
The Processor

Designing the datapath

Program Execution (performance)

 Algorithm
 Determines number of operations executed

 Programming language, compiler, architecture
(Instruction Set Architecture – ISA)
 Determine number of machine instructions executed

per operation (clock Cycles Per Instruction – CPI)
 Processor and memory system

 Determine how fast instructions are executed

(cycle time)
 I/O system (and OS)

 Determines how fast I/O operations are executed

Program Execution

32 bit MIPS R3000 processor (115000 transistors) early 1990s

 We will examine two MIPS hardware implementations
(aka “datatpath”) with identical ISAs:

 A simplified version
 A more realistic pipelined version (Instruction-Level Parallellism)

 We will subsequently introduce “exception” handling
and what this requires in the datapath

 Simple (but sufficient) subset, only essential instructions

Different types of instructions (Instruction Set):

 Memory access: Memory access: lw, swlw, sw
 Arithmetic/logical: Arithmetic/logical: add, sub, and, or, sltadd, sub, and, or, slt
 Control transfer: Control transfer: beq, j beq, j

Böhm – Jacopini theorem
The “structured program” theorem (from programming language theory):

Böhm, Corrado and Jacopini, Giuseppe (1966).
”Flow Diagrams, Turing Machines and Languages with only Two Formation Rules”. Communications of the ACM 9(5):366-371.
http://www.cs.unibo.it/~martini/PP/bohm-jac.pdf

A class of control flow graphs can compute any computable function (algorithm) if it combines subprograms in only three
specific ways (i.e., by means of only three control structures):

1) Executing one subprogram, and then another subprogram (sequence)

2) Executing one of two subprograms according to the value of a Boolean expression (selection)

3) Repeatedly executing a subprogram as long as a Boolean expression is true (iteration)

Note: assembly/machine code is not “structured” HLL (as it uses Go To).

Edsger Dijkstra (1968).
"Go To Statement Considered Harmful". Communications of the ACM. 11 (3): 147–148.
https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf

Frank Rubin (1987).
"”GOTO Considered Harmful" Considered Harmful". Communications of the ACM. 30 (3): 195–196.
http://www.ecn.purdue.edu/ParaMount/papers/rubin87goto.pdf

"”GOTO Considered Harmful" Considered Harmful' Considered Harmful?" ...

http://www.cs.unibo.it/~martini/PP/bohm-jac.pdf
https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf
http://www.ecn.purdue.edu/ParaMount/papers/rubin87goto.pdf

Instruction Set Architecture (ISA)

Special ArchitecturesSpecial Architectures::

• (Super) vector computers(Super) vector computers

• GPU (matrix operations)GPU (matrix operations)

• Special purpose (signal processing, ECU, ...)Special purpose (signal processing, ECU, ...)

Instruction Set Architecture (ISA)

Design Principles (HW/SW)Design Principles (HW/SW)::

11. Regularity. Regularity
22. Smaller is Faster. Smaller is Faster
33. Make the Common Case Fast. Make the Common Case Fast
44. Good Design demands Good Compromises. Good Design demands Good Compromises

Instruction Set Architecture (ISA)

Different instruction Different instruction instancesinstances::

Different instruction Different instruction typestypes::

Memory access: Memory access: lw, swlw, sw
Arithmetic/logical: Arithmetic/logical: add, sub, and, or, sltadd, sub, and, or, slt
Control transfer: Control transfer: beq, jbeq, j

Different instruction (encoding) Different instruction (encoding) formatsformats::

add $s1, $s2, $s3add $s1, $s2, $s3
add $s1, $s1, $s2add $s1, $s1, $s2
add $s1, $s1, $s1add $s1, $s1, $s1

Logic Design Basics (recap)
 Information encoded in binary digits

 Low voltage = 0, High voltage = 1 (or reverse)
 One wire per bit
 Multi-bit data encoded on multi-wire buses

