
Computer Systems and -architecture

Project 5

1 Ba INF 2014-2015

Bart Meyers
bart.meyers@uantwerpen.be

Don’t hesitate to contact the teaching assistant of this course. You can reach him in room
M.G.3.17 or by e-mail.

Time Schedule

Projects are solved in pairs of two students. Projects build on each other, to converge into a
unified whole at the end of the semester. During the semester, you will be evaluated three times.
At these evaluation moments, you will present your solution of the past projects by giving a
demo and answering some questions. You will immediately receive feedback, which you can use
to improve your solution for the following evaluations.

For every project, you submit a small report of the project you made by filling in verslag.html

completely. A report typically consists of 500 words and a number of drawings/screenshots. Put
all your files in a tgz archive, as explained on the course’s website, and submit your report to
the exercises on Blackboard.

• Report deadline: December, 3 2014, 23u55

• Evaluation and feedback: December, 5 2014

Project

Read sections 4.1, 4.2, 4.3 and 4.4 of Chapter 4. You can use all Logisim libraries for this
assignment.

1. Build a circuit that implements a 12-bit program counter (PC) that selects an instruc-
tion in a RAM element of 12-bit words. Use the Logisim SD GroupXX.circ file provided
on the course page. Rename the file so that ’XX’ is your group number. Use your 12-bit
register. By default, the PC is increased each clock cycle, and the next instruction is read
from memory. In case of a relative branch, the PC is increased, and then the branch value
is added as a 2’s complement value (e.g., if the PC has value 10 and the next cycle there
is a branch of value 5, then the next PC value is 16, not 15). In case of an absolute branch
(or jump) the PC is directly set to the branch value. You should have the following inputs
and outputs:

name in/out width meaning

branch relative? I 1 bits branch to relative value?

branch absolute? I 1 bits branch to absolute value? (cannot be 1 if branch relative? is 1)

branch value I 12 bits the value that is used in case of a branch

C I 1 bit clock input

reset I 1 bit if set, the PC is reset to 0

instruction address O 12 bits the address of the instruction in the instruction memory

1

Computer Systems and -architecture 1 Ba INF, 2014-2015

2. Implement a partial datapath of 16-bit instructions and 12-bit data words and addresses
by using your register file, a data RAM element (12-bit addresses, 12-bit words), your
program counter with instruction RAM element (12-bit addresses, 16-bit words), and
your own ALU. Copy the program counter in your circuit instead of using it as a block.
Implement your datapath in the “main” circuit in SD GroupXX.circ. You will have to
modify your register file first so that it has an output for every register, to connect to the
outputs in the “main” circuit (this has to be done for debugging purposes).

• The datapath must be able to perform so-called register operations. These are the
12 operations you implemented in your ALU. This time, operands are read from, and
the result is stored into registers. The relevant registers are selected by specifying
the rs, rt and rd index inputs in your register file. For binary operations (i.e., and,
or, sub, add, eq, lt, gt), the registers are used as follows:

$rd = $rs operation $rt

For unary operations (i.e., not, inv, sl, sr, inv), the registers are used as follows ($rt
is unused):

$rd = operation $rs

For the zero instruction, the registers are used as follows:

$rd = 0

The 16-bit instructions for the register operations are formatted as follows:

– 15-12 : operation code

– 11-8 : $rd

– 7-4 : $rs

– 3-0 : $rt

Example: To subtract the values of register 1 and register 2, and put the result in
register 10, the following instruction is loaded:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0

• The datapath must be able to perform the load word (lw – reading from data RAM,
op-code 1100) and store word (sw – writing to data RAM, op-code 1101) operations.
These are immediate instructions, and similarly to the MIPS lw/sw instructions, a
constant can be used to denote an offset (the offset is unsigned, as opposed to the
MIPS lw/sw instructions). The meaning of these instructions is as follows:

lw: $rt = MEM[$rs + offset]

sw: MEM[$rs + offset] = $rt

Load word loads the contents of memory address $rs + offset into $rt. Store word
stores the register value $rt into memory address $rs + offset. The offset is often
used for loading an array of values from memory.

The 16-bit instructions for the memory operations are formatted as follows:

– 15-12 : lw/sw operation op code (resp., 1100 or 1101)

– 11-8 : $rs

– 7-4 : $rt

– 3-0 : memory index offset for the lw/sw operations (unsigned)

Example: To store the value of register 3 in memory, 4 address spaces beyond the
address stored in register 2:

2

Computer Systems and -architecture 1 Ba INF, 2014-2015

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0

• You can try out your datapath by editing your RAM-elements. You can do this by
right-clicking them and selecting edit contents or save/load image.

3. Create and run a test file for your simple datapath. You will do this by creating a file with
tests, and running it on your circuit using the program Test.py. You need to install Python
(http://python.org/download/releases/2.7.3/) to run Test.py. Download Test.py,
SDTest GroupXX.txt (from the course page) and logisim-generic-2.7.1.jar (http://
sourceforge.net/projects/circuit/files/2.7.x/2.7.1/) and save in the same folder
as your adapted SD GroupXX.circ project (you already have created SD GroupXX.circ in
the previous assignment). The program takes a file containing small assembler programs
that are datapath tests as input, and a SD GroupXX.circ logisim file. It runs all datapath
tests and reports test errors and failures. For this assignment you will have to do the
following:

