example:
a 0010010010101010

b 1010100101010010

result 0000000000000000

13. greater than (1100). Results in 1 if a > b, 0 if a ≤ b.
Example:
a 0010010010101010

b 1010100101010010

result 0000000000000001

14. equals (1101). Results in 1 if a = b, 0 if a 6= b.
Example:
a 0010010010101010

b 1010100101010010

result 0000000000000000

3


