
Computer Systems and -architecture

Project 4: Memory

1 Ba INF 2019-2020

Brent van Bladel
brent.vanbladel@uantwerpen.be

Don’t hesitate to contact the teaching assistant of this course. You can reach him in room
M.G.305 or by e-mail.

Time Schedule

Projects are solved in pairs of two students. Projects build on each other, to converge into a
unified whole at the end of the semester. During the semester, you will be evaluated three times.
At these evaluation moments, you will present your solution of the past projects by giving a
demo and answering some questions. You will immediately receive feedback, which you can use
to improve your solution for the following evaluations.

For every project, you submit a small report of the project you made by filling in verslag.html

completely. A report typically consists of 500 words and a number of drawings/screenshots. Put
all your files in one tgz archive, as explained on the course’s website, and submit your report to
the exercises on Blackboard.

• Report deadline: November 27, 2019, 23u55

• Evaluation and feedback: November 29, 2019

Project

Read sections B.7, B.8 and B.10 of Appendix B. You can use all Logisim libraries for this
assignment.

1. Build a 12-bit register using 12 D flip-flops that are updated on the falling edge (beware:
in Logisim D flip-flops are by default on the rising edge). Inputs are:

• 12-bit “D”, which denotes the input data

• 1-bit “reset”, that sets the contents of the register to 00000000 if its value is 1

• 1-bit “write”, that enables writing the value of D to the register if its value is 1

• 1-bit C, the clock signal

The only output is a 12-bit Q that contains the contents of the register.

2. Build a counter using your own 12-bit carry lookahead adder and 12-bit register. Inputs
are C (the clock) and D (a 12-bit number up to which the counter counts), the output
is the current 12-bit value of the register. At every clock tick, the counter adds 1 to the
number in the register. When the register value is equal to or greater than D, the value is

1

Computer Systems and -architecture 1 Ba INF, 2019-2020

reset to zero. A counter with its D-input equal to 3 counts from 0 to 2. You can use the
Logisim built-in Comparator.

3. Build a finite-state machine that implements a traffic light system on a cross section.
Finite-state machines use memory and a clock. Since finite-state machines are synchronous,
a new state is computed every clock cycle. A 2 Hz clock has a full clock cycle of 1 second.
Use your counter to advance through the states and make sure your state transitions
happen at the right time. The two traffic lights behave like the following figure:

4. Build a register file made of 8 of your own 12-bit registers. The register file must be
able to read from and write to specified registers. In this case, the register file reads from
two registers, and can possibly write to a register at the same time. Register 0 is a special
case: it always contains zero, and writing to it does not modify its contents. The register
file has the following in- and outputs:

name in/out width meaning

rs I 3 bits register rs index number
rt I 3 bits register rt index number
rd I 3 bits register rd index number
Data I 12 bits used as input for the write operation, i.e., the new $rd value
write I 1 bit write to rd enabled?
C I 1 bit clock input
reset I 1 bit reset all registers?

S O 12 bits $rs; register rs content
T O 12 bits $rt; register rt content

We refer to a 3-bit register name (i.e., index number) as e.g., rs or r1, and to its 12-bit
value (i.e., data content) as respectively $rs or $r1.

5. Build a 12-bit stack using the logisim RAM element. Use your own 12-bit register to store
the stack pointer. The stack pointer should always point to the next free address after the
top of the stack. By default, the peek operation is performed, which simply outputs the
value of the top of the stack, or zero if the stack is empty. Two 1-bit inputs will be used
to indicate a push or a pop operation. The push operation will place the data from the
Data input on top of the stack, and increase the stack pointer by one. The pop operation
will replace the data on top of the stack with zero, and decrease the stack pointer by one.

name in/out width meaning

Push I 1 bit perform the push operation?
Pop I 1 bit perform the pop operation?
Data I 12 bits used as input for the push operation
C I 1 bit clock input
reset I 1 bit reset memory and stack pointer?

Top of Stack O 12 bits value on top of the stack
Error O 1 bit outputs 1 in case pop is performed on an empty stack

Note: The 12-bit Top of Stack output should be zero in case of a push or a pop operation.
Note 2: When both the push and the pop operation are requested simultaneously, the
behaviour can be considered undefined but the error output should indicate this.

6. To prepare for the next lab session, read sections 4.1, 4.2, 4.3 and 4.4 of Chapter 4.

2

