Computer Systems and -architecture

Project Exam Retake

1 Ba INF 2015-2016

Bart Meyers bart.meyers@uantwerpen.be

Don't hesitate to contact the teaching assistant of this course. You can reach him in room M.G.3.17 or by e-mail.

Time Schedule

Projects are solved individually. Projects build on each other, to converge into a unified whole at the end of the semester. At the evaluation moment, you will present your solution by giving a demo and answering some questions.

You will submit a solution for all seven projects from the first semester, with the differences explained in this project description. Covering all seven projects, you submit one report by filling in verslag.html completely. A report typically consists of 1000 words and a number of drawings/screenshots. Put all your files in a tgz archive, as explained on the course's website, and submit your report to the exercises on Blackboard.

• Report deadline: 31 August 2016

• Evaluation and feedback: 7 September 2016

Project

Complete all seven projects from the first semester, with the differences explained below. If there is no mention of a certain assignment (e.g., carry-lookahead addition or finite state automata), you solve the original assignment.

Your datapath should support:

- data words (in register and data memory) of 8 bits;
- 8 registers. Register r0 and r7 are reserved. r0 is always 0, r7 is used for storing the link address;
- a data memory that stores 8 data words;
- instructions that are 13 bits wide, stored in an instruction memory with address width of 8 bits.

Implement the instructions described in the table below ("imm" stands for "immediate", "uns" stands for "unsigned" and "sig" stands for "signed").

Carefully read the following instruction table, as there are a number of differences with the previous assignment. Make sure you use TestRetake.py for this project.

12 11 10 9	8 7 6	5 4 3	2	1 0	Description
0000	rs	rt imm ((uns.)	lw: $rt = MEM[rs+imm]$
0001	rs	rt imm		(uns.)	sw: $MEM[\$rs+imm] = \rt
0010	rs	rt	imm (sig.		bne^5 : $rs!=rt$? $pc:=pc+1+imm$
0011	rs	$^{ m rt}$	imm (sig. ²)		be^5 : \$rs==\$rt ? pc := pc+1+imm
0100	rs	imm (sig. ²)			$bgtz^5$: \$rs>0 ? pc := pc+1+imm
0101	rs	$imm (sig.^2)$			jr: pc := rs+imm
0110	tar	get address 0			j: pc := addr"
0110	tar	get address 1			jal: $r7:= pc+1$; $pc := addr$ "
0111	rs	imm (uns	s.)	00	ori^4 : $$rs = $rs imm$
0111	rs	imm (uns	s.)	01	$lui^{3,4}$: \$rs = imm<<4
0111	rs	imm (uns.)		10	addi: $rs = rs + imm$
0111	rs	imm (uns.)		11	subi: $rs = rs-imm$
1000	$^{\mathrm{rd}}$	rs		rt	$zero^1$: $rd = 0$
1001	$^{\mathrm{rd}}$	rs		rt	or^1 : $rd = rs rt$
1010	$^{\mathrm{rd}}$	rs	rt		and ¹ : $rd = rs rt$
1011	rd	rs	rt		$add^{1,2}: \$rd = \$rs + \$rt$
1100	rd	rs	rt		$\mathrm{sub}^{1,2}$: $\mathrm{\$rd} = \mathrm{\$rs}\text{-}\mathrm{\$rt}$
1101	rd	rs	rt		$lt^{1,2,5}$: $rd = rs < rt$
1110	rd	rs		rt	$gt^{1,2,5}$: $rd = rs > rt$
1111	rd	rs	rt		$eq^{1,5}$: $rd = rs = rt$

^{1111 |} rd | rs | rt | eq. srd = srs==srt

R-type instructions from your ALU.

Signed, two's complement.

"Load upper immediate": put the 4-bit immediate in the upper 4 bits.

The lui and ori instructions can be used together to implement a li pseudo-instruction which loads a 8-bit immediate into a register.

Boolean operation. True yields value 0, false yields value 1.