
The Processor

Designing the datapath



Program Execution (performance)

 Algorithm
 Determines number of operations executed

 Programming language, compiler, architecture 
(Instruction Set Architecture – ISA)
 Determine number of machine instructions executed 

per operation (clock Cycles Per Instruction – CPI)
 Processor and memory system

 Determine how fast instructions are executed

(cycle time)
 I/O system (and OS)

 Determines how fast I/O operations are executed



Program Execution

32 bit MIPS R3000 processor (115000 transistors) early 1990s

 We will examine two MIPS hardware implementations 
(aka “datatpath”) with identical ISAs:

 A simplified version
 A more realistic pipelined version (Instruction-Level Parallellism)

 We will subsequently introduce “exception” handling 
and what this requires in the datapath

 Simple (but sufficient) subset, only essential instructions

Different types of instructions (Instruction Set): 

 Memory access: Memory access: lw, swlw, sw
 Arithmetic/logical: Arithmetic/logical: add, sub, and, or, sltadd, sub, and, or, slt
 Control transfer:   Control transfer:   beq, j beq, j 



Böhm – Jacopini theorem
The “structured program” theorem (from programming language theory):

Böhm, Corrado and Jacopini, Giuseppe (1966).
”Flow Diagrams, Turing Machines and Languages with only Two Formation Rules”. Communications of the ACM 9(5):366-371.
http://www.cs.unibo.it/~martini/PP/bohm-jac.pdf

A class of control flow graphs can compute any computable function (algorithm) if it combines subprograms in only three 
specific ways (i.e., by means of only three control structures):

1) Executing one subprogram, and then another subprogram (sequence)

2) Executing one of two subprograms according to the value of a Boolean expression (selection)

3) Repeatedly executing a subprogram as long as a Boolean expression is true (iteration)

Note: assembly/machine code is not “structured” HLL (as it uses Go To).

Edsger Dijkstra (1968). 
"Go To Statement Considered Harmful". Communications of the ACM. 11 (3): 147–148.
https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf

Frank Rubin (1987). 
"”GOTO Considered Harmful" Considered Harmful". Communications of the ACM. 30 (3): 195–196.
http://www.ecn.purdue.edu/ParaMount/papers/rubin87goto.pdf

"”GOTO Considered Harmful" Considered Harmful' Considered Harmful?" ...

http://www.cs.unibo.it/~martini/PP/bohm-jac.pdf
https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf
http://www.ecn.purdue.edu/ParaMount/papers/rubin87goto.pdf


Instruction Set Architecture (ISA)

Special ArchitecturesSpecial Architectures::

•  (Super) vector computers(Super) vector computers

•  GPU (matrix operations)GPU (matrix operations)

•  Special purpose (signal processing, ECU, ...)Special purpose (signal processing, ECU, ...)



Instruction Set Architecture (ISA)

Design Principles (HW/SW)Design Principles (HW/SW)::

11. Regularity. Regularity
22. Smaller is Faster. Smaller is Faster
33. Make the Common Case Fast. Make the Common Case Fast
44. Good Design demands Good Compromises. Good Design demands Good Compromises



Instruction Set Architecture (ISA)

Different instruction Different instruction instancesinstances::

Different instruction Different instruction typestypes::

Memory access: Memory access: lw, swlw, sw
Arithmetic/logical: Arithmetic/logical: add, sub, and, or, sltadd, sub, and, or, slt
Control transfer: Control transfer: beq, jbeq, j  

Different instruction (encoding) Different instruction (encoding) formatsformats::

add    $s1, $s2, $s3add    $s1, $s2, $s3
add    $s1, $s1, $s2add    $s1, $s1, $s2
add    $s1, $s1, $s1add    $s1, $s1, $s1



Logic Design Basics (recap)
 Information encoded in binary digits

 Low voltage = 0, High voltage = 1 (or reverse)
 One wire per bit
 Multi-bit data encoded on multi-wire buses

 Combinational element
 Operate on data
 Output is a function of input

 State (sequential) elements
 Store/Hold/Retrieve information



Combinational Elements

 AND-gate
 Y = A & B
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 Adder
 Y = A + B

 Arithmetic/Logic Unit
 Y = F(A, B)



Sequential Elements

Register: stores data in a memory circuit
 Uses a clock signal Clk to determine when to 

update the stored value Q with D
 (rising/falling) Edge-triggered: update data in 

memory when Clk changes (from 0 to 1/1 to 0)
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Sequential Elements

Register with write control
 Only updates on clock edge 

only when write control input is 1
 Used when stored value is to be kept over 

multiple clock cycles
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Write
Write
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Q

Clk



Clocking Methodology
Combinational logic 
transforms data during clock cycles
 Between clock edges
 Input from state elements, 

Output to state element
 Longest delay due to combinational logic

(implementing ISA “instructions”) 
determines minimum required clock period



Executing Machine Instructions



Executing Machine Instructions



Executing Machine Instructions



Executing Machine Instructions



Instruction Execution
 PC  instruction memory, fetch instruction
 Register numbers  register file, read registers
 Depending on instruction type (class)

 Use ALU to calculate
 Arithmetic result
 Memory address for load/store
 Branch target address

 Access data memory for load/store
 PC  PC + 4 (“next sequential instruction”) or target address



CPU Overview



Multiplexers

can’t just join wires

   use multiplexers



Control



Building a Datapath
 Datapath =

CPU hardware architecture 
that processes instructions and data

 registers, ALUs, multiplexers, memories

 We will build a simplified MIPS datapath 
incrementally, refining the overview design



