
Computer Systems and -architecture

Project Exam Retake

1 Ba INF 2015-2016

Bart Meyers
bart.meyers@uantwerpen.be

Don’t hesitate to contact the teaching assistant of this course. You can reach him in room
M.G.3.17 or by e-mail.

Time Schedule

Projects are solved individually. Projects build on each other, to converge into a unified whole
at the end of the semester. At the evaluation moment, you will present your solution by giving
a demo and answering some questions.

You will submit a solution for all seven projects from the first semester, with the differences
explained in this project description. Covering all seven projects, you submit one report by
filling in verslag.html completely. A report typically consists of 1000 words and a number of
drawings/screenshots. Put all your files in a tgz archive, as explained on the course’s website,
and submit your report to the exercises on Blackboard.

• Report deadline: 31 August 2016

• Evaluation and feedback: 7 September 2016

Project

Complete all seven projects from the first semester, with the differences explained below. If there
is no mention of a certain assignment (e.g., carry-lookahead addition or finite state automata),
you solve the original assignment.

Your datapath should support:

• data words (in register and data memory) of 8 bits;

• 8 registers. Register r0 and r7 are reserved. r0 is always 0, r7 is used for storing the link
address;

• a data memory that stores 8 data words;

• instructions that are 13 bits wide, stored in an instruction memory with address width of
8 bits.

Implement the instructions described in the table below (“imm” stands for “immediate”,
“uns” stands for “unsigned” and “sig” stands for “signed”).

Carefully read the following instruction table, as there are a number of differences with the
previous assignment. Make sure you use TestRetake.py for this project.

1

Computer Systems and -architecture 1 Ba INF, 2015-2016

12 11 10 9 8 7 6 5 4 3 2 1 0 Description

0000 rs rt imm (uns.) lw: $rt = MEM[$rs+imm]

0001 rs rt imm (uns.) sw: MEM[$rs+imm] = $rt

0010 rs rt imm (sig.2) bne5: $rs!=$rt ? pc := pc+1+imm

0011 rs rt imm (sig.2) be5: $rs==$rt ? pc := pc+1+imm

0100 rs imm (sig.2) bgtz5: $rs>0 ? pc := pc+1+imm

0101 rs imm (sig.2) jr: pc := $rs+imm

0110 target address 0 j: pc := addr”

0110 target address 1 jal: $r7:= pc+1 ; pc := addr”

0111 rs imm (uns.) 00 ori4: $rs = $rs|imm

0111 rs imm (uns.) 01 lui3,4: $rs = imm<<4

0111 rs imm (uns.) 10 addi: $rs = $rs+imm

0111 rs imm (uns.) 11 subi: $rs = $rs-imm

1000 rd rs rt zero1: $rd = 0

1001 rd rs rt or1: $rd = $rs|rt
1010 rd rs rt and1: $rd = $rs&rt

1011 rd rs rt add1,2: $rd = $rs+$rt

1100 rd rs rt sub1,2: $rd = $rs-$rt

1101 rd rs rt lt1,2,5: $rd = $rs<$rt

1110 rd rs rt gt1,2,5: $rd = $rs>$rt

1111 rd rs rt eq1,5: $rd = $rs==$rt
1 R-type instructions from your ALU.
2 Signed, two’s complement.
3 “Load upper immediate”: put the 4-bit immediate in the upper 4 bits.
4 The lui and ori instructions can be used together to implement a li pseudo-instruction which loads a

8-bit immediate into a register.
5 Boolean operation. True yields value 0, false yields value 1.

2

