
Computer	Systems	and	Architecture
UNIX	Scripting

Stephen	Pauwels

Academiejaar 2017-2018

Outline

• Basics

• Conditionals

• Loops

• Advanced

• Exercises

Shell	Scripts

• Grouping	commands	into	a	single	file
• Reusability

• Possible	to	use	programming	constructs
• Variables
• Conditionals
• Loops
• …

• No	compilation	required

How	to	create	a	Shell	Script

1. Save	script	as	a	(.sh)	file
2. Add	the	line	’#!/bin/bash’	to	the	beginning	of	the	scipt

§ ‘#!’	indicates	that	the	file	is	a	script
§ ‘/bin/bash’	is	the	shell	that	is	used	to	execute	the	script
§ When	the	scipt is	executed,	the	program	after	the	‘#!’	is	

executed	and	the	name	of	the	script	is	passed	to	it
§ Since	the	line	starts	with	a	‘#’	it	is	ignored	by	the	shell

3. Make	the	script	executable	using	‘chmod +x’
4. Execute	the	script	by	calling	it

§ Put	’./’	in	front	of	the	name	in	order	to	avoid	confusion	
with	commands

Comments

• Comments	are	placed	behind	a	# and	last	until	the	end	
of	the	line

• There	are	no	multiline	comments
• The	#! line	is	a	comment

Variables	- Basic
• Assigning	a	variable

• VARIABLE=value
• VARIABLE=$(command –options arguments)
• No	spaces	before	and	after	the	‘=‘!

• Using	the	value	of	variables
• Place	a	‘$’	before	the	name
• If	the	variable	name	is	followed	by	text	->	place	the	name	

between	braces
• E.g.:	echo “Today is the ${DAY}th day of the week”

• Getting	keyboard	input
• read VARIABLE

• Exporting	variables
• To	make	them	accessible	from	other	programs
• Place	‘export’	before	the	name	of	the	variable
• E.g.:	export PATH=‘/bin:/usr/bin’

Variables	- Specials

$@ Expands to the list	of	positional parameters	separated by commas

$# The	number of	positional parameters

$0 The	name	of	the script

$1, …, $9 The	nine first	positional parameters

$? The	exit	status	of	the last	executed command

$! The PID	of	the last	process that was	started in	the script

$RANDOM A	positive random	integer

Example

#! /bin/bash

name=$(whoami)
echo Hello $name !

script.sh

chmod +x script.sh
./script.sh

Terminal

Example

#! /bin/bash

name=$(whoami)
echo Hello $name !

script.sh

chmod +x script.sh
./script.sh

Terminal

Location of	shell

Store	output	of	whoami into variable name
Beware:	- put	commands between (and)

- use $ to point	to value of	cmd

Call	variable name	using ‘$’

Make	script	executable

Run	script.sh

Conditions	- Basic

• Between	[…]

• Spaces	before	and	after	[]
• Examples

• [-d dir] returns	true if	dir is	a	directory
• [$var –eq 2] returns	true if	$var equals	2
• [$var –eq 1] || [$var –eq 2] returns	true

if	$var equals	1	or	2

Conditions

• Files

• Strings

-e File	exists

-d Is	a	directory

-f Is	a	regular file

-r Is	readible

-w Is	Writeable

-n Length of	string	is	nonzero

-z Length of	string	is	zero

s1 = s2 s1	and s2	are	identical

s1 != s2 s1	and s2	are	not identical

Conditions

• Numbers

• And,	or,	not

i1 –eq i2 i1	and i2	are equal

i1 –ne i2 i1	and i2	are	not equal

i1 –gt i2 i1	is	greater than i2

i1 –ge i2 i1	is	greater than or	equal to i2

i1 –lt i2 i1	is	less than i2

i1 –le i2 i1	is	less than or	equal to i2

! NOT	operator

&& AND	operator

|| OR	operator

If	statements

• Zero	or	more	elif clauses	are	possible
• The	else	clause	is	optional
• The	if	body	is	executed	if	the	exit	status	of	the	condition	