 Combinational element
 Operate on data
 Output is a function of input

 State (sequential) elements
 Store/Hold/Retrieve information

Combinational Elements

 AND-gate
 Y = A & B

A
B

Y

I0
I1

Y
M
u
x

S

 Multiplexer
 Y = S ? I1 : I0

A

B

Y+

A

B

YALU

F

 Adder
 Y = A + B

 Arithmetic/Logic Unit
 Y = F(A, B)

Sequential Elements

Register: stores data in a memory circuit
 Uses a clock signal Clk to determine when to

update the stored value Q with D
 (rising/falling) Edge-triggered: update data in

memory when Clk changes (from 0 to 1/1 to 0)

D

Clk

Q
Clk

D

Q

Sequential Elements

Register with write control
 Only updates on clock edge

only when write control input is 1
 Used when stored value is to be kept over

multiple clock cycles

D

Clk

Q

Write
Write

D

Q

Clk

Clocking Methodology
Combinational logic
transforms data during clock cycles
 Between clock edges
 Input from state elements,

Output to state element
 Longest delay due to combinational logic

(implementing ISA “instructions”)
determines minimum required clock period

Executing Machine Instructions

Executing Machine Instructions

Executing Machine Instructions

Executing Machine Instructions

Instruction Execution
 PC  instruction memory, fetch instruction
 Register numbers  register file, read registers
 Depending on instruction type (class)

 Use ALU to calculate
 Arithmetic result
 Memory address for load/store
 Branch target address

 Access data memory for load/store
 PC  PC + 4 (“next sequential instruction”) or target address

CPU Overview

Multiplexers

can’t just join wires

  use multiplexers

Control

Building a Datapath
 Datapath =

CPU hardware architecture
that processes instructions and data

 registers, ALUs, multiplexers, memories

 We will build a simplified MIPS datapath
incrementally, refining the overview design

Instruction Fetch

Program Counter (PC) is unsigned

Instruction Fetch

32-bit
register

Increment by
4 for next
instruction

R-Format Instructions

 Read two register operands
 Perform arithmetic/logical operation
 Write register result

Load/Store Instructions

 Read register operands
 Calculate address using 16-bit offset

 use ALU, but sign-extend offset

 Load: Read memory and update register
 Store: Write register value to memory

R-Type/Load/Store Datapath

Branch Instructions

 Read register operands
 Compare operands

 Use ALU, subtract and check Zero output

 Calculate target address
 Sign-extend displacement
 Shift left 2 places

(instructions are word-aligned)
 Add to PC + 4

 Already calculated by instruction fetch

Branch Instructions

Just
re-routes

wires

Sign-bit wire
replicated

Composing the Elements
 First attempt at datapath processes one

instruction in one clock cycle
 Each datapath element can only do one

function at a time (i.e., in one clock cycle)
 Hence, we need separate instruction and data

memories!
 Use multiplexers where alternate data

sources (e.g., from ALU or from memory)
are used for different instructions

Full Datapath

ALU Control

 ALU used for
 R-type: Function depends on funct field
 Load/Store: Function = add
 Branch beq: Function = subtract

ALU control Function

0000 AND

0001 OR

0010 add

0110 subtract

0111 set-on-less-than

1100 NOR

ALU Control
 2-bit ALUOp derived from opcode

ALU Control
 2-bit ALUOp derived from opcode
 Combinational logic for ALU control

