Computer Systems and -architecture

Project 3: ALU
1 Ba INF 2017-2018

Brent van Bladel
brent.vanbladelQuantwerpen.be

Don’t hesitate to contact the teaching assistant of this course. You can reach him in room
M.G.305 or by e-mail.

Time Schedule

Projects are solved in pairs of two students. Projects build on each other, to converge into a
unified whole at the end of the semester. During the semester, you will be evaluated three times.
At these evaluation moments, you will present your solution of the past projects by giving a
demo and answering some questions. You will immediately receive feedback, which you can use
to improve your solution for the following evaluations.

For every project, you submit a small report of the project you made by filling in verslag.html
completely. A report typically consists of 500 words and a number of drawings/screenshots. Put
all your files in one tgz archive, as explained on the course’s website, and submit your report to
the exercises on Blackboard.

e Report deadline: November 5, 2017, 23u55

e Evaluation and feedback: November 10, 2017

Project

Read section B.5 of Appendix B. You can only use the following Logisim libraries for this
assignment: Base, Wiring, Gates, Plexers, Input/Output.

1. Build an arithmetic logic unit (ALU) for 12-bit two’s complement data words. You can do
this by creating a circuit that implements a 1-bit ALU and combining them to obtain a
12-bit ALU. Alternatively, use your 12-bit carry lookahead adder from the previous project
to skip the 1-bit ALU step. Use the Logisim ALU_GroupXX.circ file provided on the course
page. Rename the file so that "XX’ is your group number. Open the file in Logisim. Do
not change the 'main’ circuit. Import your adder from the previous exercise by choosing
from the menu 'Project’ - 'Load Library’ - ’Logisim Library...”. Then select your logisim
file that includes the adder. Your adder will be loaded in an extra library, below "Wiring’,
'Gates’, 'Plexers’, etc. You can now reuse your adder. You will have to complete the
"12-bit ALU’ circuit in this assignment. You can only make use of the Logisim libraries
"Wiring’, ’Gates’ and "Plexers’ (not e.g., ’Arithmetic’). Implement the operations below,
giving each operation a 4-bit binary code. Your ALU will execute the right operation
according to a 4-bit operation input.

Computer Systems and -architecture 1 Ba INF, 2017-2018

Your ALU should be able to perform the operations listed below. Make sure to test
everything, including the different possible overflow cases!

e generate 0 (Name: zero; ALU operation: 0000).
Example:
result ‘ 000000000000

e AND (Name: and; ALU operation: 0001).

Example:
a 010010101010
b 110101010010

result | 010000000010
e OR (Name: or; ALU operation: 0010).

Example:
a 010010101010
b 100101010010

result | 110111111010

e NOT (Name: not; ALU operation: 0011).
Example:
a 010010101010
result | 101101010101

e numeric inverse (two’s complement) (Name: inv; ALU operation: 0100).
Example:
a 010010101010 (1194)

result | 101101010110 (-1194)
Mind overflow!

e numeric addition (two’s complement) (Name: add; ALU operation: 0101).

Example:
a 010010101010 (1194)
b 100101010010 (-1710)

result ‘ 110111111100 (—516)
Mind overflow!

e numeric subtraction (two’s complement) (Name: sub; ALU operation: 0110).

Example:
a 010010101010 (1194)
b 011010101110 (1710)

result ‘ 110111111100 (—516)
Mind overflow!

e signed shift left (two’s complement) (Name: sla; ALU operation: 0111). This
implements ”times two”.
Example:
a | 000010101010 (170)

result | 000101010100 (340)
Mind overflow!

e signed shift right (two’s complement) (Name: sra; ALU operation: 1000). This
implements ”divide by two” (integer division - test behaviour in Python).
Example:
a | 010010101011 (1194)

result | 001001010101 (597)
Make sure that this operation can never produce an overflow error!

Computer Systems and -architecture 1 Ba INF, 2017-2018

e less than (two’s complement) (Name: 1t; ALU operation: 1001). Results in 1 if
a<b,0ifa>bh.

Example:
a 010010101010 (1194)
b 100101010010 (-1710)

result ‘ 000000000000 (false)
Make sure that this operation can never produce an overflow error!

e greater than (two’s complement) (Name: gt; ALU operation: 1010). Results in
lifa>b,0if a <b.

Example:
a 010010101010 (1194)
b 100101010010 (-1710)

result ‘ 000000000001 (true)
Make sure that this operation can never produce an overflow error!

e equals (Name: eq; ALU operation: 1011). Results in 1 if a = b, 0 if a # b.

Example:
a 010010101010 (1194)
b 100101010010 (-1710)

result ‘ 000000000000 (false)
Make sure that this operation can never produce an overflow error!

