
Computer Systems and -architecture

Project 6

1 Ba INF 2014-2015

Bart Meyers
bart.meyers@uantwerpen.be

Don’t hesitate to contact the teaching assistant of this course. You can reach him in room
M.G.3.17 or by e-mail.

Time Schedule

Projects are solved in pairs of two students. Projects build on each other, to converge into a
unified whole at the end of the semester. During the semester, you will be evaluated three times.
At these evaluation moments, you will present your solution of the past projects by giving a
demo and answering some questions. You will immediately receive feedback, which you can use
to improve your solution for the following evaluations.

For every project, you submit a small report of the project you made by filling in verslag.html

completely. A report typically consists of 500 words and a number of drawings/screenshots. Put
all your files in a tgz archive, as explained on the course’s website, and submit your report to
the exercises on Blackboard.

• Report deadline: December, 17 2014, 23u55

• Evaluation and feedback: December, 19 2014

Project

Read sections 4.1, 4.2, 4.3 and 4.4 of Chapter 4. You can use all Logisim libraries for this
assignment.

1. In the previous assignment, we used the ALU OP-codes as instruction OP-codes and added
two additional instructions (lw and sw). Next to these 14 instructions, in this assignment
we also support immediate instructions as well as branch and jump instructions.

We introduce a number of new instructions, including instructions for jump and branch.
Because you should be able to branch, you will have to connect your program counter to
your datapath so that it can jump to a given address instead of just the next instruction.

Implement the instructions described in the table below. You already have implemented
the R-type instructions and the lw/sw instructions in the previous assignment.

1

Computer Systems and -architecture 1 Ba INF, 2014-2015

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Description

0000-1011 rd rs rt 12 R-type Instructions1

1100 rs rt imm (uns.) lw: $rt = MEM[$rs+imm]
1101 rs rt imm (uns.) sw: MEM[$rs+imm] = $rt
1110 rs rt imm (sign.2) bne: $rs!=$rt ? pc := pc+1+imm
1111 rs immediate (unsigned) 00 ori4: $rs = $rs|imm
1111 rs immediate (unsigned) 01 lui3,4: $rs = imm<<6
1111 target address 10 jal: $r15 := pc+1 ; pc := addr”
1111 rs immediate (signed2) 11 jr: pc := $rs+imm

1 R-type instructions from your ALU.

2 Two’s complement.

3 “Load upper immediate”: put the 6-bit immediate in the upper 6 bits.

4 The lui and ori instructions can be used together to implement a li pseudo-instruction which loads a
12-bit immediate into a register.

2. In order to get all control lines right, you will have to add a Control Unit circuit to your
datapath.

• Input is the instruction (12 bits).

• Outputs are the ALU OP-code as well as all control lines for i.e. the program counter,
instruction and data memory, multiplexers and the register file. Choose your control
lines wisely: this can make the implementation a lot easier!

More information on the implementation of a control unit can be found in Section 4.4 of
Computer organization and design.

3. Similarly you can create an Immediate circuit (this is different from the book’s datapath):

• Input is the instruction (16 bits).

• Output is the immediate value (12 bits), depending on the instruction this will be a
4/6/10-bit value that is unsigned/sign extended/shifted to 12 bits.

4. Once done, your datapath can correctly execute a program written in machine language, as
the behaviour of arithmetic, branching and memory operations is now fully implemented!
You can use the script Test.py as follows (note the -f flag to denote the simulation of a
full datapath:

python Test.py -f <test-file> <circ-file>

When testing the full datapath, you can only perform checks at the end of the program.
(This is because of branching: it would not make sense to check a register value in the
middle of a loop, as it can have a different value in a different iteration of the loop.)

5. To prepare for the next lab session, read section 4.9 of Chapter 4.

2