is	0

if […]
then

commands1
elif command
then

commands2
else

commands3
fi

If	statements

• Zero	or	more	elif clauses	are	possible
• The	else	clause	is	optional
• The	if	body	is	executed	if	the	exit	status	of	the	condition	

is	0

if […]
then

commands1
elif command
then

commands2
else

commands3
fi

If condition is	true execute commands1

If exit	status	of	command is	0	
execute commands2

If all other clauses are	false
exectue commands3

Case	statements

• Executes	code	based	on	which	pattern	matches	a	word
• Multiple	cases	can	be	specified	per	block	by	separating	

them	using	‘|’
• Each	block	has	to	be	terminated	by	a	‘;;’
• Use	‘*’	to	match	’the	rest’
• If	multiple	cases	match,	the	first	one	is	executed

case $NUMBER
in

11|12|13)
echo ${NUMBER}th

;;
*1)

echo ${NUMBER}st
;;
*)

echo ${NUMBER}th
;;

esac

For	loops

• The	list	can	be
• A	literal	list:	a	b	c
• A	glob	pattern:	*.jpeg
• The	output	of	a	command:	`ls	–a`

• The	body	is	executed	for	each	element	in	the	list
• The	loop	variable	is	set	to	the	value	of	the	current	word

for VARIABLE in list
do

echo $VARIABLE
done

While	and	Until	loops

• The	condition	is	evaluated	on	each	iteration
• While	loops	are	executed	as	long	as	the	exit	status	of	the	

condition	is	zero
• Until	loops	are	executed	as	long	as	the	exit	status	of	the	

condition	is	not	zero

while condition
do

commands
done

until condition
do

commands
done

Break	and	continue

• Break casues the	loop	to	be	exited	immediately
• Continue causes	a	loop	to	continue	with	the	next	

iteration
• An	integer	parameter	can	be	specified	to	continue	or	

break	from	the	nth	enclosing	loop
• ‘break 2’	will	break	from	the	second	enclosing	loop
• ‘continue 1’	is	the	same	as	‘continue’

Arithmetic

• Arithmetic	can	be	performed	between	((and))
• Only	operations	on	integers	are	possible
• The	exit	status	is	0	when	the	result	of	the	expression	is	

not	zero	and	1	if	the	result	of	the	expression	is	zero
• An	expression	between	$((and)) expands	to	the	

result	of	the	expression
• For	more	advanced	calculations	bc can	be	used

Arithmetic	- Example

#! /bin/bash

A=$RANDOM
B=$RANDOM
C=$A
D=$B

while ((D != 0))
do

TEMP=$D
D=$((C % D))
C=$TEMP

done

echo “The GCD of $A and $B is $C”

Functions

• Functions	behave	the	same	as	commands
• The	exit	status	of	the	function	is	the	exit	status	of	the	

last	executed	process
• Parameters	are	placed	in	variables	$1,…,$9
• Use	‘return’	to	exit	from	the	function	early
• Use	the	‘local’	keyword	to	make	local	variables

Hello() {
echo “Hello World $1 $2”

}

Hello Zara Ali

Functions

• Functions	behave	the	same	as	commands
• The	exit	status	of	the	function	is	the	exit	status	of	the	

last	executed	process
• Parameters	are	placed	in	variables	$1,…,$9
• Use	‘return’	to	exit	from	the	function	early
• Use	the	‘local’	keyword	to	make	local	variables

Hello() {
echo “Hello World $1 $2”

}

Hello Zara Ali

Function definition

Call	function with parameters

Further	reading

• The	Bash	Manual
• www.gnu.org/software/bash/manual/bashref.html

• Advanced	Bash-Scripting	Guide
• www.tldp.org/LDP/abs/html/

• UNIX	tutorials
• www.tutorialspoint.com/unix/

Exercises

• Blackboard
• Course	webpage

• http://msdl.cs.mcgill.ca/people/hv/teaching/ComputerSystemsArchitecture/#CS3

