
Computer Systems and -architecture

Project 5: Datapath

1 Ba INF 2022-2023

Brent van Bladel
brent.vanbladel@uantwerpen.be

Don’t hesitate to contact the teaching assistant of this course. You can reach him in room
M.G.305 or by e-mail.

Time Schedule

Projects are solved in pairs of two students. Projects build on each other, to converge into a
unified whole at the end of the semester. During the semester, you will be evaluated three times.
At these evaluation moments, you will present your solution of the past projects by giving a
demo and answering some questions. You will immediately receive feedback, which you can use
to improve your solution for the following evaluations.

For every project, you submit a small report of the project you made by filling in verslag.html

completely. A report typically consists of 500 words and a number of drawings/screenshots. Put
all your files in one tgz archive, as explained on the course’s website, and submit your report to
the exercises on Blackboard.

• Report deadline: December 2, 2022, 22u00

• Evaluation and feedback: December 6, 2022

Project

Read sections 4.1, 4.2, 4.3 and 4.4 of Chapter 4. You can use all Logisim libraries for this
assignment.

1. Build a circuit that implements a 16-bit program counter (PC). Use the Logisim
SD GroupXX.circ file provided on the course page. Rename the file so that ’XX’ is your
group number. Use your 16-bit register. By default, the PC is increased each clock cycle,
and the next instruction is read from memory. In case of a relative branch, the PC is
increased, and then the branch value is added as a 2’s complement value (e.g., if the PC
has value 10 and the next cycle there is a branch of value 5, then the next PC value is
16, not 15). In case of an absolute branch (or jump) the PC is directly set to the branch
value. You should have the following inputs and outputs:

name in/out width meaning

branch relative? I 1 bits branch to relative value?

branch absolute? I 1 bits branch to absolute value? (cannot be 1 if branch relative? is 1)

branch value I 16 bits the value that is used in case of a branch

C I 1 bit clock input

reset I 1 bit if set, the PC is reset to 0

instruction address O 16 bits the address of the instruction in the instruction memory

1

Computer Systems and -architecture 1 Ba INF, 2022-2023

2. Implement a partial datapath of 16-bit instructions and 16-bit data words and addresses
by using your register file, a data RAM element (16-bit addresses, 16-bit words), your
program counter with instruction RAM element (16-bit addresses, 16-bit words), and
your own ALU. Implement your datapath in the “main” circuit in SD GroupXX.circ. You
will have to modify your register file first so that it has an output for every register, to
connect to the outputs in the “main” circuit (this has to be done for debugging purposes).

• The datapath must be able to perform so-called register operations. These are the
operations you implemented in your ALU. This time, operands are read from, and
the result is stored into registers. The relevant registers are selected by specifying the
rs, rt and rd index inputs in your register file. The operation code (op-code) is the
same as the ALU code. The registers are used as follows:

$rd := $rs operation $rt
For unary operations (i.e., not, inv, sla, sra, inc, dec), the registers are used as follows
(rt is unused):

$rd := operation $rs
For the zero instruction, the registers are used as follows:

$rd := 0

For the copy instruction, the registers are used as follows:

$rd := $rs
The 16-bit instructions for the unary register operations are formatted as follows:

– 15-13 : 001 (instruction code)

– 12-9 : operation code

– 8-6 : rd

– 5-3 : rs

– 2-0 : 000 (unused)

Example: To invert the value of register 6, and put the result in register 3, the fol-
lowing instruction is loaded:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 0 1 1 1 1 0 0 0 0

unary reg op op code rd rs unused

The 16-bit instructions for the binary register operations are formatted as follows:

– 15-13 : 010 (instruction code)

– 12-9 : operation code

– 8-6 : rd

– 5-3 : rs

– 2-0 : rt

Example: To add the values of register 1 and register 2, and put the result in register
5, the following instruction is loaded:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0

binary reg op op code rd rs rt

2

Computer Systems and -architecture 1 Ba INF, 2022-2023

• The datapath must be able to perform the load word (lw – reading from data RAM),
and store word (sw – writing to data RAM) operations. These are memory instruc-
tions, and similarly to the MIPS lw/sw instructions, a constant can be used to denote
an offset. The meaning of these instructions is as follows:

lw: $rd := MEM[$rs + offset]

sw: MEM[$rs + offset] := $rd
Load word loads the contents of memory address $rs + offset into $rd. Store word
stores the register value $rd into memory address $rs + offset. The offset is often
used for loading an array of values from memory.