 opcode ALUOp Operation funct ALU function ALU
control

 lw 00 load word XXXXXX add 0010

 sw 00 store word XXXXXX add 0010

 beq 01 branch equal XXXXXX subtract 0110

 R-type 10 add 100000 add 0010

 subtract 100010 subtract 0110

 AND 100100 AND 0000

 OR 100101 OR 0001

 set-on-less-than 101010 set-on-less-than 0111

The Main Control Unit
 information extracted from instruction

0 rs rt rd shamt funct

31:26 5:025:21 20:16 15:11 10:6

35 or 43 rs rt address

31:26 25:21 20:16 15:0

4 rs rt address

31:26 25:21 20:16 15:0

R-type

Load/
Store

Branch

opcode always
read

read,
except
for load

write for
R-type

and load

sign-extend
and add

Datapath With Control

Example program

Example program, assembled

R-Type Instruction

encoding of add $t3, $t1, $t2

= 000000 01001 01010 01011 00000 1000002

= 0000 0001 0010 1010 0101 1000 0010 00002

= 0 1 2 a 5 8 2 016

R-Type Instruction encoding

add opcode = 0016 = 0000002

add func = 2016 = 1000002

add shamt = 0016 = 000002

$t1 = $9 = 010012

$t2 = $10 = 010102

$t3 = $11 = 010112

Load Instruction

Load Instruction

Load Instruction

Load Instruction encoding

lw opcode = 2316 = 1000112

$t0 = $8 = 010002

$t2 = $10 = 010102
4 = 0000 0000 0000 01002

encoding of lw $t2, 4($t0)

= 100011 01000 01010 0000 0000 0000 01002

= 1000 1101 0000 1010 0000 0000 0000 01002

= 8 d 0 a 0 0 0 416

Branch-on-Equal Instruction

Branch-on-Equal Instruction

beq Instruction encoding

start = PC + 4 + offset (in words)start = PC + 4 + offset (in words)
 → → offset = -12offset = -121010

 12121010 = = 0000 0000 0000 11000000 0000 0000 110022
-12-121010 = = 1111 1111 1111 00111111 1111 1111 001122

 ++ 0000 0000 0000 00010000 0000 0000 000122

 == 1111 1111 1111 01001111 1111 1111 010022

 = = FFF4FFF41616

→→

beq Instruction encoding

beq opcode = 416 = 0001002

$t3 = $11 = 010112

offset = FFF4offset = FFF41616 = 1111 1111 1111 01002

encoding of beq $t3, $t3, start

= 000100 01011 01011 1111 1111 1111 01002

= 0001 0001 0110 1011 1111 1111 1111 01002

= 1 1 6 b f f f 416

Implementing Jumps

 Jump uses word address (not byte address)

 Update (32 bit) PC with concatenation of
 top 4 bits of (old PC + 4)
 26-bit jump address
 00

 Need extra control signal (for PC mux): decoded from opcode

2 address

31:26 25:0

Jump

Implementing Jumps

Implementing Jumps

jump Instruction encoding

j opcode = 216 = 0000102

PC = 00400003416
PC + 4 = 00400003816

top 4 bits of (PC + 4)
 = 016 = 00002

target address target address
= 00400000= 004000001616

= 0000 0000 0100 0000 0000 0000 0000 000022

 26 bit address26 bit address

encoding of j start

= 000010 0000 0100 0000 0000 0000 0000 002

= 0000 1000 0001 0000 0000 0000 0000 00002

= 0 8 1 0 0 0 0 016

start:

Datapath With Jumps Added

Need extra control signal (for PC mux): decoded from opcode

Performance Issues

 Longest delay determines clock period
 Critical path: load instruction
 Instruction memory  register file  ALU
 data memory  register file

 Varying clock period for different instructions
violates design principles:
 regularity
 make the common case fast

 Will improve performance by
Instruction-Level Parallellism (ILP) aka “pipelining”
(note that a constant clock period is needed for ILP)

	Introduction
	Slide 2
	Slide 3
	Slide 4
	Instruction Execution
	Slide 6
	Slide 7
	Logic Design Basics
	Combinational Elements
	Sequential Elements
	Slide 11
	Clocking Methodology
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	CPU Overview
	Multiplexers
	Control
	Building a Datapath
	Slide 22
	Slide 23
	Instruction Fetch
	R-Format Instructions
	Load/Store Instructions
	R-Type/Load/Store Datapath
	Branch Instructions
	Slide 29
	Composing the Elements
	Full Datapath
	ALU Control
	Slide 33
	Slide 34
	The Main Control Unit
	Datapath With Control
	Slide 37
	Slide 38
	R-Type Instruction
	Slide 40
	Slide 41
	Slide 42
	Load Instruction
	Slide 44
	Slide 45
	Branch-on-Equal Instruction
	Slide 47
	Slide 48
	Implementing Jumps
	Slide 50
	Slide 51
	Slide 52
	Datapath With Jumps Added
	Performance Issues