Instruction Fetch



Program Counter (PC) is unsigned



Instruction Fetch

32-bit 
register

Increment by 
4 for next 
instruction



R-Format Instructions

 Read two register operands
 Perform arithmetic/logical operation
 Write register result



Load/Store Instructions

 Read register operands
 Calculate address using 16-bit offset

 use ALU, but sign-extend offset

 Load: Read memory and update register
 Store: Write register value to memory



R-Type/Load/Store Datapath



Branch Instructions

 Read register operands
 Compare operands

 Use ALU, subtract and check Zero output

 Calculate target address
 Sign-extend displacement
 Shift left 2 places 

(instructions are word-aligned)
 Add to PC + 4

 Already calculated by instruction fetch



Branch Instructions

Just
re-routes 

wires

Sign-bit wire 
replicated



Composing the Elements
 First attempt at datapath processes one 

instruction in one clock cycle
 Each datapath element can only do one 

function at a time (i.e., in one clock cycle)
 Hence, we need separate instruction and data 

memories!
 Use multiplexers where alternate data 

sources (e.g., from ALU or from memory) 
are used for different instructions



Full Datapath



ALU Control

 ALU used for
 R-type: Function depends on funct field
 Load/Store: Function = add
 Branch beq: Function = subtract

ALU control Function

0000 AND

0001 OR

0010 add

0110 subtract

0111 set-on-less-than

1100 NOR



ALU Control
 2-bit ALUOp derived from opcode



ALU Control
 2-bit ALUOp derived from opcode
 Combinational logic for ALU control

 opcode ALUOp  Operation funct  ALU function ALU 
control 

 lw 00  load word XXXXXX  add 0010

 sw 00  store word XXXXXX  add 0010

 beq 01  branch equal XXXXXX  subtract 0110

 R-type 10  add 100000  add 0010

 subtract 100010  subtract 0110

 AND 100100  AND 0000

 OR 100101  OR 0001

 set-on-less-than 101010  set-on-less-than 0111



The Main Control Unit
 information extracted from instruction

0 rs rt rd shamt funct

31:26 5:025:21 20:16 15:11 10:6

35 or 43 rs rt address

31:26 25:21 20:16 15:0

4 rs rt address

31:26 25:21 20:16 15:0

R-type

Load/
Store

Branch

opcode always 
read

read, 
except 
for load

write for 
R-type 

and load

sign-extend 
and add



Datapath With Control



Example program



Example program, assembled



R-Type Instruction



encoding of add $t3, $t1, $t2

= 000000 01001 01010 01011 00000 1000002

= 0000 0001 0010 1010 0101 1000 0010 00002

 
= 0 1 2 a 5 8 2 016

R-Type Instruction encoding

add opcode = 0016 = 0000002

add func   = 2016 = 1000002

add shamt  = 0016 =  000002

$t1       = $9  =  010012

$t2       = $10 =  010102

$t3       = $11 =  010112 



Load Instruction



Load Instruction



Load Instruction



Load Instruction encoding

lw opcode = 2316 = 1000112

$t0       = $8  =  010002

$t2       = $10 =  010102 
4         = 0000 0000 0000 01002

encoding of lw $t2, 4($t0)

= 100011 01000 01010 0000 0000 0000 01002

= 1000 1101 0000 1010 0000 0000 0000 01002

= 8 d 0 a 0 0 0 416



Branch-on-Equal Instruction



Branch-on-Equal Instruction



beq Instruction encoding

  

start = PC + 4 + offset (in words)start = PC + 4 + offset (in words)
        →         → offset = -12offset = -121010

  12121010 = = 0000 0000 0000 11000000 0000 0000 110022  
-12-121010 = =       1111 1111 1111 00111111 1111 1111 001122

                        ++ 0000 0000 0000 00010000 0000 0000 000122

          == 1111 1111 1111 01001111 1111 1111 010022

          = = FFF4FFF41616

→→



beq Instruction encoding

  

beq opcode = 416    =              0001002

$t3        = $11   =               010112

offset     = FFF4offset     = FFF41616 = 1111 1111 1111 01002

encoding of beq $t3, $t3, start

= 000100 01011 01011 1111 1111 1111 01002 

= 0001 0001 0110 1011 1111 1111 1111 01002 

= 1 1 6 b f f f 416



Implementing Jumps

 Jump uses word address (not byte address)

 Update (32 bit) PC with concatenation of
 top 4 bits of (old PC + 4)
 26-bit jump address
 00

 Need extra control signal (for PC mux):  decoded from opcode

2 address

31:26 25:0

Jump



Implementing Jumps



Implementing Jumps



jump Instruction encoding

  

j opcode = 216    =           0000102

PC     = 00400003416 
PC + 4 = 00400003816

top 4 bits of (PC + 4) 
       = 016 = 00002

target address  target address  
= 00400000= 004000001616

= 0000 0000 0100 0000 0000 0000 0000 000022

                          26 bit address26 bit address          

encoding of j start

= 000010 0000 0100 0000 0000 0000 0000 002 

= 0000 1000 0001 0000 0000 0000 0000 00002

= 0 8 1 0 0 0 0 016

start:



Datapath With Jumps Added

Need extra control signal (for PC mux):  decoded from opcode



Performance Issues

 Longest delay determines clock period
 Critical path: load instruction
 Instruction memory  register file  ALU 
 data memory  register file

 Varying clock period for different instructions 
violates design principles:
 regularity
 make the common case fast

 Will improve performance by 
Instruction-Level Parallellism (ILP) aka “pipelining”
(note that a constant clock period is needed for ILP)
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