The 16-bit instructions for the memory operations are formatted as follows:

– 15-13 : 011 (instruction code)

– 12 : operation code

– 11-9 : rd

– 8-6 : rs

– 5-0 : signed immediate

Example: To store the value of register 3 in memory, 4 address spaces beyond the
address stored in register 2:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 1 0 1 0 0 0 0 1 0 0

memory op op code rd rs signed immediate

• The datapath must be able to perform immediate operations. The meaning of these
instructions is as follows:

The ori (“or immediate”) performs the or operation with the unsigned 8-bit immedi-
ate value and the value of register rd, and then places the result back in register rd.
ori: $rd := $rd | immediate

The lui (“load upper immediate”) shifts the unsigned 8-bit immediate value eight
times to the left, and then places the result in register rd. lui: $rd := immediate

<< 8

The addi (“add immediate”) performs the add operation with the unsigned 8-bit
immediate value and the value of register rd, and then places the result back in
register rd. addi: $rd := $rd + immediate

The subi (“sub immediate”) performs the sub operation with the unsigned 8-bit
immediate value and the value of register rd, and then places the result back in
register rd. subi: $rd := $rd - immediate

The 16-bit instructions for the immediate operations are formatted as follows:

– 15-13 : 100 (instruction code)

– 12-11 : operation code

– 10-8 : rd

– 7-0 : signed immediate

Example: To add 8 to the value of register 3:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0

immediate op op code rd signed immediate

3

Computer Systems and -architecture 1 Ba INF, 2022-2023

All instructions you need to implement, their name, assembler instruction and de-
scription are collected in the following table:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 name instruction description

000 0000 rd 000 000 zero1 zero rd $rd := 0
001 0001 rd rs 000 not1 not rd rs $rd := !$rs
001 1010 rd rs 000 inv1 inv rd rs $rd := -$rs
001 1011 rd rs 000 sll1 sll rd rs $rd := $rs << 2
001 1100 rd rs 000 srl1 srl rd rs $rd := $rs >> 2
001 1101 rd rs 000 sla1 sla rd rs $rd := $rs * 2
001 1110 rd rs 000 sra1,2 sra rd rs $rd := $rs / 2
001 0100 rd rs 000 inc1 inc rd rs $rd := $rs + 1
001 0101 rd rs 000 dec1 dec rd rs $rd := $rs - 1
001 1111 rd rs 000 cp1 cp rd rs $rd := $rs
010 0010 rd rs rt and1 and rd rs rt $rd := $rs & $rt
010 0011 rd rs rt or1 or rd rs rt $rd := $rs | $rt
010 0100 rd rs rt add1 add rd rs rt $rd := $rs + $rt
010 0101 rd rs rt sub1 sub rd rs rt $rd := $rs - $rt
010 0110 rd rs rt lt1 lt rd rs rt $rd := $rs < $rt ? 1 : 0
010 0111 rd rs rt gt1 gt rd rs rt $rd := $rs > $rt ? 1 : 0
010 1000 rd rs rt eq1 eq rd rs rt $rd := $rs = $rt ? 1 : 0
010 1001 rd rs rt neq1 neq rd rs rt $rd := $rs != $rt ? 1 : 0
011 0 rd rs signed imm lw lw rd rs imm $rd := MEM[$rs+imm]
011 1 rd rs signed imm sw sw rd rs imm MEM[$rs+imm] := $rd
100 00 rd unsigned imm ori ori rd imm $rd := $rd | imm
100 01 rd unsigned imm lui lui rd imm $rd := imm << 8
100 10 rd unsigned imm addi addi rd imm $rd := $rd + imm
100 11 rd unsigned imm subi subi rd imm $rd := $rd - imm

1 R-type instruction.

2 Integer division.

• You can try out your datapath by editing your RAM-elements. You can do this by
right-clicking them and selecting edit contents or save/load image.

3. Run the test files for your Datapath. Do this during the development of your Data-
path, not afterwards! A test file is given for each type of instruction; run it on your
circuit using the program Test.py. You need to install Python (http://python.org/
download/releases/2.7.3/) to run Test.py. Download Test.py, tests.zip (from the
course page) and logisim-generic-2.7.1.jar (http://sourceforge.net/projects/
circuit/files/2.7.x/2.7.1/) and save in the same folder as your adapted SD GroupXX.circ

project. The program takes a file containing small assembler programs that are datapath
tests as input, and a SD GroupXX.circ logisim file. It runs all datapath tests and reports
test errors and failures. For this assignment you will have to do the following:

