Computer Systems and -architecture

Assignments: Resit
1 Ba INF 2019-2020
Stephen Pauwels
stephen.pauwels@uantwerpen.be

Time Schedule

Exercises are made individually. Put all your files in a tgz archive, as explained on the course's website, and submit your solution to the exercises on Blackboard. Write down all intermediate results on how you obtained the results.

- Deadline: August 16, 23u55

Data Representation

1. Convert these positive numbers to base 10 .
(a) $(1110001110)_{2}$
(b) $(14 A 6)_{16}$
(c) $(10110)_{2}$
(d) $(1246)_{8}$
2. Convert to base 10 .
(a) $(11001001)_{2}$ (2's complement)
(b) $(11)_{2}$ (2's complement)
(c) $(.123)_{4}$
3. Convert to base 2 .
(a) $(666)_{10}$
(b) $(9876)_{10}$
(c) $(32 A D)_{16}$
(d) $(3.14)_{10}$
(e) $(E A)_{16}$
4. Convert to base 2. Represent the negative numbers with 8 bits in signed magnitude, one's complement, two's complement and excess 128.
(a) $(-96)_{10}$
(b) $(-1)_{10}$
(c) $(-69)_{10}$
(d) $(-15)_{16}$
5. For the following single-precision IEEE 754 bit patterns, show the numerical value as a base 2 significand with an exponent (e.g. $+1.11 \cdot 2^{5}$).
(a) 01010101110111010000000000000000
(b) 11000000010010000000000000000000
(c) 00000000011110100000000000000000
(d) 01111111111010000010010010010000
(e) 10000111011100110000000000000000
(f) 11111111100000000000000000000000
(g) 00000101111101100000000000000000
6. Represent these numbers in the IEEE-754 (single precision) format.
(a) $(2314.25)_{10}$
(b) $(2017)_{10}$
(c) $(12.123)_{10}$
(d) $\left(11.11 * 2^{-131}\right)_{2}$ (denormalized)
(e) $+\infty$
(f) +0
7. Suppose we are using a 22 bit floating point, in a normalized, base 16 floating point format, with a sign bit, followed by a 5 -bit exponent with a certain bias, followed by four base 16 digits.
(a) Determine the bias we have to use for the exponent, assuming we do not want to change the range of exponents we would have reached when using a 5 -bit 2 's complement exponent.
(b) Represent the number $-0.1775 * 10^{2}$ in our new format (with the bias from the previous question) as a binary string.
(c) What is the largest possible error that can be made using this representation?
(d) What is the smallest gap using this representation?