• Create your datapath test file by adding lines to SDTest GroupXX.txt. It already
contains a simple test:
LOADMEM

lw r0 r1 4 # loads a[0] into r1

lw r0 r2 5 # loads a[1] into r2

add r3 r1 r2 # put a[0]+a[1] into r3

DATAMEM

1024

-1

CHECKMEM

r3: 1023

pc: 3

END

The test involves three instructions: two times loading and an addition (below
LOADMEM). When running the test, the LOADMEM part is assembled into binary strings
(in this case three strings). Then, the DATAMEM adds a 0-instruction that will cause
the simulator to halt here. Subsequently, a data part is provided with two numbers
(below DATAMEM). In total, we have now six binary strings: the three first are instruc-
tions, then a STOP-instruction, then two data strings. These are loaded into both
your instruction RAM and your data RAM. So you will have to write your tests as
if your architecture was a stored-program architecture: where the program and the
data are in the same memory element. This means that you should be aware that
you can reference and alter your program instructions!
In this case, the word in memory address 4 (which is 1024) will be loaded into r1,
and the word in memory address 5 (which is -1) will be loaded into r2. Then, r1 and
r2 are added, and the result is stored in r3, so r3 should contain the value 1023. The
actual tests are written below CHECKMEM: here we check whether r1 contains the value
1023 and whether the program counter has value 3. You can check the value of the
pc and any registers (unfortunately not of memory contents - you will have to load
them into a register to check them). The check is performed after the last instruction
(in this case, the addition). The test is ended by the END-line.
You can add multiple test programs to the same file, by simply starting a new LOADMEM

after the END. You can also perform checks at a specific point in your code, by adding

3

Computer Systems and -architecture 1 Ba INF, 2014-2015

a DATAMEM block at that point. To test the lw-instruction more thoroughly we can
alter the above test as follows:
LOADMEM

lw r0 r1 4 # loads a[0] into r1

CHECKMEM

r1: 1024

LOADMEM

lw r0 r2 5 # loads a[1] into r2

CHECKMEM

r2: -1

LOADMEM

add r3 r1 r2 # put a[0]+a[1] into r3

DATAMEM

1024

-1

CHECKMEM

r3: 1023

pc: 3

END

Your goal is to add significant tests to Test GroupXX.txt. Write a lot of tests. The
following are the operations you should implement in your simple datapath and thus
test in your test file:

– zero $rd: $rd = 0

– not $rd $rs: $rd = ! $rs

– and $rd, $rs, $rt: $rd = $rs AND $rt

– or $rd, $rs, $rt: $rd = $rs OR $rt

– sub $rd, $rs, $rt: $rd = $rs - $rt

– add $rd, $rs, $rt: $rd = $rs + $rt

– sl $rd $rs: $rd = $rs << 1

– sr $rd $rs: $rd = $rs >> 1

– inv $rd $rs: $rd = - $rs

– eq $rd, $rs, $rt: $rd = $rs == $rt

– lt $rd, $rs, $rt: $rd = $rs < $rt

– gt $rd, $rs, $rt: $rd = $rs > $rt

– lw $rs, $rt, c: $rt = MEM[$rs + c]

– sw $rs, $rt, c: MEM[$rs + c] = $rt

• All files must be in the same directory. The program must be executed from the
console as follows:
python Test.py -s SDTest GroupXX.txt SD GroupXX.circ

with SDTest GroupXX.txt as the file containing your datapath tests and SD GroupXX.circ

as your logisim file (change XX to your group number). Note the “-s” flag. Some
lines will be outputted to the console, ending with a line denoting how many tests
were executed (depending on how many test lines you have added to your file) and
how many of them failed or produced an error(you should have 0 here).
If not successful, tests can be ’errors’ or ’failures’. An error means that some of the
resulting signals were ’Error’ signals or ’don’t care’ signals (’E’ or ’x’, or a red/blue

4

Computer Systems and -architecture 1 Ba INF, 2014-2015

signal line in logisim). A failure means that the expected result did not match what
you have specified in your test. If you have failure or error tests, there will be some
information about this failure/error in the output.

• If your tests fail while you expect them to be successful, try the following:

(a) Double-check your solution to make sure that there is no error in your datapath.
Make sure that you have connected your register file to the register outputs
correctly!

(b) The script has generated some file(s) named SDTest GroupXX.textX, which con-
tain the compiled hexadecimal version of each test program you wrote in SDTest GroupXX.txt.
In Logisim, use these generated SDTest GroupXX.textX files to load them in your
RAM-element (right-click your RAM-element, select “load image”). Check in Lo-
gisim whether the outcome is correct. If this is the case but the corresponding
test failed when executed with the script, it means that there is something wrong
with the execution of the script, so continue with step c.

(c) Check the corresponding SDTest GroupXX.reportX file. The file is a printout of
the simulation in Logisim of the corresponding test. It can be read line per line
as follows: the first 16 bits is the pc value at a given clock tick, the remaining
sixteen 12 bit numbers are the register values (r0 to r15) at this clock tick. Since
your pc should increase every clock tick, the first column should also increase by
one on each line. If this is not the case, and some pc values appear twice below
each other, this probably means that values are only read at the rising edge. In
this case, please check your registers (i.e., D-Flipflops used in your register) in
Logisim and make sure they are all edge-triggered on the falling edge.

(d) If you still have not found the error, you might have hit a bug in the Logisim
simulator that only occurs on some platforms. This bug can be resolved as follows:
try starting every test program with zero r1 (don’t forget to also update address
values as the whole program shifts by one...). For some reason, the Logisim
simulator does not seem to be able to handle certain calculations on the first
clock tick on some platforms.

(e) If you experience “random” bugs where in some test runs your test fails, but in
others your test passes, then the following should resolve this: in Logisim, disable
the option Project→Options→simulation tab→Add Noise to component delays.

(f) If all fails, contact me.

5