• The tests are written in a MIPS-style assembler language. See for example this simple
test:
LOADMEM

zero r0 # 0 first, a zero instruction (see troubleshooting section)

lw r1 r0 5 # 1 loads a[0] into r1

lw r2 r0 6 # 2 loads a[1] into r2

add r3 r1 r2 # 3 put a[0]+a[1] into r3

DATAMEM # 4

10 # 5

-1 # 6

CHECKMEM

r1: 10

r2: -1

4

Computer Systems and -architecture 1 Ba INF, 2022-2023

r3: 9

pc: 4

END

This test involves four instructions: a zero instruction, two times loading and an
addition (below LOADMEM). When running the test, the LOADMEM part is assembled
into binary strings (in this case four strings). Then, the DATAMEM adds a 0-instruction
that will cause the simulator to halt here. Subsequently, a data part is provided
with two numbers (below DATAMEM). In total, we have now seven binary strings: the
first four are instructions, then a STOP-instruction, then two data strings. These
are loaded into both your instruction RAM and your data RAM. So you will have to
write your tests as if your architecture was a stored-program architecture: where the
program and the data are in the same memory element. This means that you should
be aware that you can reference and alter your program instructions!
In this case, the register r0 will be set to 0. Next, the word in memory address 5
(which is 10) will be loaded into r1, and the word in memory address 6 (which is -1)
will be loaded into r2. Then, r1 and r2 are added, and the result is stored in r3, so
r3 should contain the value 9. The actual tests are written below CHECKMEM: here we
check whether r3 contains the value 9 and whether the program counter has value 3.
You can check the value of the pc and any registers (unfortunately not of memory
contents - you will have to load them into a register to check them). The check is
performed after the last instruction (in this case, the addition). The test is ended by
the END-line.
You can add multiple test programs to the same file, by simply starting a new LOADMEM

after the END. You can also perform checks at a specific point in your code, by adding
a DATAMEM block at that point. To test the lw-instruction more thoroughly we can
alter the above test as follows:

LOADMEM

zero r0 # 0 first, a zero instruction (see troubleshooting section)

lw r1 r0 5 # 1 loads a[0] into r1

CHECKMEM

r1: 10

LOADMEM

lw r2 r0 6 # 2 loads a[1] into r2

CHECKMEM

r2: -1

LOADMEM

add r3 r1 r2 # 3 put a[0]+a[1] into r3

DATAMEM # 4

10 # 5

-1 # 6

CHECKMEM

r3: 9

pc: 4

END

Your goal is to add significant tests to Test GroupXX.txt. Write a lot of tests.
Implement all operations in your simple datapath and create for each multiple tests
in your test file.

5

Computer Systems and -architecture 1 Ba INF, 2022-2023

• All files must be in the same directory. The program must be executed from the
console as follows:
python Test.py -s -i TestFile.txt -c SD GroupXX.circ

with TestFile.txt as the file containing your datapath tests and SD GroupXX.circ

as your logisim file (change XX to your group number). Note the “-s” flag, indicating
the tests are for the simple datapath. Some lines will be outputted to the console,
ending with a line denoting how many tests were executed (depending on how many
test lines you have added to your file) and how many of them failed or produced an
error(you should have 0 here).
If not successful, tests can be ’errors’ or ’failures’. An error means that some of the
resulting signals were ’Error’ signals or ’don’t care’ signals (’E’ or ’x’, or a red/blue
signal line in logisim). A failure means that the expected result did not match what
you have specified in your test. If you have failure or error tests, there will be some
information about this failure/error in the output.

• If your tests fail while you expect them to be successful, try the following:

(a) Double-check your solution to make sure that there is no error in your datapath.
Make sure that you have connected your register file to the register outputs
correctly!

(b) The script has generated some file(s) named TestFile.textX, which contain the
compiled hexadecimal version of each test program you wrote in TestFile.txt.
In Logisim, use these generated TestFile.textX files to load them in your RAM-
element (right-click your RAM-element, select “load image”). Check in Logisim
whether the outcome is correct. If this is the case but the corresponding test
failed when executed with the script, it means that there is something wrong
with the execution of the script, so continue with step c.

6

Computer Systems and -architecture 1 Ba INF, 2022-2023

(c) Check the corresponding TestFile.reportX file. The file is a printout of the
simulation in Logisim of the corresponding test. It can be read line per line as
follows: the first 16 bits is the pc value at a given clock tick, the remaining 8
16-bit numbers are the register values (r0 to r7) at this clock tick. Since your
pc should increase every clock tick, the first column should also increase by one
on each line. If this is not the case, and some pc values appear twice below
each other, this probably means that values are only read at the rising edge. In
this case, please check your registers (i.e., D-Flipflops used in your register) in
Logisim and make sure they are all edge-triggered on the falling edge.

(d) If you still have not found the error, you might have hit a bug in the Logisim
simulator that only occurs on some platforms. This bug can be resolved as follows:
try starting every test program with zero r1 (don’t forget to also update address
values as the whole program shifts by one...). For some reason, the Logisim
simulator does not seem to be able to handle certain calculations on the first
clock tick on some platforms.

(e) If you experience “random” bugs where in some test runs your test fails, but in
others your test passes, then the following should resolve this: in Logisim, disable
the option Project→Options→simulation tab→Add Noise to component delays.

(f) If all fails, contact me.

7

