
Computer Systems and Architecture
UNIX Scripting

Stephen Pauwels

University of Antwerp

October 16, 2015

Outline

Basics

Conditionals

Loops

Advanced

Exercises

Shell scripts

I Grouping commands into a single file

→ Reusability

I Possible to use programming constructs
I Variables
I Conditionals
I Loops
I . . .

I No compilation required

Creating a shell script

1. Save the script as a (.sh) file

2. Add the line ‘#!/bin/bash’ (or #!/usr/local/bin/bash on
radix) to the beginning of the script

I ‘#!’ indicates that the file is a script
I ‘/bin/bash’ is the shell that is used to execute the script
I When the script is executed, the program after the ‘#!’ is

executed and the name of the script is passed to it
I Since the line starts with a ‘#’ it is ignored by the shell

3. Make the script executable using ‘chmod +x’

4. Execute the script by calling it
I Put ‘./’ in front of the name in order to avoid confusion with

commands

Comments

I Comments are placed behind a # and last until the end of the
line

I There are no multiline comments

I The #! line is a comment

Variables

I Setting variables
I VARIABLE=value
I No spaces before and after the ‘=’

I Using variables
I Place a ‘$’ before the name
I If the variable name is followed by text → place the name

between braces
I E.g.: echo "Today is the ${DAY}th day of the week"

I Waiting for keyboard input
I read VARIABLE

I Exporting variables
I To make them accessible from other programs
I Place ‘export’ before the name of the variable
I E.g.: export PATH=’/bin:/usr/bin’

Special variables

$@ Expands to the list of positional parameters,
separated by commas

$# The number of positional parameters

$0 The name of the script

$1, . . . , $9 The nine first positional parameters

$? The exit status of the last executed command

$! The PID of the last process that was started in the
script

$RANDOM A positive random integer

Example

I nano script.sh

#!/bin/bash

name=‘whoami‘

echo Hello $name !

I Execute:
chmod +x script.sh

./script.sh

Conditions

I Between [...]

I Spaces before and after []
I Examples

I [-d dir] returns true if dir is a directory
I [$var -eq 2] returns true if $var equals 2
I [$var -eq 1] || [$var -eq 2] returns true if $var

equals 1 or 2

Conditions - Files

-e File exists

-d Is a directory

-f Is a regular file

-r Is readible

-w Is writeable

Conditions - Strings

-n Length of string is nonzero

-z Length of string is zero

s1 = s2 s1 and s2 are identical

s1 != s2 s1 and s2 are not identical

Conditions - Numbers

i1 -eq i2 i1 and i2 variables are equal

i1 -ne i2 i1 and i2 variables are not equal

i1 -gt i2 i1 is greater than i2

i1 -ge i2 i1 is greater than or equal to i2

i1 -lt i2 i1 is less than i2

i1 -le i2 i1 is less than or equal to i2

Conditions - And, or, not

! negation (NOT) operator

&& AND operator

|| OR operator

If statements

if [$# -ne 1]

then

echo Please specify your name

elif id $1 > /dev/null

then

echo Hello $1

else

echo I don\’t know you

fi

If statements

I Zero or more elif clauses are possible

I The else clause is optional

I The if body is executed if the exit status of the condition is 0

Case statements

case $NUMBER

in

11|12|13)

echo ${NUMBER}th

;;

*1)

echo ${NUMBER}st

;;

*2)

echo ${NUMBER}nd

;;

*3)

echo ${NUMBER}rd

;;

*)

echo ${NUMBER}th

;;

esac

Case statements

I Executes code based on which pattern matches a word

I Multiple cases can be specified per block by separating them
using ‘|’

I Each block has to be terminated by a ‘;;’

I Use ‘*’ to match ‘the rest’

I If multiple cases match, the first one is executed

For loops

for FILE in ‘ls /bin‘

do

echo "Creating link to $FILE..."

ln -s /bin/$FILE

done

For loops

I The list can be
I A literal list: a b c
I A glob pattern: *.jpeg
I The output of a command: ‘ls -a‘

I The body is executed for each element in the list

I The Loop variable is set to the value of the current word

While and until loops

while [-f file.txt]

do

echo file.txt still exists... Please remove it

sleep 5

done

While and until loops

I The condition is evaluated on each iteration

I While loops are executed as long as the exit status of the
condition is zero

I Until loops are executed as long as the exit status of the
condition is not zero

Break and continue

for I in ‘seq 10‘

do

if [$I -eq 3]

then

echo Skipping 3...

continue

fi

if [$I -eq 7]

then

echo Stopping at 7...

break

fi

echo The square of $I is $((I*I))

done

Break and continue

I break causes a loop to be exited immediately

I continue causes a loop to continue with the next iteration
I An integer parameter can be specified to continue or break

from the nth enclosing loop
I ‘break 2’ will break from the second enclosing loop
I ‘continue 1’ is the same as ‘continue’

Arithmetic

I Arithmetic can be performed between ((and))

I Only operations on integers are possible

I The exit status is 0 when the result of the expression is not
zero and 1 if the result of the expression is zero

I An expression between $((and)) expands to the result of
the expression.

I For more advanced calculations bc can be used.

Arithmetic

A=$RANDOM

B=$RANDOM

C=$A

D=$B

while ((D != 0))

do

TEMP=$D

D=$((C % D))

C=$TEMP

done

echo "The GCD of $A and $B is $C"

Functions

I Functions behave the same as commands

I The exit status of the function is the exit status of the last
executed process

I Parameters are placed in variables $1, . . . , $9

I Use ‘return’ to exit from the function early

I Use the ‘local’ keyword to make local variables

Further reading

I The Bash Manual
www.gnu.org/software/bash/manual/bashref.html

I Advanced Bash-Scripting Guide
tldp.org/LDP/abs/html/

www.gnu.org/software/bash/manual/bashref.html
tldp.org/LDP/abs/html/

Exercises

I http://msdl.cs.mcgill.ca/people/hv/teaching/

ComputerSystemsArchitecture/#CS3

http://msdl.cs.mcgill.ca/people/hv/teaching/ComputerSystemsArchitecture/#CS3
http://msdl.cs.mcgill.ca/people/hv/teaching/ComputerSystemsArchitecture/#CS3

	Basics
	Conditionals
	Loops
	Advanced
	Exercises

