
Computer Systems and Architecture
Regular Expressions

Stephen Pauwels

Academic Year 2020-2021

Outline

• What is a Regular Expression?
• Tools
• Anchors, Character sets and Modifiers
• Advanced Regular Expressions

Regular Expressions

• A regular expression is a pattern that describes a set of
strings

• Search and manipulate text based on patterns
• Flexible and powerful
• Three parts

• Anchors: specify the position of the pattern in relation to a
line of text

• Character sets: match one or more characters in a single
position

• Modifiers: specify how many times the previous character
set is repeated

Anchors

• ^ (beginning of line) and $ (end of line)
• Examples:

^A “A” at the beginning of a line

A$ “A” at the end of a line

A^ ”A^” anywhere on a line

$A “$A” anywhere on a line

^^ “^” at the beginning of a line

$$ “$” at the end of a line

Character Sets

• Simplest character set:
• abc matches the character sequence abc

• ‘.’ represents any single character
• Ranges:
• Between [and]: one of these characters/patterns
• [^ and]: NOT one of these characters/patterns
• Use - between characters to denote a range between

these characters
• Want to use literal characters with a special meaning?
• “Escape” with backslash \
• \. matches a “.”
• * matches an asterix
• {,}, (,),<,> don’t have a special meaning

Character sets
[A-Z] Any capital letter

[A-Za-z] Any letter

[] The characters “[]”

[0] The character “0”

[0-9] Any number

[^0-9] Any character other than a number

[-0-9] Any number or a “-”

[0-9-] Any number or a “-”

[^-0-9] Any character except a number or a “-”

[]0-9] Any number or a “]”

[0-9]] Any number followed by a ”]”

Modifiers

• Combining character sets:
• ^T[a-z][aeiou]
• Matches a line that starts with T, followed by a letter and a

vowel
• Use modifiers to repeat character sets

• Match only words: use \< and \>
• Surrounding characters are anything but a letter, number,

underscore, new line or end of line
• \<[tT]he\> matches any line with the word the or The

[0-9]* Matches zero or more numbers

[0-9] [0-9]* Matches one or more numbers

[0-9]\{5\} Matches five numbers

[0-9]\{5,8\} matches five to eight numbers

[0-9]\{5,\} matches five or more numbers

Backreferences

• Reuse patterns: remember what you found earlier
• Mark pattern with \(and \)
• Refer to previously marked patterns with \1, \2, \3, …

• Examples

\([a-z]\)\1 Matches two identical letters
\<\([a-z]\)[a-z]*\1\> Matches every word that starts and

ends with the same letter
\([a-z]\)\([a-z]\)[a-z]\2\1 Matches every 5-letter palindrome

Tools

• Grep
• Print lines matching a pattern

• Sed
• Read and modify the input stream as specified by a

pattern
• Awk
• More advanced string handling

Grep

• grep ‘class’ /usr/share/dict/words
• Print all words that contain the string ’class’

• grep ‘^class’ /usr/share/dict/words

• Print all words that begin with the string ‘class’

• grep ‘class$’ /usr/share/dict/words

• Print all words that end with the string ’class’

• grep ‘^c..ss$’ /usr/share/dict/words

• Print all 5-letter words that begin with ‘c’ and end with ‘ss’

• grep ‘^c.*ss^’ /usr/share/dict/words

• Print all words that begin with ‘c’ and end with ‘ss’

Sed
• sed ‘s/from/to/g’

• Replace all occurrences of regex from to to

• Substitute command:

• s: Substitute
• /../../: Delimiter
• from: Regular expression
• to: Replacement string
• g: Flags

• Usage:
• cat oldfile.txt | sed ’s/from/to/’
• sed ‘s/from/to/’ < oldfile.txt
• sed ‘s/from/to/’ < oldfile.txt > newfile.txt

Sed

• Other delimiters
• sed ‘s:/usr/local/bin:/home/bin:’
• sed ‘s|/usr/local/bin|/home/bin|’

• Use ‘&’ as the matched string

• sed ‘s/[a-z]*/(&)/’
• places parenthesis around a string

• Using ‘\1’, ‘\2’ … to keep part of the pattern

Sed Options

• sed –e: combine options
• sed -e ‘s/a/A/’ -e ‘s/b/B/’

• sed –f: read commands from script file

• sed -n: silent mode

Sed Flags

• What to do when there is more than one occurrence of
pattern on a single line?
• /../../: Only the first occurrence is replaced
• /../../g: Global replacement
• /../../3: Replace the third occurrence
• /../../2g: Replace but the first occurrence
• /../../p: Print modified lines

• sed –n ’s/pattern/&/p’ duplicates the function of grep
• /../../w filename: Write all modified lines to

filename

Extended Regular Expressions

• Used by egrep and awk
• ? matches 0 or 1 instances of the character set before
• + matches 1 or more instances of the character set

before
• \{, \}, \(, \), \<, \> no longer have special

meaning
• ^(Ruben|Pieter) matches every line that starts with

“Ruben” or “Pieter”

Exercises

• Course webpage
• http://msdl.cs.mcgill.ca/people/hv/teaching/ComputerSystemsArchitecture/#CS2

