
Computer Systems and Architecture
UNIX Scripting

Stephen Pauwels

Academic Year 2020-2021

Outline

• Basics

• Conditionals

• Loops

• Advanced

• Exercises

Shell Scripts

• Grouping commands into a single file
• Reusability

• Possible to use programming constructs
• Variables
• Conditionals
• Loops
• …

• No compilation required

How to create a Shell Script

1. Save script as a (.sh) file
2. Add the line ’#!/bin/bash’ to the beginning of the scipt

§ ‘#!’ indicates that the file is a script
§ ‘/bin/bash’ is the shell that is used to execute the script
§ When the scipt is executed, the program after the ‘#!’ is

executed and the name of the script is passed to it
§ Since the line starts with a ‘#’ it is ignored by the shell

3. Make the script executable using ‘chmod +x’
4. Execute the script by calling it

§ Put ’./’ in front of the name in order to avoid confusion
with commands

Comments

• Comments are placed behind a # and last until the end
of the line

• There are no multiline comments
• The #! line is a comment

Variables - Basic
• Assigning a variable

• VARIABLE=value
• VARIABLE=$(command –options arguments)
• No spaces before and after the ‘=‘!

• Using the value of variables
• Place a ‘$’ before the name
• If the variable name is followed by text -> place the name

between braces
• E.g.: echo “Today is the ${DAY}th day of the week”

• Getting keyboard input
• read VARIABLE

• Exporting variables
• To make them accessible from other programs
• Place ‘export’ before the name of the variable
• E.g.: export PATH=‘/bin:/usr/bin’

Variables - Specials

$@ Expands to the list of positional parameters separated by commas

$# The number of positional parameters

$0 The name of the script

$1, …, $9 The nine first positional parameters

$? The exit status of the last executed command

$! The PID of the last process that was started in the script

$RANDOM A positive random integer

Example

#! /bin/bash

name=$(whoami)
echo Hello $name !

script.sh

chmod +x script.sh
./script.sh

Terminal

Example

#! /bin/bash

name=$(whoami)
echo Hello $name !

script.sh

chmod +x script.sh
./script.sh

Terminal

Location of shell

Store output of whoami into variable name
Beware: - put commands between (and)

- use $ to point to value of cmd

Call variable name using ‘$’

Make script executable

Run script.sh

Conditions - Basic

• Between […]

• Spaces before and after []
• Examples

• [-d dir] returns true if dir is a directory
• [$var –eq 2] returns true if $var equals 2
• [$var –eq 1] || [$var –eq 2] returns true

if $var equals 1 or 2

Conditions

• Files

• Strings

-e File exists

-d Is a directory

-f Is a regular file

-r Is readible

-w Is Writeable

-n Length of string is nonzero

-z Length of string is zero

s1 = s2 s1 and s2 are identical

s1 != s2 s1 and s2 are not identical

Conditions

• Numbers

• And, or, not

i1 –eq i2 i1 and i2 are equal

i1 –ne i2 i1 and i2 are not equal

i1 –gt i2 i1 is greater than i2

i1 –ge i2 i1 is greater than or equal to i2

i1 –lt i2 i1 is less than i2

i1 –le i2 i1 is less than or equal to i2

! NOT operator

&& AND operator

|| OR operator

If statements

• Zero or more elif clauses are possible
• The else clause is optional
• The if body is executed if the exit status of the condition

is 0

if […]
then

commands1
elif command
then

commands2
else

commands3
fi

If statements

• Zero or more elif clauses are possible
• The else clause is optional
• The if body is executed if the exit status of the condition

is 0

if […]
then

commands1
elif command
then

commands2
else

commands3
fi

If condition is true execute commands1

If exit status of command is 0
execute commands2

If all other clauses are false
exectue commands3

Case statements

• Executes code based on which pattern matches a word
• Multiple cases can be specified per block by separating

them using ‘|’
• Each block has to be terminated by a ‘;;’
• Use ‘*’ to match ’the rest’
• If multiple cases match, the first one is executed

case $NUMBER
in

11|12|13)
echo ${NUMBER}th

;;
*1)

echo ${NUMBER}st
;;
*)

echo ${NUMBER}th
;;

esac

For loops

• The list can be
• A literal list: a b c
• A glob pattern: *.jpeg
• The output of a command: `ls –a`

• The body is executed for each element in the list
• The loop variable is set to the value of the current word

for VARIABLE in list
do

echo $VARIABLE
done

While and Until loops

• The condition is evaluated on each iteration
• While loops are executed as long as the exit status of the

condition is zero
• Until loops are executed as long as the exit status of the

condition is not zero

while condition
do

commands
done

until condition
do

commands
done

Break and continue

• Break casues the loop to be exited immediately
• Continue causes a loop to continue with the next

iteration
• An integer parameter can be specified to continue or

break from the nth enclosing loop
• ‘break 2’ will break from the second enclosing loop
• ‘continue 1’ is the same as ‘continue’

Arithmetic

• Arithmetic can be performed between ((and))
• Only operations on integers are possible
• The exit status is 0 when the result of the expression is

not zero and 1 if the result of the expression is zero
• An expression between $((and)) expands to the

result of the expression
• For more advanced calculations bc can be used

Arithmetic - Example

#! /bin/bash

A=$RANDOM
B=$RANDOM
C=$A
D=$B

while ((D != 0))
do

TEMP=$D
D=$((C % D))
C=$TEMP

done

echo “The GCD of $A and $B is $C”

Functions

• Functions behave the same as commands
• The exit status of the function is the exit status of the

last executed process
• Parameters are placed in variables $1,…,$9
• Use ‘return’ to exit from the function early
• Use the ‘local’ keyword to make local variables

Hello() {
echo “Hello World $1 $2”

}

Hello Zara Ali

Functions

• Functions behave the same as commands
• The exit status of the function is the exit status of the

last executed process
• Parameters are placed in variables $1,…,$9
• Use ‘return’ to exit from the function early
• Use the ‘local’ keyword to make local variables

Hello() {
echo “Hello World $1 $2”

}

Hello Zara Ali

Function definition

Call function with parameters

Further reading

• The Bash Manual
• www.gnu.org/software/bash/manual/bashref.html

• Advanced Bash-Scripting Guide
• www.tldp.org/LDP/abs/html/

• UNIX tutorials
• www.tutorialspoint.com/unix/

http://www.gnu.org/software/bash/manual/bashref.html
http://www.tldp.org/LDP/abs/html/
https://www.tutorialspoint.com/unix/

Exercises

• Blackboard
• Course webpage

• http://msdl.cs.mcgill.ca/people/hv/teaching/ComputerSystemsArchitecture/#CS3

