Computer Systems and -architecture

Project 4
1 Ba INF 2014-2015

Bart Meyers
bart.meyers@Quantwerpen.be

Don’t hesitate to contact the teaching assistant of this course. You can reach him in room
M.G.3.17 or by e-mail.

Time Schedule

Projects are solved individually. Projects build on each other, to converge into a unified whole
at the end of the semester. At the evaluation moment, you will present your solution by giving
a demo and answering some questions.

For all of your projects, you submit a report of the project you made by filling in verslag.html
completely. A report typically consists of 1000 words and a number of drawings/screenshots.
Put all your files in a tgz archive, as explained on the course’s website, and submit your report
to the exercises on Blackboard.

e Report deadline: 24 August 2015

e Evaluation and feedback: 31 August 2015

Project

Read sections C.7, C.8 and C.10 of Appendix C. You can use all Logisim libraries for this
assignment.

1. Build a 16-bit register using 16 D flip-flops that are updated on the falling edge (beware:
in Logisim D flip-flops are by default on the rising edge). Inputs are:
e 16-bit “D”, which denotes the input data
e 1-bit “reset”, that sets the contents of the register to 000000000000 if its value is 1
e 1-bit “write”, that enables writing the value of D to the register if its value is 1
1-bit C, the clock signal

The only output is a 16-bit Q that contains the contents of the register.

2. Build a register file made of sixteen of your own 16-bit registers. The register file must
be able to read from and write to specified registers. In this case, the register file reads
from two registers, and can possibly write to a register at the same time. Register 0 is a
special case: it always contains zero, and writing to it doesn’t modify its contents. The
register file has the following in- and outputs:

Computer Systems and -architecture 1 Ba INF, 2014-2015

name | in/out | width | meaning

s I 4 bits register $rs index number

rt I 4 bits register $rt index number

rd I 4 bits register $rd index number

Data I 16 bits | used as input for the write operation
write I 1 bit write to $rd enabled?

C I 1 bit clock input

reset I 1 bit reset all registers?

S (0] 16 bits | register $rs content

T (0) 16 bits | register $rt content

3. Build a counter using your own 16-bit carry lookahead adder and 16-bit register. Inputs
are C (the clock) and D (an 16-bit number up to which the counter counts), the output
is the current 16-bit value of the register. At every clock tick, the counter adds 1 to the
number in the register. When the register value is equal to or greater than D, the value is
reset to zero. A counter with its D-input equal to 3 counts from 0 to 2. You can use the
Logisim built-in Comparator.

4. Build a clock divider. A clock divider is used to create a slow “daughter” clock from a
faster “parent” clock. Inputs are C (the clock) and N (16-bit number). You can assume
that N is even. The clock divider generates an output clock signal with a frequency that
is N times lower than the input clock signal. Use components of your own as much as
possible.

Optional: can you make the divider work with odd numbers as well?

Cock _ | | | [L[[L L []

5. Build a finite-state machine that implements a traffic light system on a cross section.
Finite-state machines use memory and a clock. Since finite-state machines are synchronous,
a new state is computed every clock cycle. A 2 Hz clock has a full clock cycle of 1 second.
Use your counter and clock divider to advance through the states and make sure your
state transitions happen at the right time. The two traffic lights behave like the following
figure:

Light 1 []
view []
T O B Y O R

|
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

t(s)

6. To prepare for the next lab session, read sections 4.1, 4.2, 4.3 and 4.4 of Chapter 4.

