
Computer Systems and -architecture

Project 6: Full Datapath

1 Ba INF 2020-2021

Brent van Bladel
brent.vanbladel@uantwerpen.be

Don’t hesitate to contact the teaching assistant of this course. You can reach him in room
M.G.305 or by e-mail.

Time Schedule

Projects are solved in pairs of two students. Projects build on each other, to converge into a
unified whole at the end of the semester. During the semester, you will be evaluated three times.
At these evaluation moments, you will present your solution of the past projects by giving a
demo and answering some questions. You will immediately receive feedback, which you can use
to improve your solution for the following evaluations.

For every project, you submit a small report of the project you made by filling in verslag.html

completely. A report typically consists of 500 words and a number of drawings/screenshots. Put
all your files in one tgz archive, as explained on the course’s website, and submit your report to
the exercises on Blackboard.

� Report deadline: December 20, 2020, 23u55

� Evaluation and feedback: December 21, 2020 - January 3, 2021

Project

Read sections 4.1, 4.2, 4.3 and 4.4 of Chapter 4. You can use all Logisim libraries for this
assignment.

1. In the previous assignment, we used the ALU operations as instructions and added two
additional instructions (lw and sw). Next to these instructions, in this assignment we also
support immediate instructions as well as branch and jump instructions.

We introduce a number of new instructions, including instructions for jump and branch.
Because you should be able to branch, you will have to connect your program counter to
your datapath so that it can jump to a given address instead of just the next instruction.

Implement the instructions described in the table below (“imm” stands for “immediate”,
“uns” stands for “unsigned” and “sig” stands for “signed, two’s complement”). You already
have implemented the R-type instructions and the lw/sw instructions in the previous
assignment.

1

Computer Systems and -architecture 1 Ba INF, 2020-2021

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 name instruction description

0000 rd 0000 0000 zero1 zero rd $rd := 0

0001 rd rs 0001 not1 not rd rs $rd := !$rs

0001 rd rs 1010 inv1 inv rd rs $rd := -$rs

0001 rd rs 1011 sll1 sll rd rs $rd := $rs << 2

0001 rd rs 1100 srl1 srl rd rs $rd := $rs >> 2

0001 rd rs 1101 sla1 sla rd rs $rd := $rs * 2

0001 rd rs 1110 sra1,2 sra rd rs $rd := $rs / 2

0001 rd rs 1111 cp1 cp rd rs $rd := $rs

0010 rd rs rt and1 and rd rs rt $rd := $rs & $rt

0011 rd rs rt or1 or rd rs rt $rd := $rs | $rt
0100 rd rs rt add1 add rd rs rt $rd := $rs + $rt

0101 rd rs rt sub1 sub rd rs rt $rd := $rs - $rt

0110 rd rs rt lt1 lt rd rs rt $rd := $rs < $rt ? 1 : 0

0111 rd rs rt gt1 gt rd rs rt $rd := $rs > $rt ? 1 : 0

1000 rd rs rt eq1 eq rd rs rt $rd := $rs = $rt ? 1 : 0

1001 rd rs rt neq1 neq rd rs rt $rd := $rs != $rt ? 1 : 0
1010 rd rs imm (signed) lw lw rd rs imm $rd := MEM[$rs+imm]
1011 rd rs imm (signed) sw sw rd rs imm MEM[$rs+imm] := $rd
1100 rd unsigned immediate ori ori rd imm $rd := $rd | imm
1101 rd unsigned immediate lui lui rd imm $rd := imm << 8
1110 rd immediate (signed) brnz brnz rd imm $rd != 0 ? $pc := $pc + 1 + imm
1111 target address 0000 j j imm $pc := addr
1111 rd immediate (signed) 0100 jr jr rd imm $pc := $rd + imm

1111 target address 1111 jal3 jal imm $r15 := $pc + 1; $pc := addr

1 R-type instruction.

2 Integer division.

3 Register r15 will be reserved for the return address of the jal instruction.

� In order to get all control lines right, you will have to add a Control Unit circuit to
your datapath.

– Input is the instruction (16 bits).

– Outputs are the ALU OP-code as well as all control lines for i.e. the program
counter, instruction and data memory, multiplexers and the register file. Choose
your control lines wisely: this can make the implementation a lot easier!

More information on the implementation of a control unit can be found in Section
4.4 of Computer organization and design.

� Similarly you can create an Immediate circuit (this is different from the book’s
datapath):

– Input is the instruction (16 bits).

– Output is the immediate value (16 bits), depending on the instruction this will
be a 4 or 8-bit value that is unsigned/sign extended/shifted to 16 bits.

� Once done, your datapath can correctly execute a program written in machine lan-
guage, as the behaviour of arithmetic, branching and memory operations is now fully
implemented! You can use the script Test.py as follows (note the -f flag to denote
the simulation of a full datapath:

python Test.py -f -t <test-file> -c <circ-file>

You can use labels for branching and jumping in your tests. When testing the full
datapath, you can only perform checks at the end of the program. (This is because
of branching: it would not make sense to check a register value in the middle of a
loop, as it can have a different value in a different iteration of the loop.)

� To prepare for the next lab session, read section 4.9 of Chapter 4.

2

