
Computer Systems and -architecture

MIPS: Recursion

1 Ba INF 2013-2014

Bart Meyers
bart.meyers@uantwerpen.be

Quinten Soetens
quinten.soetens@uantwerpen.be

Time Schedule

Exercises are made individually. Put all your files in a tgz archive, as explained on the course’s
website, and submit your solution to the exercises on Blackboard.

• Deadline: December 16, 23u55

Exercises

Write a MIPS program for the MARS simulator for each of the following exercises. As always,
document your solution well (use #).

Use stack frames in all your procedure calls.

1. Suppose you have a MIPS program implementing a recursive algorithm to calculate the
nth Fibonacci number. Draw on a sheet of paper what the stack looks like when
reaching one of the base cases for the first time after calling this with n = 5. i.e. We have
the following chain of calls: F (5)→ F (3)→ F (1). The fibonacci numbers are recursively
defined as follows:
F0 = 0
F1 = 1
Fi = Fi−2 + Fi−1 for i > 1
You may send in a scan of your solution.

2. Write a MIPS program that reads two integers a and b, and calculates the greatest common
divisor.

• Write a (leaf) remainder procedure that takes two arguments a and b, and calculates
the remainder of the division of a and b.

• Write a (recursive) procedure gcd with two arguments a and b, which calculates the
greatest common divisor using this recursive definition:

gcd(x, y) =

{
x : if y = 0
gcd(y, remainder(x, y)) : x ≥ y and y > 0

(1)

3. Take your exercises of last week and add a recursive procedure that sorts an array of
integers using a quicksort algorithm. Call the procedure with the array on the heap, and
left = 0, right = array size.

1

Computer Systems and -architecture 1 Ba INF, 2013-2014

void qu ickSort (int ar r [] , int l e f t , int r i g h t) {
int i = l e f t , j = r i gh t ;
int tmp ;
int p ivot = ar r [(l e f t + r i gh t) / 2] ;

/∗ p a r t i t i o n ∗/
while (i <= j) {

while (a r r [i] < p ivot)
i++;

while (a r r [j] > p ivot)
j−−;

i f (i <= j) {
tmp = arr [i] ;
a r r [i] = ar r [j] ;
a r r [j] = tmp ;
i++;
j−−;

}
} ;

/∗ recurs ion ∗/
i f (l e f t < j)

qu ickSort (arr , l e f t , j) ;
i f (i < r i g h t)

qu ickSort (arr , i , r i g h t) ;
}

2