2. Design a 12-bit ALU that has the following interface:

4-bit input: operation code

12-bit input: operand a

12-bit input: operand b
e 12-bit output: result of the ALU calculation

1-bit output: true in case of error/overflow

3. Create and run a test file for your ALU. Do this during the development of your ALU,
not afterwards! You will do this by creating a file with tests, and running it on your
circuit using the program Test.py. You need to install Python (http://python.org/)
to run Test.py. Download Test.py, Test_GroupXX.txt (from the course page) and
logisim-generic-2.7.1.jar (http://sourceforge.net/projects/circuit/files/2.
7.x/2.7.1/) and save in the same folder as your adapted ALU_GroupXX.circ project (you
already have created ALU_GroupXX.circ in the previous assignment). The program takes
a file containing ALU tests as input, and a ALU_GroupXX.circ logisim file. It runs all ALU
tests and reports test failures. For this assignment you will have to do the following:

e Create your ALU test file by adding lines to Test_GroupXX.txt.

— It already contains a simple test:
add 1 2 3
It should be read as follows: we want to test the ’add’-operation, with operand
'1” and 2’ (in decimal notation), and the expected outcome of the ALU should
be '3’ (also in decimal notation). This expected outcome is generally called the
“oracle”, as it predicts the outcome of the test.

— You see that for each test, you have to provide the operation you want to test
(you can choose between or, and, add, sub, 1t, gt, eq, not, inv, sla, sra), values
for operands a and b, and an oracle for each test. This oracle will be compared

Computer Systems and -architecture 1 Ba INF, 2017-2018

to the actual outcome of your ALU for this operation and with inputs a and b in
ALU GroupXX.circ. If the operation only uses the first operand (e.g., inv), you
will still have to provide two operands, but the second one will be ignored (by
your ALU). So another valid test (you can add it as a new line to the test file)
would be:

inv 1 0 -1

Where the second operand of value ’0’ will be ignored. This will test whether
the numeric inverse of 1 is -1.

— You can also provide binary values for your tests, so if you want to test the or-
operation, you can write the following for example:
or 010010101010 100101010010 110111111010

— You can also test for overflow by adding a ’1’ to your line of code. For example,
this would be a valid test:
add 2000 2000 0 1
Adding 2000 to 2000 would indeed generate an overflow for our 12-bit ALU as
4000 cannot be represented in a 2’s complement 12-bit notation. This test has
an added 1’ at the end of the line, denoting that this test should generate an
overflow. In this case, the test program will not compare results (therefore the
result is simply ’0” here). However, if your ALU does not generate an overflow,
this test will fail!

— Bear in mind that you can create test cases that are wrong, e.g.:
gt 100 101 1
This would be wrong, as 100 is not greater than 101, so the oracle must be 0
instead of 1. This test would produce a failure for a correct circuit, so double-
check your test cases! Instead, a correct test would be:
gt 100 101 0

— Your goal is to add significant tests to Test_GroupXX.txt. Significant tests are
tests that also explore the borderline cases, dealing with e.g., overflow. Write a
lot of tests!

e All files must be in the same directory. The program must be executed from the
console as follows:
python Test.py -a -i Test_GroupXX.txt -c ALU_GroupXX.circ
with Test_GroupXX.txt as the file containing your ALU tests and ALU_GroupXX.circ
as your logisim file (change XX to your group number). You can use the -h option
to show the usage of the script. Try to execute the command before starting to
implement the circuit. You should see the following message:

all done: Test_GroupXX.txt
starting tests...

testing Test_GroupXX.test --> Test_GroupXX.report

-— Test on line 1 error

add 1 2 3

Operation 100 (’add’) with operands 0000 0000 0001 (1)

and 0000 0000 0010 (2), result is XXXX XXXX XXXX, error code is x

Computer Systems and -architecture 1 Ba INF, 2017-2018

1 tests done, 1 errors, 0 failures

— As you see, some lines are outputted to the console, ending with a line denoting
how many tests were executed (depending on how many test lines you have added
to your file) and how many of them failed or produced an error (you should have
0 here).

— If not successful, tests can be ’errors’ or ’failures’. An error means that some of
the resulting signals were 'Error’ signals or 'don’t care’ signals ("E’ or 'x’, or a
red/blue signal line in logisim). A failure means that either the expected result
did not match what you have specified in your test, or the expected error value
did not match. If you have failure or error tests, there will be some information
about this failure/error in the output.

— In Windows, there can be a permission problem when trying to execute the
program. If you experience this, try running the script in a console with admin-
istrator permissions (right-click, run as administrator). If this does not solve the
problem, download the file http://msdl.cs.mcgill.ca/people/hv/teaching/
ComputerSystemsArchitecture/materials/JavaAccess.reg (32-bit) or http:
//msdl.cs.mcgill.ca/people/hv/teaching/ComputerSystemsArchitecture/
materials/JavaAccess64.reg (64-bit) and execute. Then, try running the test
in a regular console (no administrator permissions).

e If the script does not work as expected (e.g., error messages seem to be wrong), let
me know as soon as possible! This script is meant to aid you in your projects, and
should not slow you down!

4. To prepare for the next lab session, read sections B.7, B.8 and B.10 of Appendix B.

