
Computer Systems and -architecture

Project 6

1 Ba INF 2011-2012

Ruben Van den Bossche
ruben.vandenbossche@ua.ac.be

Sam Verboven
sam.verboven@ua.ac.be

Don’t hesitate to contact the teaching assistants of this course. You can reach them in room
M.G.2.12 or by e-mail.

Time Schedule

Projects are solved in pairs of two students. Projects build on each other, to converge into a
unified whole at the end of the semester. During the semester, you will be evaluated three times.
At these evaluation moments, you will present your solution of the past projects by giving a
demo and answering some questions. You will immediately receive feedback, which you can use
to improve your solution for the following evaluations.

For every project, you submit a small report of the project you made by filling in verslag.html

completely. A report typically consists of 500 words and a number of drawings/screenshots. Put
all your files in a tgz archive, as explained on the course’s website, and submit your report to
the exercises on Blackboard.

• Report deadline: December, 18 2011, 23u55

• Evaluation and feedback: December, 20 2011

Project

1. In the previous assignment, we used the ALU OP-codes as instruction OP-codes and added
two additional instructions (lw and sw). In order to add more than 16 instructions to our
datapath, we need to alter our OP-codes and instruction set: next to the 14 ALU (R-
type) instructions, we also support immediate instructions as well as branch and jump
instructions.

We also extend our instructions with 4 additional bits, and therefore now need a 20-bit
instruction memory. The size of our data memory remains unaltered at 16 bits. Although,
from the hardware perspective, instructions of a not-a-power-of-two size is inefficient, it
suits our demonstrational needs.

1



Computer Systems and -architecture 1 Ba INF, 2011-2012

2. In order to translate from the instruction OP-code to the ALU OP-codes and to get all
control lines right, you will have to add a Control Unit circuit to your datapath.

• Input is the instruction OP-code (4 bits).

• Outputs are the ALU OP-code as well as all control lines for i.e. the program counter,
instruction and data memory, multiplexers and the register file.

More information on the implementation of a control unit can be found in Section 4.4 of
Computer organization and design.

3. We introduce a number of new instructions, including instructions for jump and branch.
You will therefore have to alter your program counter, and allow it to jump to a given
address instead of just the next insruction.

4. Some registers now have a special meaning:

• $r0 becomes $zero

• $r14 becomes $ra

• $r15 becomes $sp

5. Implement the instructions described in the table below. You will have to alter your
datapath slightly in order to get the right operation codes for the R-type instructions and
the lw/sw instructions you already implemented.

19-16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0000 rs rt rd funct 14 R-type Instructions1

0001 rs rt immediate (unsigned) lui3,5: $rt = imm << 8
0010 rs rt immediate (unsigned) ori5: $rt = $rs | imm
0011 rs rt immediate (signed2) addi: $rt = $rs + imm
0100 rs rt immediate (unsigned) andi: $rt = $rs & imm
0101 rs rt immediate (signed2) lw: $rt = MEM[$rs+imm]
0110 rs rt immediate (signed2) sw: MEM[$rs+imm] = $rt
0111 target address jump: $pc = addr
1000 rs rt offset (signed2) jr: $pc = $rs+imm
1001 rs rt offset (signed2) beq: ($rs=$rt) ? $pc=$pc+1+imm
1010 rs rt offset (signed2) bne: ($rs 6=$rt) ? $pc=$pc+1+imm
1011 target address jal: $ra = $pc + 1;$pc = addr

1 14 R-type instructions from your ALU. The ALU opcode is given in the funct field.

2 Two’s complement.

3 “Load upper immediate”: put the 8-bit immediate in the upper 8 bits (shift left x8 and store in register).

4 The lui and ori instructions can be used together to implement a li pseudo-instruction which loads a
16-bit immediate into a register.

6. Once done, your datapath can correctly execute a program written in machine language, as
the behaviour of arithmetic, branching and memory operations is now fully implemented!

2


